ENCS5337: Chip Design Verification
Spring 2023/2024

SystemVerilog Part |

Dr. Ayman Hroub

SSSSSSSSSSSSSSSS

https://students-hub.com

Outline

= [ntroduction

= Data Types

= Operators

= Procedural Statements and Procedural Blocks
= Design and Verification Building Blocks

SSSSSSSSSSSSSSSS

https://students-hub.com

What Is SystemVerilog?

= SystemVerilog is a unified hardware specification,
description (design) and verification language.

= SystemVerilog is an extension of Verilog.

= SystemVerilog can be divided based on its roles,
o SystemVerilog for design is an extension of Verilog-2005
o SystemVerilog for verification.

SSSSSSSSSSSSSSSS

https://students-hub.com

History

= |tis Verilog-2001 extension

= Contains hundreds of enhancements and extensions to Verilog

= |n 2005, became an IEEE standard.

= Officially superseded Verilog in 2009

= Updated with more features in 2012, 2017, and 2023

SSSSSSSSSSSSSSSS

https://students-hub.com

SV Verilog-2001 Extensions

= Added data types and relaxation of rules on existing data types
= Higher abstraction-level modeling features

= Language enhancements for synthesis

= |nterfaces to model communication between design blocks

= Language features to enable verification methodologies

= Assertions, constrained randomization, functional coverage

= Lightweight interface to C/C++ programs

https://students-hub.com

Outline

= |ntroduction

= Data Types

= Operators

= Procedural Statements and Procedural Blocks
= Design and Verification Building Blocks

SSSSSSSSSSSSSSSS

https://students-hub.com

What is a Datatype

= A datatype is a set of values (2-state or 4-state) that can be used
to declare data objects or to define user-defined data types.

= All Verilog datatypes except real have 4-state values: (0, 1, Z,
X).

= 4-state logic Is essential for gate-level modeling and for
Initialization at RTL

= Howeover, simulating everything in 4-state logic can add
significant performance overhead.

https://students-hub.com

SystemVerilog 2-State Datatype

= SystemVerilog adds 2-state value types based on bit:
= Has values 0 and 1 only.
= Direct replacements for reg, logic or integer.

= Greater efficiency at higher-abstraction level modeling (RTL).
= SystemVerilog defines the following predefined bit types of various

widths
R
bit Single bit, Scalable to vector Default unsigned
byte 8-bit vector or ASCII character Default signed
shortint 16-bit vector Default signed
int 32-bit vector Default signed

longint 64-bit vector Default signed

STUDENTS-HUB.com

https://students-hub.com

SystemVerilog Real Data Type

= SystemVerilog also defines a 32-bit
floating-point type, shortreal, t0
complement the 64-bit Verilog real type.

SSSSSSSSSSSSSSSS

https://students-hub.com

System Verilog Logic DataType

* logic defines that the variable or net is a 4-state data type.
= [Initial value is x

= |t can be driven in both procedural blocks and assign statements
= Cannot have multiple drivers

SSSSSSSS -HUB.com 10

https://students-hub.com

System Verilog Bit DataType

= 2-state data type (0,1)
= [|nitial value is O
= Dit is not sighed by default

= |tis useful in the cases where not all 4 values are needed. This helps
to reduce the simulation time and the required memory

= When a 4-state value is converted to a 2-state value, any
unknown or high impedance bits shall be converted to zeros

STUDENTS-HUB.com 11

https://students-hub.com

Integer Data Types

= There are two data types of integers:
o 2-State types can take only O, 1 values.
o 4-state types cantake 0,1, X, Z values.

= [nteger types can be signed or unsigned, which can change
the result of a arithmetic operation.

* $bits(var) Is a system task that returns the number of bits
In var

signed and unsigned can be defined explicitly, e.g.,
reg unsigned varl;

shortint signed var2;

(4-state) Data Type description (2-state) Data Type description
logic shortint 16-bit signed integer
reg User defined vector types int 32-bit signed integer
wire longint 64-bit signed integer
integer 32-bit signed integer byte 8-bit signed integer

STUDENTS-HUB.com 12

https://students-hub.com

Outline

Introduction

Data Types

Operators

Procedural Statements and Procedural Blocks
Design and Verification Building Blocks

SSSSSSSSSSSSSSSS

13

https://students-hub.com

Assignment Operators (1)

= Operators that join an operation along with a
blocking assignment to the first operand of
the operator.

