
Jarrar  ©  2011 1

Lecture Notes, 
Artificial Intelligence ((ENCS434))  

University of Birzeit
1st Semester, 2011

Artificial Intelligence (ENCS434)

Dr. Mustafa Jarrar
University of Birzeit
mjarrar@birzeit.edu

www.jarrar.info

First Order Logic

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

mailto:mjarrar@birzeit.edu
http://www.jarrar.info/
http://creativecommons.org/choose/results-one?q_1=2&q_1=1&field_commercial=n&field_derivatives=n&field_jurisdiction=&field_format=&field_worktitle=Lecture+Notes&field_attribute_to_name=Mustafa+Jarrar,+Birzeit+University&field_attribute_to_url=www.jarrar.


Jarrar  ©  2011 2

Acknowledgement

The slides in this lecture are based on the slides developed by Prof. 
Enrico Franconi*

See the online course on Description Logics 
http://www.inf.unibz.it/~franconi/dl/course/

(But notice that I introduced some modifications.)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

http://www.inf.unibz.it/~franconi/dl/course/


Jarrar  ©  2011 3

Reading

All slides + everything I say

Chapter 8 and Chapter 9
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Outline

• FOL, First Order Logic 

• Motivation (why FOL)

• Syntax 

• Semantics

• FOL Inference Methods

• Enumeration Method

• Inference rules

• Resolution

• Forward  and backward Chaining
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Motivation

• We can already do a lot with propositional logic.

• But it is unpleasant that we cannot access the structure of atomic 
sentences.

• Atomic formulas of propositional logic are too atomic . they are just 
statement.

• which my be true or false but which have no internal structure.

• In First Order Logic (FOL) the atomic formulas are interpreted as 
statements about relationships between objects.
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Predicates and Constants

Let's consider the statements:
• Mary is female
• John is male
• Mary and John are siblings

In propositional logic the above statements are atomic propositions:
• Mary-is-female
• John-is-male
• Mary-and-John-are-siblings

In FOL atomic statements use predicates, with constants as argument:
• Female(mary)
• Male(john)
• Siblings(mary, john)
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Variables and Quantifiers

Let's consider the statements:
• Everybody is male or female
• A male is not a female

In FOL predicates may have variables as arguments, whose value is 
bounded by quantifiers:
• x. Male(x)  Female(x)
• x. Male(x)  Female(x)

Deduction (why?):
• Mary is not male
•  Male(mary)
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Functions

Let's consider the statement:
• The father of a person is male

In FOL objects of the domain may be denoted by functions applied to 
(other) objects:

• x. Male(father(x))
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Syntax of FOL: atomic sentences

Countably infinite supply of symbols (signature):
variable symbols: x, y, z,  …
n-ary function symbols: f, g, h,…
individual constants: a, b, c,…
n-are predicate symbols: P, Q, R,…

Terms:      t  x variable
|   a constant
| f (t1,…,tn)        function application

Ground terms: terms that do not contain variables
Formulas:    P(t1,…,tn)    atomic formulas

E.g., Brother(kingJohn; richardTheLionheart)
>(length(leftLegOf(richard)), length(leftLegOf(kingJohn)))
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Syntax of Propositional Logic

Formulas: ,   P(t1,…,tn)     atomic formulas
|      false
|     T true
|       negation
|         conjunction
|         disjunction
|         implication
|         equivalence

(Ground) atoms and (ground) literals.

E.g. Sibling(kingJohn, richard)  Sibling(richard, kingJohn)
>(1, 2)   ≤(1, 2)
>(1, 2)   >(1, 2)
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Syntax of First Order Logic

Formulas: ,   P(t1,…,tn)     atomic formulas
|      false
|     T true
|       negation
|         conjunction
|         disjunction
|         implication
|         equivalence
|      x. universal quantification
|       x. existential quantification

E.g. Everyone in Italy is smart:          x. In(x, Italy)  Smart(x)
Someone in France is smart:     x. In(x, France)  Smart(x)
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Summary of Syntax of FOL

Terms
– variables
– constants
– functions

Literals
– atomic formula

• relation (predicate)

– negation

Well formed formulas
– truth-functional connectives
– existential and universal quantifiers
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Outline

• FOL, First Order Logic 

• Motivation (why FOL)

• Syntax 

• Semantics

• FOL Inference Methods

• Enumeration Method

• Inference rules

• Resolution

• Forward  and backward Chaining
Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Jarrar  ©  2011 15

Semantics of FOL: intuition

• Just like in propositional logic, a (complex) FOL formula may be true (or 
false) with respect to a given interpretation.

• An interpretation specifies referents for
constant symbols   objects
predicate symbols  relations
function symbols    functional relations

• An atomic sentence P(t1,…,  tn) is true in a given interpretation
iff the objects referred to by t1,…,  tn

are in the relation referred to by the predicate P.

