
ENCS5337: Chip Design Verification

Spring 2023/2024

SystemVerilog Part I

Dr. Ayman Hroub

STUDENTS-HUB.com

https://students-hub.com

2

Outline

 Introduction

 Data Types

 Operators

 Procedural Statements and Procedural Blocks

 Design and Verification Building Blocks

STUDENTS-HUB.com

https://students-hub.com

3

What is SystemVerilog?

 SystemVerilog is a unified hardware specification,

description (design) and verification language.

 SystemVerilog is an extension of Verilog.

 SystemVerilog can be divided based on its roles,

o SystemVerilog for design is an extension of Verilog-2005

o SystemVerilog for verification.

STUDENTS-HUB.com

https://students-hub.com

4

History

 It is Verilog-2001 extension

 Contains hundreds of enhancements and extensions to Verilog

 In 2005, became an IEEE standard.

 Officially superseded Verilog in 2009

 Updated with more features in 2012, 2017, and 2023

STUDENTS-HUB.com

https://students-hub.com

5

SV Verilog-2001 Extensions

 Added data types and relaxation of rules on existing data types

 Higher abstraction-level modeling features

 Language enhancements for synthesis

 Interfaces to model communication between design blocks

 Language features to enable verification methodologies

 Assertions, constrained randomization, functional coverage

 Lightweight interface to C/C++ programs

STUDENTS-HUB.com

https://students-hub.com

6

Outline

 Introduction

 Data Types

 Operators

 Procedural Statements and Procedural Blocks

 Design and Verification Building Blocks

STUDENTS-HUB.com

https://students-hub.com

7

What is a Datatype

 A datatype is a set of values (2-state or 4-state) that can be used

to declare data objects or to define user-defined data types.

 All Verilog datatypes except real have 4-state values: (0, 1, Z,

X).

 4-state logic is essential for gate-level modeling and for

initialization at RTL

 Howeover, simulating everything in 4-state logic can add

significant performance overhead.

STUDENTS-HUB.com

https://students-hub.com

8

SystemVerilog 2-State Datatype

 SystemVerilog adds 2-state value types based on bit:
 Has values 0 and 1 only.

 Direct replacements for reg, logic or integer.

 Greater efficiency at higher-abstraction level modeling (RTL).
 SystemVerilog defines the following predefined bit types of various

widths

STUDENTS-HUB.com

https://students-hub.com

9

SystemVerilog Real Data Type

 SystemVerilog also defines a 32-bit
floating-point type, shortreal, to

complement the 64-bit Verilog real type.

STUDENTS-HUB.com

https://students-hub.com

10

System Verilog Logic DataType

 logic defines that the variable or net is a 4-state data type.

 Initial value is x

 It can be driven in both procedural blocks and assign statements

 Cannot have multiple drivers

STUDENTS-HUB.com

https://students-hub.com

11

System Verilog Bit DataType

 2-state data type (0,1)

 Initial value is 0

 bit is not signed by default

 It is useful in the cases where not all 4 values are needed. This helps

to reduce the simulation time and the required memory

 When a 4-state value is converted to a 2-state value, any

unknown or high impedance bits shall be converted to zeros

STUDENTS-HUB.com

https://students-hub.com

12

Integer Data Types

 There are two data types of integers:

o 2-state types can take only 0 , 1 values.

o 4-state types can take 0 , 1 , X , Z values.

 Integer types can be signed or unsigned, which can change

the result of a arithmetic operation.

 $bits(var) is a system task that returns the number of bits

in var

 signed and unsigned can be defined explicitly, e.g.,

reg unsigned var1;

shortint signed var2;

(2-state) Data Type description

shortint 16-bit signed integer

int 32-bit signed integer

longint 64-bit signed integer

byte 8-bit signed integer

(4-state) Data Type description

logic

User defined vector typesreg

wire

integer 32-bit signed integer
STUDENTS-HUB.com

https://students-hub.com

13

Outline

 Introduction

 Data Types

 Operators

 Procedural Statements and Procedural Blocks

 Design and Verification Building Blocks

STUDENTS-HUB.com

https://students-hub.com

14

Assignment Operators (1)

 Operators that join an operation along with a

blocking assignment to the first operand of

the operator.

 Assignment operators are blocking

assignments.

 Therefore, they are suitable for use only in:

– RTL combinational logic

– Temporary variables in RTL sequential code

– Testbench and stimulus.

STUDENTS-HUB.com

https://students-hub.com

15

Assignment Operators (2)

STUDENTS-HUB.com

https://students-hub.com

16

Pre- and Post-Increment/Decrement Operators

 Pre-form (++a, --a) adds or subtracts and then

uses new value.

 Post-form (a++, a--) uses a value and then adds or

subtracts.