= Assignment operators are blocking
assignments.

= Therefore, they are suitable for use only iIn:
— RTL combinational logic
— Temporary variables in RTL sequential code
— Testbench and stimulus.

SSSSSSSSSSSSSSSS

14

https://students-hub.com

Assignment Operators (2)

STUDENTS-HUB.com

Symbol Usage Meaning Description

+= a += b a=a+Db |add

-= a -=b a = a - b | subtract

* = a *= b a = a * b | muliply

/= a /=Db a =a / b |diide

%= a %=>ob a =a % b |modulus

&= a &= b a =a & b |logical and

| = a |=b a =a | b |logical or

A= a "=>b a =a ~ b |logical xor

<<= a <<= Db | a = a << b |left shift logical
>>= a >>=Db | a = a >> b |right shift logical
>>>= |a >>>= b = a >>> b [right shift arithmetic
<<<= |a <<<= b = a <<< b |left shift arithmetic

15

https://students-hub.com

Pre- and Post-Increment/Decrement Operators

= Pre-form (++a, --a) adds or subtracts and then
uses new value.

= Post-form (a++, a--) uses a value and then adds or
subtracts.

As Statement
for (int i=0; i < 7; i++)

As Expression

initial begin
b = 1;
a = b++; // post a=1l, b=2
a = ++b; // pre a=3, b=3
a = b-—; // post a=3, b=2
a = --b; // pre a=1l, b=l
end

STUDENTS-HUB.com 16

https://students-hub.com

SV Operators Associativity and Precedence

Of::. Left

g8 o Highest
+- 1~ &~& | ~| N~ A~ 4+
(unary) I~ Right
> Left
*1 % Left
+ - (binary) Left
<< B> << B>> Left
< <= > >= nside dist Left
== |l= === |====7? |=7? Left
& (binary) Left
A~ A~ (binary) Left
| (binary) Left
&& Left
I Left
?: (conditional operator) Right
—> Right
=+= .= "= [= Y= &= = |= <<= >>=
<<<= >5>>= = <= ARLZ
Lowest |

{} {1 Concatenation :

STUDENTS-HUB.com

https://students-hub.com

Strings

= The string data type in SystemVerilog Is an
ordered collection of characters (ASCI|
characters).

string myString = “Welcome to HW DV Course”;
Sdisplay (“%s”, myString) ;
Sdisplay (“%s”, myString[O0]);

string wvarilable name |[= initial value

SSSSSSSS -HUB.com 18

https://students-hub.com

SystemVerilog String Operators

Equality

Inequality

Comparison

Concatenation

Replication

Indexing

Methods

STUDENTS-HUB.com

Operator

Str1 == Str2

Str1 1= Str2

Str1 < Str2
Str1 <= 5tr2
Str1 > Str2
Str1 >= Str2

{Str1, Str2, .,
StrN}

Imultiplier{str}}

Str{index]

Str.method([args])

Semantics

Returns 1 if the two strings are equal and 0 if they are not

Returns 1 if the two strings are not equal and 0 if they are

Returns 1 if the correspondig condition is true and 0 if false

All strings will be concatenated into one resultant string

Replicates the string N number of times, where N is specified by the multiplier

Returns a byte, the ASCII code at the given index_ If given index is out of range, it
returns 0

The dot(.) operator is used to call string functions

19

https://students-hub.com

SystemVerilog String Methods

Usage

strlen()

str.putc()

str.getc()

str.tolower()

str.compare(s)

stricompare(s)

str.substr (i, J)

STUDENTS-HUB.com

Definition

function int len()

function void putc (int i, byte
c);

function byte getc (int i);

function string tolower();

function int compare (string
s);

function int icompare (string
s);

function string substr (int i, int

)

Comments
Returns the number of characters in the string

Replaces the it character in the string with the given character

Returns the ASCII code of the i" character in str
Returns a string with characters in str converted to lowercase

Compares str and s, as in the ANSI C stremp function

Compares str and s, like the ANSI C stremp function

Returns a new string that is a substring formed by characters in position |
through j of str

20

https://students-hub.com

Enumeration

= An enumerated type declares a set of integral named
constants, i.e., it defines a set of named values

* |n the absence of a data type declaration, the default data
type shall be int

" E.g.,enum {red, yellow, green} lightl, light2;

// silver=4, gold=5
enum {bronze=3, silver, gold} medal;

enum {a=0, b=7, ¢, d=8} alphabet;//error

SSSSSSSS -HUB.com 2 1

https://students-hub.com

Defining New data types as Enumerated Types

= A type name can be given so that the same type can be
used in many places.