• An interpretation in which a formula is true is called a model for the 
formula.
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Models for FOL: Example
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Models for FOL: Example

Functional relations: all tuples of objects + "value" object

Objects 

Relations: sets of tuples of objects
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Semantic of FOL: Interpretations

Interpretation:  = , .  where  is an arbitrary non-empty set and  is 
a function that maps:

• Individual constants to elements of  :
a  

• n-ary predicate symbols to relation over  :
P  n

• n-ary function symbols to functions over  :
f   [n   ]
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Semantic of FOL: Satisfaction

Interpretation of ground terms:

( f (t1,…,tn))I =      f I (t I 
1,…,t I 

n)  ( )

Satisfaction of ground atoms P(t1,…,tn):

I ╞ P(t1,…,tn)    iff     t I 
1,…,t I 

n   P I
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Examples

 =   {d1,…,  dn, n > 1}
aI =   d1

bI =   d2

BlockI =   {d1}
RedI =   

 =   {1,2,3,…}
1I =   1
2I =   2

….
EvenI =   {2,4,6,…}
SuccI =   {(12), (23),…}
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Examples

I  ╞ Red(b)
I | Block(b)

 =   {1,2,3,…}
1I =   1
2I =   2

….
EvenI =   {2,4,6,…}
SuccI =   {(12), (23),…}

I | Even(3)
I ╞ Even(succ(3))

 =   {d1,…,  dn, n > 1}
aI =   d1

bI =   d2

BlockI    =   {d1}
RedI =   
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Semantics of FOL: Variable Assignments

V set of all variables. Function : V  .
Notation: [x/d]  means assign d to x

Interpretation of terms under c
xI, =  (x)
aI, =  aI

(f (t1,..,tn))I, =   f I (t1I,,…,tnI,) 

Satisfiability of atomic formulas:

I, ╞      P(t1,…,tn)    iff    t1I,,…,tnI,  P I
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Variable Assignment example

 =   {(x  d1), (y  d2)}
I,  ╞      Red(x)

I, [y/d1]   ╞        Block(y)
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Interpretation (Example)

BlockI = {<a>,<b>,<c>,<d>,<e>}
AboveI = {<a,b>,<b,c>,<d,e>}
ClearI = {<a>,<d>}
TableI = {<c>,<e>}

b

c

a

d

e

I | Block(f)

I |=  Block(a)
I |=  Above(b,c)
I | Above(b,e)
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Semantics of FOL: Satisfiability of formulas

A formula  is satisfied by (is true in) an interpretation I under a 
variable

assignment ,
I,  ╞   :

I,  ╞    P(t1,…,tn)    iff      t1I,,…,tnI,  P I

I,  ╞     iff I,  | 
I,  ╞       iff I,  ╞  and I  ╞ 
I,  ╞       iff I,  ╞  or I  ╞ 
I,  ╞    x. iff for all d   : I, [x/d] ╞ 
I,  ╞    x. iff there exits a d   : I, [x/d] ╞ 
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Satisfiability and Validity

An interpretation I is a model of  under , if
I,  ╞  

Similarly as in propositional logic, a formula  can be satisfiable, 
unsatisfiable, falsifiable or valid  -the definition is in terms of the pair (I,).

A formula  is
satisfiable, if there is some (I, ) that satisfies ,
un satisfiable, if  is not satisfiable,
falsifiable, if there is some (I, ) that does not satisfy ,
valid (i.e., a tautology), if every (I, ) is a model of .
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Equivalence

Analogously, two formulas are logically equivalent (), if 
for all I;  we have:

I,  ╞     iff I,  ╞ 
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Entailment

Entailment is defined similarly as in propositional logic.

The formula  is logically implied by a formula , if  is true in all models of 

(symbolically,  ╞ ):

 ╞  iff I ╞    for all models I of 
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Properties of quantifiers

(x .y. ) is the same as (y .x. ) 

(x . y. ) is the same as (y . x. ) 

( x .y. ) is not the same as (y . x. ) 

x .y.Loves(x,y)     “There  is  a  person  who  loves  everyone  in  the  world”

y.x.Loves(x,y)      “Everyone  in  the  world  is  loved  by  at  least  one  person”

Quantifier duality: each can be expressed using the other

x. Likes(x,Falafel) x.Likes(x,Falafel)

x.Likes(x,Salad) x Likes(x,Salad)
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Equivalences
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Knowledge Engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and 

constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base
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A simple genealogy KB (Another Example)

• Build a small genealogy knowledge base by FOL that
– contains facts of immediate family relations (spouses, parents, etc.)
– contains definitions of more complex relations (ancestors, relatives)
– is able to answer queries about relationships between people

• Predicates:
– parent(x, y), child (x, y), father(x, y), daughter(x, y), etc.
– spouse(x, y), husband(x, y), wife(x,y)
– ancestor(x, y), descendent(x, y)
– relative(x, y)

• Facts:
– husband(Joe, Mary), son(Fred, Joe)
– spouse(John, Nancy), male(John), son(Mark, Nancy)
– father(Jack, Nancy), daughter(Linda, Jack)
– daughter(Liz, Linda)
– etc.
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A simple genealogy KB (Another Example)

• Rules for genealogical relations
– (x,y) parent(x, y) <=> child (y, x)

(x,y) father(x, y) <=> parent(x, y) ^ male(x) (similarly for mother(x, y))
(x,y) daughter(x, y) <=> child(x, y) ^ female(x) (similarly for son(x, y))

– (x,y) husband(x, y) <=> spouse(x, y) ^ male(x) (similarly for wife(x, y))
(x,y) spouse(x, y) <=> spouse(y, x)  (spouse relation is symmetric)

– (x,y) parent(x, y) => ancestor(x, y) 
(x,y)(z) parent(x, z) ^ ancestor(z, y) => ancestor(x, y) 

– (x,y) descendent(x, y) <=> ancestor(y, x) 
– (x,y)(z) ancestor(z, x) ^ ancestor(z, y) => relative(x, y) 

(related by common ancestry)
(x,y) spouse(x, y) => relative(x, y) (related by marriage)
(x,y)(z) relative(z, x) ^ relative(z, y) => relative(x, y) (transitive)
(x,y) relative(x, y) => relative(y, x) (symmetric)

• Queries
– ancestor(Jack, Fred)   /* the answer is yes */
– relative(Liz, Joe)        /* the answer is yes */
– relative(Nancy,  Mathews)   

/* no answer in general, no if under closed world assumption */
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The electronic circuits domain

One-bit full adder
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The electronic circuits domain

1. Identify the task
– Does the circuit actually add properly? (circuit 

verification)
2. Assemble the relevant knowledge

– Composed of wires and gates; Types of gates (AND, 
OR, XOR, NOT)

– Irrelevant: size, shape, color, cost of gates
3. Decide on a vocabulary

– Alternatives:
Type(X1) = XOR
Type(X1, XOR)
XOR(X1)
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The electronic circuits domain

4. Encode general knowledge of the domain
5. t1,t2 Connected(t1, t2)  Signal(t1) = Signal(t2)

– t Signal(t) = 1  Signal(t) = 0
– 1 ≠ 0
– t1,t2 Connected(t1, t2)  Connected(t2, t1)
– g Type(g) = OR  Signal(Out(1,g)) = 1  n 

Signal(In(n,g)) = 1
– g Type(g) = AND  Signal(Out(1,g)) = 0  n 

Signal(In(n,g)) = 0
– g Type(g) = XOR  Signal(Out(1,g)) = 1 

Signal(In(1,g)) ≠ Signal(In(2,g))
– g Type(g) = NOT  Signal(Out(1,g)) ≠

Signal(In(1,g))
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The electronic circuits domain

5. Encode the specific problem instance
Type(X1) = XOR Type(X2) = XOR
Type(A1) = AND Type(A2) = AND
Type(O1) = OR

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))
Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))
Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))
Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))
Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))
Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))
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The electronic circuits domain

6. Pose queries to the inference procedure
7. What are the possible sets of values of all the 

terminals for the adder circuit? 
8. i1,i2,i3,o1,o2 Signal(In(1,C_1)) = i1  Signal(In(2,C1)) = i2 

Signal(In(3,C1)) = i3  Signal(Out(1,C1)) = o1  Signal(Out(2,C1)) = o2

7. Debug the knowledge base
May have omitted assertions like 1 ≠  0
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Summary

• First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality, 

quantifiers

• Increased expressive power: sufficient to define 
Wumpus world 
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Outline

• FOL, First Order Logic 
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Knowledge Bases vs. Databases

Evaluating the truth formula for 
each tuple in  the  table  “Publish”

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~      

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Wffs :

Proof

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Provability

Query Answer

Knowledge Base System

Query

Proof Theoretic View

Constraints
DBMS

Transactions
i.e insert, update, delete...

Query

Q
uery A

nsw
er

Model Theoretic View

The KB is a set of formulae and the 
query evaluation is to prove that the 
result is provable.
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Outline

• Reducing first-order inference to propositional inference

• Unification

• Generalized Modus Ponens

• Forward chaining

• Backward chaining

• Resolution
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Inference in First-Order Logic

• We may inference in FOL by mapping FOL sentences into 
propositions, and apply the inference methods of propositional logic. 

• This mapping is called propositionalization.

• Thus, Inference in first-order logic can be achieved using:
– Inference rules
– Forward chaining
– Backward chaining
– Resolution

• Unification
• Proofs
• Clausal form
• Resolution as search
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Universal Instantiation (UI)

• Every instantiation of a universally quantified sentence is entailed by it:
v α

Subst({v/g}, α)

for any variable v and ground term g

King(John)  Greedy(John)  Evil(John)
King(Richard)  Greedy(Richard)  Evil(Richard)

x King(x)  Greedy(x)  Evil(x) 
King(John) 
Greedy(John)

• Example:
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Existential Instantiation (EI)

For any sentence α, variable v, and constant symbol k that does not
appear elsewhere in the knowledge base:

v α
Subst({v/k}, α)

Crown(C1)  OnHead(C1,John)

x Crown(x)  OnHead(x,John)Example:

provided C1 is a new constant symbol, called a Skolem constant.

• The variable symbol can be replaced by any ground term, i.e., any
constant symbol or function symbol applied to ground terms only.

• In other words, we don’t want to accidentally draw other inferences about it
by introducing the constant.

• Convenient to use this to reason about the unknown object, rather than
constantly manipulating the existential quantifier.
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Reduction to Propositional Inference

Suppose the KB contains just the following:

x King(x)  Greedy(x)  Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)

• Instantiating the universal sentence in all possible ways, we have:
King(John)  Greedy(John)  Evil(John)
King(Richard)  Greedy(Richard)  Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

• The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard), etc.
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Reduction contd.