= e.g., typedef enum {NO, YES} boolean;
boolean myvar; // named type

SSSSSSSS -HUB.com 22

https://students-hub.com

Some Enumerated Types Methods

= first ()returns the value of the first member of the enumeration.
= last () returns the value of the last member of the enumeration.
= next () returns the Nth next enumeration value

* prev () returns the Nth previous enumeration value

= num() returns the number of elements in the given enumeration

STUDENTS-HUB.com 23

https://students-hub.com

Structures

= A structure represents a collection of data types that can
be referenced as a whole, or the individual data types
that make up the structure can be referenced by name.

// named structure type
typedef struct

{ bit [7:0] opcode; bit [23:0] addr;}
instruction;

instruction IR; // define wvariable
IR.opcode = 8;

STUDENTS-HUB.com

24

https://students-hub.com

Outline

Introduction
Data Types
Operators

Procedural Statements and Procedural
Blocks

Design and Verification Building Blocks

SSSSSSSSSSSSSSSS

25

https://students-hub.com

for Loop

l Verilog)

integer 1i;
initial begin

Two loops share
single variable

4

initial begin

STUDENTS-HUB.com

// loop variable declared

for (1=0; 1i<10; i=i+1)

outside loop

for (i=0; i<8; 1i=i+1)

int: Good use
for 2-state types

yd

initial begin

/ . N\
{ SystemVerilog

// loop variable declared in loop
for

for

(int 1i=0;

initial begin

(int 1i=0;

i<10;

i<8;

i=i+l

i=i+1)

S

.--"""_-‘

Variable 'i' visible
to for loop only

Two loops, two
independent variables

26

https://students-hub.com

foreach LoOp

SSSSSSSSSSSSSSSS

This loop iterates over all the elements of an
array

Loop variable characteristics:

— Does not have to be declared.

— Is read only.

— Only visible inside loop.

Use multiple loop variables for multidimensional
arrays.

— Equivalent to nested loops.

Useful for initializing and array processing.

27

https://students-hub.com

foreach Loop (cont.)

Equivalent SV code lnt in‘tarr [7 . O] ’
foinéiiii;: ;,L:O ey \ foreach (intarr [i])
. . Ry
/J_ntarr [1] i
Iterates left bound to /
right bound

int arr2d [7:0] [2:017;

Equivalent SV code

foreach (arr2d [k, 1]) for (int Ke7s Foo0) Bie
1

1)
arr2dlk 1 = k*1: |- for (int 1=2; 1>=0; 1=1-1)
(k] [1] S] arr2d[k][1] = k*1;

\ Two loop variables for a 2D

array creates nested loops

STUDENTS-HUB.com

https://students-hub.com

while LOOp

= The while loop executes a group of statements
until expression becomes false.

" expression IS checked at the beginning.

| Verilog |
AN

while (enable)

@ (posedge clk) if enable false on loop
count = count + 1; entry;
count not incremented

STUDENTS-HUB.com 29

https://students-hub.com

do...while LOOp

* The expression is checked after statements
execute.

= The statement block executes at least once.
= This makes certain loop functions easier to

create.
(S stemVerilo
.\;Y g
do
@ (posedge clk) if enable false on
count = count +_27 loop entry;

count incremented

while (enable); once
|

STUDENTS-HUB.com

30

https://students-hub.com

break and continue

= SystemVerilog adds the break and continue
keywords to control execution of loop
statements.

= break

= Terminates the execution of loop immediately.
= Usually under conditional control.

= continue
= Jumps to the next iteration of a loop.
= Usually under conditional control.

= Also used in for,while, repeat and do-

while loops
. 31

SSSSSSSSSSSSSSS

https://students-hub.com

break and continue (Cont.)

repeat (8) begin
data = {datal6:0], datal7]};
if (datal7])
break;

end -\\
P>

fbforeach (data [1]) begin
1f (datali])
\ continue;
count = count + 1;
end

STUDENTS-HUB.com

https://students-hub.com

always comb

It Is specialized procedural block for modeling
combinational logic

Implied, complete sensitivity list.