• Every FOL KB can be propositionalized so as to preserve entailment

• (A ground sentence is entailed by new KB iff entailed by original KB)

• Idea: propositionalize KB and query, apply resolution, return result

• Problem: with function symbols, there are infinitely many ground terms,
– e.g., Father(Father(Father(John)))
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Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is 
entailed by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do

create a propositional KB by instantiating with depth-$n$ terms
see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed.

Godel's Completeness Theorem says that FOL entailment is only 
semidecidable:
– If a sentence is true given a set of axioms, there is a procedure that will 

determine this.
– If the sentence is false, then there is no guarantee that a procedure will 

ever determine this–i.e., it may never halt.
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Completeness of some inference techniques

• Truth Tabling is not complete for FOL because truth table size may 
be infinite.

• Natural Deduction is complete for FOL but is not practical because 
the  “branching  factor”  in  the  search  is  too  large  (so  we  would  have  to  
potentially try every inference rule in every possible way using the set 
of known sentences).

• Generalized Modus Ponens is not complete for FOL.

• Generalized Modus Ponens is complete for KBs containing only Horn 
clauses.
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Problems with Propositionalization

• Propositionalization seems to generate lots of irrelevant sentences.
E.g., from:

x King(x)  Greedy(x)  Evil(x)
King(John)
y Greedy(y)
Brother(Richard, John)

• It seems obvious that Evil(John), but propositionalization produces lots 
of facts such as Greedy(Richard) that are irrelevant

• With p k-ary predicates and n constants, there are p·nk instantiations.
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Problems with Propositionalization

Given this KB:
King(x)  Greedy(x)  Evil(x)
King(John)
Greedy(John)

How do we really know that Evil(John)?
– We find x that is a King and Greedy, if so then x is Evil.
– That is, we need to a substitution {x/John}

But Given this KB:
x King(x)  Greedy(x)  Evil(x)
King(John)
y Greedy(y)

How do we really know that Evil(John)?
– That is, we need to the substitutions {x/John, y,John}, but how?
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Unification

• We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} 

• This called Unification,  a  “pattern-matching”  procedure:
– Takes two atomic sentences, called literals, as input
– Returns  “Failure”  if  they  do  not  match  and  a  substitution  list,  θ, if they do

Unify(P,Q) = θ if Pθ = Qθ  

• That is, unify(p,q) = θ means subst(θ, p) = subst(θ, q) for two 
atomic sentences, p and q

• θ is called the Most General Unifier (MGU) 
• All variables in the given two literals are implicitly universally 

quantified.
• To make literals match, replace (universally quantified) variables 

by terms
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Unification Example

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we a query Knows(John,x), we need to unify Knows(John,x) 
with all sentences in KD.

Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,Bill) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,Elizabeth) 

P Q θ  
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Unification Example

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we a query Knows(John,x), we need to unify Knows(John,x) 
with all sentences in KD.

Knows(John,x) 
Knows(John,Jane) 

Knows(John,x)
Knows(y,Bill) 

Knows(John,x) 
Knows(y,Mother(y))

Knows(John,x)
Knows(x,Elizabeth) 

P Q θ

{x/Jane}
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Unification Example

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we a query Knows(John,x), we need to unify Knows(John,x) 
with all sentences in KD.

Knows(John,x) 
Knows(John,Jane) 

Knows(John,x)
Knows(y,Bill) 

Knows(John,x) 
Knows(y,Mother(y))

Knows(John,x)
Knows(x,Elizabeth) 

P Q θ

{x/Jane}
{x/Bill,y/John}
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Unification Example

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we have a query Knows(John,x), we need to unify 
Knows(John,x) with all sentences in KD.

Knows(John,x) 
Knows(John,Jane) 

Knows(John,x)
Knows(y,Bill) 

Knows(John,x) 
Knows(y,Mother(y))

Knows(John,x)
Knows(x,Elizabeth) 

P Q θ

{x/Jane}
{x/Bill,y/John}
{y/John,x/Mother(John)}
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Unification Example

Knows(John,x) 
Knows(John,Jane) 

Knows(John,x)
Knows(y,Bill) 

Knows(John,x) 
Knows(y,Mother(y))

Knows(John,x)
Knows(x,Elizabeth) 

P Q θ

{x/Jane}
{x/Bill,y/John}
{y/John,x/Mother(John)}
fail

• The last unification failed because x cannot take on the values John and 
Elizabeth at the same time.

• Because it happens that both sentences use the same variable name.
• Solution: rename x in Knows(x,Elizabeth)  into Knows(z17,Elizabeth) , without 

changing its meaning. (this is called standardizing apart)

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we have a query Knows(John,x), we need to unify 
Knows(John,x) with all sentences in KD.
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Unification Example

Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,Bill) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(z17,Elizabeth) 

P Q θ  

{x/Jane}
{x/Bill,y/John}
{y/John,x/Mother(John)}
{x/Elizabeth, z17/John}

• The last unification failed because x cannot take on the values John and 
Elizabeth at the same time.

• Because it happens that both sentences use the same variable name.
• Solution: rename x in Knows(x,Elizabeth)  into Knows(z17,Elizabeth) , without 

changing its meaning. (this is called standardizing apart)

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we have a query Knows(John,x), we need to unify 
Knows(John,x) with all sentences in KD.
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Unification Example

Knows(John,x) 
Knows(John,Jane) 

Knows(John,x)
Knows(y,Bill) 

Knows(John,x) 
Knows(y,Mother(y))

Knows(John,x)
Knows(z17,Elizabeth) 

P Q θ

{x/Jane}
{x/Bill,y/John}
{y/John,x/Mother(John)}
{x/Elizabeth, z17/John}

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we have a query Knows(John,x), we need to unify 
Knows(John,x) with all sentences in KD.
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Unification Example

Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,Bill) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(z17,Elizabeth) 
Knows(John,x)  Knows(y,z)

P Q θ  

{x/Jane}
{x/Bill,y/John}
{y/John,x/Mother(John)}
{x/Elizabeth, z17/John}

In the last case, we have two answers:
θ= {y/John,x/z}, or

θ= {y/John,x/John, z/John}

??

This first unification is more general,

as it places fewer restrictions on the

values of the variables.

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we have a query Knows(John,x), we need to unify 
Knows(John,x) with all sentences in KD.
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Unification Example

Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,Bill) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(z17,Elizabeth) 
Knows(John,x)  Knows(y,z)

P Q θ  

{x/Jane}
{x/Bill,y/John}
{y/John,x/Mother(John)}
{x/Elizabeth, z17/John}

For every unifiable pair of

expressions, there is a

Most General Unifier MGU

In the last case, we have two answers:
θ= {y/John,x/z}, or

θ= {y/John,x/John, z/John}

{y/John,x/z}

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we have a query Knows(John,x), we need to unify 
Knows(John,x) with all sentences in KD.
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Another Example

• Example:
– parents(x, father(x), mother(Bill)) 
– parents(Bill, father(Bill), y)
– {x/Bill, y/mother(Bill)}

• Example:
– parents(x, father(x), mother(Bill))
– parents(Bill, father(y), z)
– {x/Bill, y/Bill, z/mother(Bill)}

• Example:
– parents(x, father(x), mother(Jane))
– parents(Bill, father(y), mother(y))
– Failure
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Generalized Modus Ponens (GMP)

• A first-order inference rule, to find substitutions easily.
• Apply modus ponens reasoning to generalized rules.
• Combines And-Introduction, Universal-Elimination, and Modus 

Ponens . Example: {P(c), Q(c), x(P(x)  Q(x))  R(x)} derive R(c)
• General case: Given

– Atomic sentences P1, P2, ..., Pn

– Implication sentence (Q1  Q2  ...  Qn)  R
• Q1, ..., Qn and R are atomic sentences 

– Substitution subst(θ, Pi) = subst(θ, Qi)      (for i=1,...,n)
– Derive new sentence: subst(θ, R)  

• Substitutions
– subst(θ, α) denotes the result of applying a set of substitutions defined by 

θ to the sentence α
– A substitution list θ = {v1/t1, v2/t2, ..., vn/tn} means to replace all occurrences 

of variable symbol vi by term ti

– Substitutions are made in left-to-right order in the list
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Generalized Modus Ponens (GMP)

where Pi θ = Qi θ for all i

A first-order inference rule, to find substitutions 
easily.

• GMP used with KB of definite clauses (exactly one positive literal).

• All variables assumed universally quantified.

P1, P2,  …  ,  Pn,   ( Q1  Q2 …   Qn R)
Subst (R, θ)

King(John), Greedy(y),     (King(x), Greedy(x)  Evil(x))
Subst(Evil(x),  {x/John, y/John})
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Soundness of GMP

Need to show that 

P1,  …,  Pn, (Q1 …   Qn  Q)  ╞  R θ

provided that Pi θ = Qi θ for all i

Lemma: For any sentence Q, we have Q ╞ Q θ by UI
(P1 …   Pn  R) ╞ (P1 …   pn  R) θ = (P1 θ …   Pn θ R θ)

Q1\ …,  \Pn ╞ Q1 …   Qn ╞ P1 θ …   Qn θ
From 1 and 2, R θ follows by ordinary Modus Ponens
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Forward Chaining

• Proofs start with the given axioms/premises in KB, 
deriving new sentences using GMP until the goal/query 
sentence is derived

• This defines a forward-chaining inference procedure 
because  it  moves  “forward”  from  the  KB  to  the  goal

• Natural deduction using GMP is complete for KBs 
containing only Horn clauses 
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Example Knowledge Base

• The law says that it is a crime for an American to sell 
weapons to hostile nations.  The country Nono, an enemy 
of America, has some missiles, and all of its missiles were 
sold to it by Colonel West, who is American.

• Prove that Col. West is a criminal
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Example Knowledge Base contd.