Any variable assigned in an always comb
cannot be assigned by another procedure.

Cannot contain further blocking timing or event
control.

SSSSSSSSSSSSSSSS

33

https://students-hub.com

always comb (cont.)

= Automatically executed once at time O without
waiting for an event.

= After all initial and always blocks have executed.
= Ensures outputs are consistent with inputs.

= Tools may issue warnings if the block does not
Infer combinational logic.

SSSSSSSSSSSSSSSS

34

https://students-hub.com

always comb (cont.)

always comb
if (sel == 1)
op = aj
else
op = b;

logic op; (EE?E”or

always comb

if (sel)
op = a;
else
op = b;

always comb
if (sel2)
op = C;

else
op = d;

STUDENTS-HUB.com

https://students-hub.com

always comb

VS. always(@*

always@x*

= Can include timing and
additional event controls.

= Can assign to variables which
are assigned elsewhere.

= Triggered at time 0 with other
blocks only if event on
sensitivity list.

STUDENTS-HUB.com

always @*
1f (sel
op =

else
op =

d,

b;

)

always comb

= Cannot contain any timing or
event controls.

= Cannot assign to variables
which are assigned elsewhere.

= Automatically triggered at time
O after always and initial

blocks.

always comb
1f (sel == 1)
op = a;
else
op = b;

36

https://students-hub.com

always latch

It is a specialized procedural block for modeling
latched logic.

Implied, complete sensitivity list.

Variables assigned in an always latch cannot
be assigned by another procedure.

Cannot contain further block timing or event
control.

SSSSSSSSSSSSSSSS

37

https://students-hub.com

always latch (Cont.)

= Automatically executed once at time O without
waiting for an event:

= After all initial and always blocks have executed.
= Ensuring outputs are consistent with inputs.

= Tools can issue warnings if the block does not
Infer latched logic.

SSSSSSSSSSSSSSSS

38

https://students-hub.com

always latch (Cont.)

always latch
if (gate == 1)
op <= a;

always latch @Ermr
if

(enl)
op <= c;

always latch
1f (en2)
op <= d;

STUDENTS-HUB.com

https://students-hub.com

always flip-flop (always £f)

SSSSSSSSSSSSSSSS

It is a specialized procedural block for modeling
registered logic.

Variables assigned in always £f cannot be
assigned by another procedure.

Contains one and only one event control.
Cannot contain any block timing.

Tools may issue warnings if the block does not
infer registered logic.

40

https://students-hub.com

always flip-flop (always £f)

STUDENTS-HUB.com

always ff @ (posedge clk or posedge rst)
if (rst)

op <= 1'bl;
else
op <= 1ip;

41

https://students-hub.com

Outline

Introduction

Data Types

Operators

Procedural Statements and Procedural Blocks
Design and Verification Building Blocks

SSSSSSSSSSSSSSSS

42

https://students-hub.com

Design Elements

= module, program, interface, checker, package,
primitive and config (configuration) are called
design elements in a SystemVerilog.

= These elements are primary building blocks used to
model a design and verification environment.

SSSSSSSSSSSSSSSS

43

https://students-hub.com

Module

The basic building block in SystemVerilog is the module
Modules are used to represent design blocks.

The module is enclosed between the keywords module
and endmodule.

Modules are primarily used to represent design blocks,
but can also serve as containers for verification code
and interconnections between verification blocks and
design blocks.

SSSSSSSSSSSSSSSS

44

https://students-hub.com

Module Example

STUDENTS-HUB.com

1 | module <name> ([port_list]);

7] /{ Contents of the module

3 | endmodule

5 | // A module can have an empty portlist
& | module name;

// Contents of the module

[wa] i |

endmodule

module flipflop(d, g, clk):
input d, clk;
output logic g;

always ff @(posedge clk) begin
q <= d;
end
endmodule

45

https://students-hub.com

Packages

New design element similar to a module:

— Must be compiled separately.

— Must be compiled before elements that
reference the package.

= They contain declarations to be shared

SSSSSSSSSSSSSSSS

between elements:
— Types, variables, subroutines...