... it is a crime for an American to sell weapons to hostile nations:
American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Nono …  has  some  missiles,  i.e.,  x Owns(Nono,x)  Missile(x):

Owns(Nono,M1)  Missile(M1)
…  all  of  its  missiles  were  sold  to  it  by  Colonel  West

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)
Missiles are weapons:

Missile(x)  Weapon(x)
An  enemy  of  America  counts  as  "hostile“:

Enemy(x,America)  Hostile(x)
West,  who  is  American  …

American(West)
The country Nono,  an  enemy  of  America  …

Enemy(Nono,America)
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Forward Chaining Proof

American(x)  Weapon(y)  Sells(x,y,z)  Criminal(x)
Missile(M1)Owns(Nono,M1) 

Missile(x) Owns(Nono,x) Sells(West,x,Nono) 
Weapon(x)Missile(x) 

Enemy(x,America) Hostile(x)
American(West)
Enemy(Nono,America)
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Forward Chaining Proof

American(x)  Weapon(y)  Sells(x,y,z)  Criminal(x)
Missile(M1)Owns(Nono,M1) 

Missile(x) Owns(Nono,x) Sells(West,x,Nono) 
Weapon(x)Missile(x) 

Enemy(x,America) Hostile(x)
American(West)
Enemy(Nono,America)
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Forward Chaining Proof

American(x)  Weapon(y)  Sells(x,y,z)  Criminal(x)
Missile(M1)Owns(Nono,M1) 

Missile(x) Owns(Nono,x) Sells(West,x,Nono) 
Weapon(x)Missile(x) 

Enemy(x,America) Hostile(x)
American(West)
Enemy(Nono,America)
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Forward Chaining Proof

American(x)  Weapon(y)  Sells(x,y,z)  Criminal(x)
Missile(M1)Owns(Nono,M1) 

Missile(x) Owns(Nono,x) Sells(West,x,Nono) 
Weapon(x)Missile(x) 

Enemy(x,America) Hostile(x)
American(West)
Enemy(Nono,America)
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Forward Chaining Proof

American(x)  Weapon(y)  Sells(x,y,z)  Criminal(x)
Missile(M1)Owns(Nono,M1) 

Missile(x) Owns(Nono,x) Sells(West,x,Nono) 
Weapon(x)Missile(x) 

Enemy(x,America) Hostile(x)
American(West)
Enemy(Nono,America)
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Forward Chaining Proof

American(x)  Weapon(y)  Sells(x,y,z)  Criminal(x)
Missile(M1)Owns(Nono,M1) 

Missile(x) Owns(Nono,x) Sells(West,x,Nono) 
Weapon(x)Missile(x) 

Enemy(x,America) Hostile(x)
American(West)
Enemy(Nono,America)
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Properties of Forward Chaining

• Sound and complete for first-order definite clauses.

• Datalog = first-order definite clauses + no functions
• FC terminates for Datalog in finite number of iterations.

• May not terminate in general if α is not entailed.

• This is unavoidable: entailment with definite clauses is 
semidecidable.
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Efficiency of Forward Chaining

Incremental forward chaining: no need to match a rule on 
iteration k if a premise wasn't added on iteration k-1
 Match each rule whose premise contains a newly added positive 

literal.

Matching itself can be expensive:
Database indexing allows O(1) retrieval of known facts

e.g., query Missile(x) retrieves Missile(M1)

Forward chaining is widely used in deductive databases.
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Backward Chaining

• Proofs start with the goal query, find implications that 
would allow you to prove it, and then prove each of the 
antecedents in the implication, continuing to work 
“backwards”  until  you  arrive  at  the  axioms,  which  we  know  
are true.

• Backward-chaining deduction using GMP is complete for 
KBs containing only Horn clauses.
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Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Criminal(x)
Missile(M1)Owns(Nono,M1) 

Missile(x) Owns(Nono,x) Sells(West,x,Nono) 
Weapon(x)Missile(x) 

Enemy(x,America) Hostile(x)
American(West)
Enemy(Nono,America)
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Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Criminal(x)
Missile(M1)Owns(Nono,M1) 

Missile(x) Owns(Nono,x) Sells(West,x,Nono) 
Weapon(x)Missile(x) 

Enemy(x,America) Hostile(x)
American(West)
Enemy(Nono,America)
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Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Criminal(x)
Missile(M1)Owns(Nono,M1) 

Missile(x) Owns(Nono,x) Sells(West,x,Nono) 
Weapon(x)Missile(x) 

Enemy(x,America) Hostile(x)
American(West)
Enemy(Nono,America)
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Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Criminal(x)
Missile(M1)Owns(Nono,M1) 

Missile(x) Owns(Nono,x) Sells(West,x,Nono) 
Weapon(x)Missile(x) 

Enemy(x,America) Hostile(x)
American(West)
Enemy(Nono,America)
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Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Criminal(x)
Missile(M1)Owns(Nono,M1) 

Missile(x) Owns(Nono,x) Sells(West,x,Nono) 
Weapon(x)Missile(x) 

Enemy(x,America) Hostile(x)
American(West)
Enemy(Nono,America)
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Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Criminal(x)
Missile(M1)Owns(Nono,M1) 

Missile(x) Owns(Nono,x) Sells(West,x,Nono) 
Weapon(x)Missile(x) 

Enemy(x,America) Hostile(x)
American(West)
Enemy(Nono,America)
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Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Criminal(x)
Missile(M1)Owns(Nono,M1) 

Missile(x) Owns(Nono,x) Sells(West,x,Nono) 
Weapon(x)Missile(x) 

Enemy(x,America) Hostile(x)
American(West)
Enemy(Nono,America)
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Properties of Backward Chaining

• Depth-first recursive proof search: space is linear in size of 
proof.