Package

package mytypes;
typedef enum {start,done} mode t;
endpackage : mytypes

46

https://students-hub.com

Package Example

package ComplexPkg;
typedef struct |
shortreal i, r;
} Complex;

function Complex add(Complex a, b);
add.r = a.r + b.r;
add.i = a.i + b.i;

endfunction

function Complex mul (Complex a, b);

mul.r = (a.r * b.r) - (a.i * b.i);
mal.i = (a.r * b.i) + (a.i * b.r);
endfunction

endpackage : ComplexPkg

STUDENTS-HUB.com

47

https://students-hub.com

Importing a Package

Package

package mytypes;
typedef enum {start,done} mode_t;
endpackage : mytypes

= Explicit — specifically named. Allows to reference selected
package declarations

Explicit import into CUS

import mytypes::mode t;
module mone (input

mode_t mode...);

= Implicit — all using wildcard (*)

= QOr directly access a declaration using the resolution

operator (::):

STUDENTS-HUB.com

Does not require import.

module mone (...);

mode_t mode,

* .
r

import mytypes::

Wildcard import

Resolved name

%

module mone(...);

mytypes: :mode t mode,

48

https://students-hub.com

Explicit Import

= An explicit import only imports the symbols specifically
referenced by the import.

= |t directly loads declaration into the design element as if it was
declared in the design element.

= Declaration must be unigue in the current scope:

= Compilation error if local and other explicitly imported declarations have
same name.

STUDENTS-HUB.com 49

https://students-hub.com

Wildcard Import

= A wildcard import allows all identifiers declared within a

package to be imported provided the identifier is not otherwise
defined in the importing scope.

= Local or explicitly imported declarations can override wildcard
Imported declarations.

= Package declarations still visible through resolved name.

Local or explicitly imported
declarations take precedence
over wildcard imports.

STUDENTS-HUB.com 50

https://students-hub.com

Wildcard Import Example

package P1;

localparam int cl = 10;

typedef enum {start,stop} mode t;
endpackage : P1

Local c1
. overrides
mo@ule mone (...); pl::cl
import Pl::*;
logic [7:0] cl; ,
mode t mode; All package
L declarations
if (mode==stop) visible
$display ("sh",Pl::cl);

Resolved name to access
package declaration

STUDENTS-HUB.com

https://students-hub.com

Program Block

STUDENTS-HUB.com

A program is very similar to a module, but intended for
testbench code.

Program blocks have special features and restrictions for
testbench use.

In particular, a program cannot instantiate hierarchy.
— Programs are leaf elements.
— Must be instantiated in a module.

52

https://students-hub.com

Program Block (Cont.)

SSSSSSSSSSSSSSSS

The program is usually declared in a separate file, compiled
separately and then instantiated in a module or interface.

In a verification methodology using programs, all testbench
code would be contained in programs, and all design
(synthesizable) code in modules.

By using programs only for verification code and modules
or interfaces only for design code, race conditions between
design and testbench can be reduced

53

https://students-hub.com

Program Example

(module top;

wire [7:0] data;

wire [4:0] address;
wire read, write;

program memtest
output wire [7:0] data;
output bit [4:0] addr;
output bit read, write);

iﬁitial begin memtest test (.7*);

memory mem8x32 (.*);
end

endprogram : memtest

endmodule : top

STUDENTS-HUB.com

https://students-hub.com

Allowed Constructs in Program

STUDENTS-HUB.col

Local data declarations
= Variables

= User-defined types

= Classes

initial and final blocks
generate blocks

Task and function declarations
= Only visible in program block

Continuous assignments
Clocking blocks
Concurrent assertions

Functional coverage groups (covergroups)

55

https://students-hub.com

final Procedural Block

= |tis a procedural block that executes once at the end of
simulation:

= After explicit or implicit call to $£inish.

= Cannot invoke scheduler (no scheduled assignments or
delays).

= Can be used to calculate and display simulation statistics.

final begin
if (timeout error)
Sdisplay ("ERROR: %0t: Test Timed Out", S$Stime) ;
else
Sdisplay ("INFO: %0t: Test Complete", Stime);
Sdisplay ("Error Count: %d", error count);
Sdisplay ("Fifo Overflow Count: %d", fifo overflow);

end

56

STUDENTS-HUB.com

https://students-hub.com

Not Allowed Constructs in Program

= As a general rule, constructs that clearly represent design
rather than verification are not allowed.

e always blocks

e Declaration or instantiation of:
= Interface
= Module
* Primitive
= Program
¢ Anything specific to modules
= Parameter overrides (defparams)
* specify blocks
* specparam declarations

STUDENTS-HUB.com

57

https://students-hub.com

Interfaces

= The interface encapsulates the communication between
design blocks, and between design and verification blocks

= |tis a construct representing a bundle of defined wires. In
other words, it is a separately declared and named group of
signals.

= All connections associated with a specific interface are
declared and maintained in one place.

= Normally used to represent the signals which comprise a
single instance of a protocol interface between a DUT and a
testbench.

STUDENTS-HUB.com

58

https://students-hub.com

Interfaces (Cont.)

STUDENTS-HUB.com

The interface iIs created in a separate file and must be
compiled separately by the simulator.

A useful abstraction used during testbench definition, avoiding
the need to replicate declarations for each member signal
along the way.

The interface is instantiated in a design and can be connected
to interface ports of other instantiated modules, interfaces and
programs

59

https://students-hub.com

Interfaces (Cont.)

SSSSSSSSSSSSSSSS

B2
Bl |—
B3
Interfaces
—Ibusa B
Bl
busc
I
B3
busb

60

https://students-hub.com

Interfaces: Motivation

= One Verilog hierarchical connection between and a CPU and

memory modules requires 5 declarations:
= Two port declarations in modules mem and cpu

= Signal declaration in top
= Signal added to each instantiation of mem and cpu

= Problem: Creating and maintaining multiple connections is tedious.

STUDENTS-HUB.com

top

cl
re
gnt

start

mem I‘T cpu

mode
addr
data

y

top

meim

clk

busa

cpu

61

https://students-hub.com

Example: Without Interface

module memory (
input logic c¢lk, req, start,
logic [1:0] mode,
logic [7:0] addr,
inout wire [7:0] data,
output logic gnt, rdy):

endmodule

module cpucore (
input logic clk, gnt, rdy,
inout wire [7:0] data,
output logic req, start,
logic [7:0] addr,
logic [1:0] mode) ;

endmodule

module top;
logic clk
logic [1

logic [7
wire [7

.mode,

.req, .s

logic req, gnt, start,

= 0;
:0] mode;
:0] addr;
:0] data;

memory mem(.clk, .req,
.addr, .data,

cpucore cpu(.clk, .gnt,

tart, .addr,

rdy;
.start;
.gnt, .rdy):
.rdy, .data,
.mode) ;

STUDENTS-HUB.com

62

https://students-hub.com

Example: With Interface

interface ifa;
logic req, start, gnt, rdy;

module memory (
input bit clk,
ifa bus);

endmodule

@

Interface used

@

logic [1:0] mode;

logic [7:0] addr; Interface

wire [7:0] data; declaration
endinterface : ifa

as a directionless

port type in

module declarations

STUDENTS-HUB.com

module cpucore (
input bit clk,
ifa bus);

endmodule

module top; ‘

instantiation
ifa busal() ;

memory mem (clk, busa);

cpucore cpu (clk, busa);

O)

Instantiation mapped
to module ports

top

clk

mem | busa | Cpu

63

https://students-hub.com

More Facts on Interfaces

STUDENTS-HUB.com

A SystemVerilog interface is declared as a design element like a module.

It can be instantiated in a module, like a module instantiation, but the
interface name is also used as port type in module declarations to create
Interface ports

Interfaces can also contain module-like features for defining signal
relationships:

— Continuous assignments, tasks, functions, initial/always blocks, etc.
— Can further instantiate interfaces.

Cannot declare or instantiate module-specific items: Modules, primitives,
specify blocks, and configurations.

Interfaces can instantiate other interfaces to create nested interface
structures

64

https://students-hub.com

Access Interface Items

interface ifa;
logic req, start, gnt, rdy;
logic [1:0] mode;
logic [7:0] addr;
wire [7:0] data;
endinterface : ifa

module memory (input bit
reg [31:0] mem [0:31];
logic read, write;
assign read = (bus.gnt
assign write = (bus.gnt
always (@ (posedge clk)
if (write)

mem [bus.addr] = bus.
assign bus.data = read
endmodule

clk, ifa bus);

h‘hhﬁﬁﬁ“‘h~ﬁ

&& (bus.mode == 0));
&& (bus.mode == 1));

data;

? mem[bus.addr] : 'z;

STUDENTS-HUB.com

Pass the Interface as port
bus.