• Incomplete due to infinite loops
 fix by checking current goal against every goal on stack.

• Inefficient due to repeated subgoals (both success and 
failure).
 fix using caching of previous results (extra space)

• Widely used for logic programming.
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Forward  vs.  Backward Chaining

• FC is data-driven
– Automatic, unconscious processing
– E.g., object recognition, routine decisions
– May do lots of work that is irrelevant to the goal
– More efficient when you want to compute all conclusions.

• BC is goal-driven, better for problem-solving
– Where are my keys?  How do I get to my next class?
– Complexity of BC can be much less than linear in the size of the KB
– More efficient when you want one or a few decisions.
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Logic Programming

to show/solve H, show/solve B1 and  …  and  Bn.

• Algorithm = Logic + Control
• A backward chain reasoning theorem-prover applied to declarative 

sentences in the form of implications:

If B1 and  …  and  Bn then H

• Implications are treated as goal-reduction procedures:

where implication would be interpreted as a solution of problem H 
given solutions of B1 …  Bn. 

• Find a solution is a proof search, which done Depth-first backward 
chaining.

• Because automated proof search is generally infeasible, logic 
programming relies on the programmer to ensure that inferences are 
generated efficiently. Also by restricting the underlying logic to a "well-
behaved" fragment such as Horn clauses or Hereditary Harrop formulas.
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Logic Programming: Prolog

Developed by Alain Colmerauer(Marseille)  and Robert Kowalski(Edinburgh)
in 1972.

Program = set of clauses of the form
P(x)1 …   p(xn)  head 

written as
head :- P(x1),  …  ,  P(xn). 

For example:
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Closed-world assumption ("negation as failure").
– alive(X) :- not dead(X).
– alive(joe) succeeds if dead(joe) fails.
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Logic Programming: Prolog

mother(Nuha, Sara). 
father(Ali, Sara).
father(Ali, Dina). 
father(Said, Ali).
sibling(X, Y) :- parent(Z, X), parent(Z, Y). 
parent (X, Y) :- father(X, Y). 
parent(X, Y) :- mother (X, Y). 

?- sibling(Sara, Dina). 
Yes 

?- father(Father, Child). // enumerates all valid answers

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Jarrar  ©  2011 90

Resolution in FOL
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Resolution in FOL

• Recall: We saw that the propositional resolution is a refutationly
complete inference procedure for Propositional Logic.

• Here, we extend resolution to FOL. 

• First we need to covert sentences in to CNF, for example:

x American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

• becomes

 American(x)   Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

• Every sentence of first-order logic can be converted into inferentially 
equivalent CNF sentence.

• The procedure for conversion to CNF is similar to the propositional 
case.
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Conversion to CNF

• The procedure for conversion to CNF is similar to the positional 
case.

• For  example:  “Everyone who loves all animals is loved by someone”,  or  

x [y Animal(y)   Loves(x,y)]      [y Loves(y,x)]

Step 1 Eliminate Implications

x [y Animal(y)  Loves(x,y)]  [y Loves(y,x)]

Step 2. Move  inwards: x  p  ≡  x p,   x  p  ≡  x p
x [y (Animal(y)  Loves(x,y))]  [y Loves(y,x)] 
x [y Animal(y)  Loves(x,y)]  [y Loves(y,x)] 
x [y Animal(y)  Loves(x,y)]  [y Loves(y,x)] 
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Conversion to CNF contd.

Step 2. Move  inwards:

x [y Animal(y)  Loves(x,y)]  [y Loves(y,x)] 
Step 3. Standardize variables: each quantifier should use a different one

x [y Animal(y)  Loves(x,y)]  [z Loves(z,x)]

Step 4. Skolemize: a more general form of existential instantiation. Each 
existential variable is replaced by a Skolem function of the enclosing 
universally quantified variables:

x [Animal(F(x))  Loves(x,F(x))]  Loves(G(x),x)

Step 5. Drop universal quantifiers:
[Animal(F(x))  Loves(x,F(x))]   Loves(G(x),x)

Step 6. Distribute  over  :

[Animal(F(x))  Loves(G(x),x)]  [Loves(x,F(x))  Loves(G(x),x)]
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Resolution in FOL

• The inference rule (FOL version):
l1  ···  lk,          m1  ···  mn

(l1  ···  li-1  li+1  ···  lk  m1  ···  mj-1  mj+1  ···  mn) θ

where Unify(li, mj) = θ.

• The two clauses are assumed to be standardized apart so that they 
share no variables. 

• Apply resolution steps to CNF(KB  α).

• Let’s  extend  the  previous  example,  and  apply  the  resolution:
Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Ali loves all animals.
Either Ali or Kais killed the cat, who is named Foxi.
Did Kais killed the cat? Uploaded By: Jibreel BornatSTUDENTS-HUB.com
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Resolution in FOL (Example)

Let’s  extend  the  previous  example,  and  apply  the  resolution:
Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Ali loves all animals.
Either Ali or Kais killed the cat, who is an animal and its is named Foxi.
Did Kais killed the cat?

In FOL: 
A.   x [y Animal(y)   Loves(x,y)]      [y Loves(y,x)]
B.   x [y Animal(y)   Kills(x,y)]      [z Loves(z,x)] 
C.   x Animal(x)   Loves(Ali,x)
D.   Kills (Ali,Foxi)  Kills(Kais,x)
E.   Cat(Foxi)
F.   x Cat(x)  Animal (x)

G.   Kills(Kais,Foxi)
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Resolution in FOL (Example)

A.   x [y Animal(y)   Loves(x,y)]      [y Loves(y,x)]
B.   x [y Animal(y)   Kills(x,y)]      [z Loves(z,x)] 
C.   x Animal(x)   Loves(Ali,x)
D.   Kills (Ali,Foxi)  Kills(Kais,x)
E.   Cat(Foxi)
F.   x Cat(x)  Animal (x)

G.   Kills(Kais,Foxi)
After applying the CNF, we obtain:

A1.   Animal(F(x))   Loves(G(x),x)
A2.  Loves(x,F(x))   Loves(G(x),x)
B.   Animal(y)   Kills(x,y)   Loves(z,x)
C.   Animal(x) Cat(Foxi) Loves(Ali,x)
D.   Kills(Ali,Foxi)  Kills(Kais, Foxi)
E.    Cat(Foxi)
F.   Cat(x)   Animal (x)

G.   Kills(Kais,Foxi)
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A1 Animal(F(x))   Loves(G(x),x)
A2 Loves(x,F(x))   Loves(G(x),x)
B Loves(y,x)   Animal(z)   Kills(x,z)
C Animal(x) Cat(Foxi) Loves(Ali,x)
D Kills(Ali,Foxi)  Kills(Kais, Foxi)
E Cat(Foxi)
F Cat(x)  Animal (x)
G Kills(Kais,Foxi)
H Animal (Foxi) E,F {x/Foxi}
I Kills(Ali,Foxi) D,G {}
J Animal(F(Ali))  Loves(G(Ali), Ali) A2,C {x/Ali, F(x)/x}
K Loves(G(Ali), Ali) J,A1 {F(x)/F(Ali), X/Ali}
L Loves(y,x)   Kills(x,Foxi) H,B {z/Foxi}
M Loves(y,Ali) I,L {x/Ali}
N . M,K {y/G(Ali)}

Resolution in FOL (Example)
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Resolution in FOL (Another Example)

• The law says that it is a crime for an American to sell 
weapons to hostile nations.  The country Nono, an enemy 
of America, has some missiles, and all of its missiles were 
sold to it by Colonel West, who is American.

• Prove that Col. West is a criminal
• Assume this is represented in FOL (and in CNF):

 American(x)   Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)
Missile(x)  Owns(Nono,x)  Sells(West,x,Nano)
Enemy(x,America)  Hostile(x) 
Missile(x)  Weapon(x)
Owns(Nono,M1)
Missile(M1) 
American(West) 
Enemy(Nano,America)
Criminal (West)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Jarrar  ©  2011 99

Resolution in FOL (Another Example)
1  American(x)   Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

2 Missile(x)  Owns(Nono,x)  Sells(West,x,Nano)

3 Enemy(x,America)  Hostile(x) 

4 Missile(x)  Weapon(x)

5 Owns(Nono,M1)

6 Missile(M1) 

7 American(West) 

8 Enemy(Nano,America)

9 Criminal (West)
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Resolution in FOL (Another Example)
1  American(x)   Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

2 Missile(x)  Owns(Nono,x)  Sells(West,x,Nano)

3 Enemy(x,America)  Hostile(x) 

4 Missile(x)  Weapon(x)

5 Owns(Nono,M1)

6 Missile(M1) 

7 American(West) 

8 Enemy(Nano,America)

9 Criminal (West)

10  American(West)   Weapon(y)  Sells(West,y,z)  Hostile(z) 1,9 {x/West}

11 Weapon(y)  Sells(West,y,z)  Hostile(z) 7,10 {x/West}

12 Missile(y)  Sells(West,y,z)  Hostile(z) 4,11 {x/y}

13 Sells(West,M1,z)  Hostile(z) 6,12 {y/M1}

14 Missile(M1)  Owns(Nono, M1)  Hostile(Nano) 2,13 {x/M1, z/Nano}

15 Owns(Nono, M1)  Hostile(Nano) 6,14 {}

16 Hostile(Nano) 5,15 {}

17 Enemy(Nano,America) 3,16 {x/Nano}

18 . 8,17 {}
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Resolution in FOL (Another Example)

9

10

11

12

13

14

15

16

17

18

1

7

6

2

6

4

5

3

8

Another representation (as Tree) 
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Summary

• Instantiating quantifiers is typically very low.

• Unification is much more efficient than Instantiating quantifiers.

• Generalized Modus Ponens  = Modus Ponens + unification, which is 
then used in forward/backward chaining.

• Generalized Modus Ponens is complete but semidecidable.
• Forward chaining is complete, and used in deductive databases, and 

Datalogs with polynomial time.

• Backward chaining is complete, used in logic programming, suffers 
from redundant inference and infinite loops.

• Generalized Resolution is refutation complete for sentences with CNF.

• There are no decidable inference methods for FOL.

• The exam will evaluate: What\How\Why (for all above)

• Next Lecture: Description logics are decidable logics.
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