. Access the Interface item

using module port name.

65

https://students-hub.com

Interface Ports

= An interface can have its own ports:

— Connected like any module port.
— Used to share an external signal.

interface ifa
logic req,
logic [1:0]
[7:0]
[7:0]
endinterface

logic
wire

(input clk);
start, gnt,\ rdy;
mode ;

addr;

data;

ifa

STUDENTS-HUB.com

1. Define'c1k' portin
Interface declaration.

top
clk
mem |busa cpu
module memory(ifa bus);
endmodule module top;
logic clk = 0;
module cpucore(ifa bus);

endmodule

ifa busa(clk) ;

2. Connect'cl1k' port of 'top’
module to Interface port
during instantiation.

memory mem (busa);

cpucore cpu (busa);

bb

https://students-hub.com

modport

= To restrict interface access within a module, there are
modport lists with directions declared within the interface.

= The keyword modport indicates that the directions are
declared as if inside the module.

= Modports create different views of an interface.
— Specify a subset of interface signals accessible to a module.
— Specify direction information for those signals.
= We can specify a modport view for a specific module in two
ways:
— In the module declaration.
— In the module instantiation.

STUDENTS-HUB.com 67

https://students-hub.com

Modport (Cont.)

= An interface can have any number of modports, and each defines a
different view of the interface contents

= A module can specify which modport to use in its port list declaration

interface mod if;
logic a, b, c, d;
modport master (input a,b, output c,d);
modport slave (output a,b, input c,d);
modport subset (output a, input b);

endinterface
top Interface
. a
busmaster N busslave

a la |lo

STUDENTS-HUB.com

https://students-hub.com

Modport (Cont.)

= The interface mod if declares the following modports:

= = Modport master which defines signals a and b as input and
sighals ¢ and d as output.

= Modport slave which defines signhals a and b as output and
sighals ¢ and d as input.

= Modport subset which defines signal a as output and b as

iInput. Any connections to the interface via modport subset
would not be able to access signals ¢ or d.

STUDENTS-HUB.com 69

https://students-hub.com

Selecting the Interface Modport by Qualifying the

Module Port Interface Type

= An interface modport can be selected using the module

declaration port of interface type.

STUDENTS-HUB.com

interface mod_if;

logic a, b, c, d;

modport master (input a,b, output c,d);

modport slave (output a,b,

input c¢,d);

endinterface

module busmaster |(mod if.master |mbus) ;

op| Module busslave |(mod if.slave |sbus);
endmodule

mod_if busa () ;
busmaster M1 (
busslave S1 (

endmodule

module testbench;

.mbus (busa)) ;
.sbus (busa)) ;

70

https://students-hub.com

Selecting the Interface Modport (Cont.)

* busmaster declares interface port mbus:
= Typeismod if
= Modportis master
* busslave declares interface port sbus:
= Typeismod if
= Modportis slave
= testbench instantiates interface and modules as before.

STUDENTS-HUB.com 7 1

https://students-hub.com

Selecting the Interface Modport by Qualifying the
Module Port Interface Binding

= An interface modport can be selected during the port mapping
of module instantiation.

interface mod if;
logic a, b, c, d;
modport master (input a,b, output c,d);
modport slave (output a,b, input c¢,d);

endinterface

module busmaster (mod if mbus) ;

ery module busslave (mod if sbus);

endmodule

module testbench;
mod_if busb () ;
busmaster M1|(.mbus{busb.master)}h
busslave S1 |(.sbus (busb.slave)) ;|

endmodule

STUDENTS-HUB.com 72

https://students-hub.com

Interface Methods

= A sub-routine defined within an interface is called an
Interface method.

= We can declare tasks as part of the interface

= These tasks are accessible to any module connected to
the interface

SSSSSSSSSSSSSSSS

73

https://students-hub.com

Interface Methods Example

module cpucore (ifa bus) ;
bus.read (addr,data) ;

endmodule

interface ifa (input clk);

logic req, start, gnt, rdy; top

logic [1:0] mode;
logic [7:0] addr; mer

bus
wire [7:0] data; GaD

task read (input byte raddr,

cpu

output byte rdata);
@ (posedge clk);
addr = raddr;

rdata = data;
endtask
endinterface : ifa

STUDENTS-HUB.com

https://students-hub.com