STUDENTS-HUB.com

https://students-hub.com

17

SV Operators Associativity and Precedence

STUDENTS-HUB.com

https://students-hub.com

18

Strings

 The string data type in SystemVerilog is an

ordered collection of characters (ASCII

characters).

string myString = “Welcome to HW DV Course”;

$display (“%s”, myString);

$display (“%s”, myString[0]);

STUDENTS-HUB.com

https://students-hub.com

19

SystemVerilog String Operators

STUDENTS-HUB.com

https://students-hub.com

20

SystemVerilog String Methods

STUDENTS-HUB.com

https://students-hub.com

21

Enumeration

 An enumerated type declares a set of integral named

constants, i.e., it defines a set of named values

 In the absence of a data type declaration, the default data
type shall be int

 E.g., enum {red, yellow, green} light1, light2;

// silver=4, gold=5

enum {bronze=3, silver, gold} medal;

enum {a=0, b=7, c, d=8} alphabet;//error

STUDENTS-HUB.com

https://students-hub.com

22

Defining New data types as Enumerated Types

 A type name can be given so that the same type can be

used in many places.

 e.g., typedef enum {NO, YES} boolean;

boolean myvar; // named type

STUDENTS-HUB.com

https://students-hub.com

23

Some Enumerated Types Methods

 first()returns the value of the first member of the enumeration.

 last() returns the value of the last member of the enumeration.

 next() returns the Nth next enumeration value

 prev() returns the Nth previous enumeration value

 num() returns the number of elements in the given enumeration

STUDENTS-HUB.com

https://students-hub.com

24

Structures

 A structure represents a collection of data types that can

be referenced as a whole, or the individual data types

that make up the structure can be referenced by name.

// named structure type

typedef struct

{ bit [7:0] opcode; bit [23:0] addr;}

instruction;

instruction IR; // define variable

IR.opcode = 8;

STUDENTS-HUB.com

https://students-hub.com

25

Outline

 Introduction

 Data Types

 Operators

 Procedural Statements and Procedural

Blocks

 Design and Verification Building Blocks

STUDENTS-HUB.com

https://students-hub.com

26

for Loop

STUDENTS-HUB.com

https://students-hub.com

27

foreach Loop

 This loop iterates over all the elements of an

array

 Loop variable characteristics:

– Does not have to be declared.

– is read only.

– Only visible inside loop.

 Use multiple loop variables for multidimensional

arrays.

– Equivalent to nested loops.

 Useful for initializing and array processing.

STUDENTS-HUB.com

https://students-hub.com

28

foreach Loop (cont.)

STUDENTS-HUB.com

https://students-hub.com

29

while Loop

 The while loop executes a group of statements

until expression becomes false.

 expression is checked at the beginning.

STUDENTS-HUB.com

https://students-hub.com

30

do...while Loop

 The expression is checked after statements

execute.

 The statement block executes at least once.

 This makes certain loop functions easier to

create.

STUDENTS-HUB.com

https://students-hub.com

31

break and continue

 SystemVerilog adds the break and continue

keywords to control execution of loop

statements.

 break

 Terminates the execution of loop immediately.

 Usually under conditional control.

 continue

 Jumps to the next iteration of a loop.

 Usually under conditional control.

 Also used in for, while, repeat and do-

while loops
STUDENTS-HUB.com

https://students-hub.com

32

break and continue (Cont.)

STUDENTS-HUB.com

https://students-hub.com

33

always_comb

 It is specialized procedural block for modeling

combinational logic

 Implied, complete sensitivity list.

 Any variable assigned in an always_comb

cannot be assigned by another procedure.

 Cannot contain further blocking timing or event

control.

STUDENTS-HUB.com

https://students-hub.com

34

always_comb (cont.)

 Automatically executed once at time 0 without

waiting for an event.

 After all initial and always blocks have executed.

 Ensures outputs are consistent with inputs.

 Tools may issue warnings if the block does not

infer combinational logic.

STUDENTS-HUB.com

https://students-hub.com

35

always_comb (cont.)

STUDENTS-HUB.com

https://students-hub.com

36

always_comb vs. always@*

always@*

 Can include timing and

additional event controls.

 Can assign to variables which

are assigned elsewhere.

 Triggered at time 0 with other

blocks only if event on

sensitivity list.

always_comb

 Cannot contain any timing or

event controls.

 Cannot assign to variables

which are assigned elsewhere.

 Automatically triggered at time
0 after always and initial

blocks.

STUDENTS-HUB.com

https://students-hub.com

37

always_latch

 It is a specialized procedural block for modeling

latched logic.

 Implied, complete sensitivity list.

 Variables assigned in an always_latch cannot

be assigned by another procedure.

 Cannot contain further block timing or event

control.

STUDENTS-HUB.com

https://students-hub.com

38

always_latch (Cont.)

 Automatically executed once at time 0 without

waiting for an event:

 After all initial and always blocks have executed.

 Ensuring outputs are consistent with inputs.

 Tools can issue warnings if the block does not

infer latched logic.

STUDENTS-HUB.com

https://students-hub.com

39

always_latch (Cont.)

STUDENTS-HUB.com

https://students-hub.com

40

always flip-flop(always_ff)

 It is a specialized procedural block for modeling

registered logic.

 Variables assigned in always_ff cannot be

assigned by another procedure.

 Contains one and only one event control.

 Cannot contain any block timing.

 Tools may issue warnings if the block does not

infer registered logic.

STUDENTS-HUB.com

https://students-hub.com

41

always flip-flop(always_ff)

STUDENTS-HUB.com

https://students-hub.com

42

Outline

 Introduction

 Data Types

 Operators

 Procedural Statements and Procedural Blocks

 Design and Verification Building Blocks

STUDENTS-HUB.com

https://students-hub.com

43

Design Elements

 module, program, interface, checker, package,

primitive and config (configuration) are called

design elements in a SystemVerilog.

 These elements are primary building blocks used to

model a design and verification environment.

STUDENTS-HUB.com

https://students-hub.com

44

Module
 The basic building block in SystemVerilog is the module

 Modules are used to represent design blocks.

 The module is enclosed between the keywords module

and endmodule.

 Modules are primarily used to represent design blocks,

but can also serve as containers for verification code

and interconnections between verification blocks and

design blocks.

STUDENTS-HUB.com

https://students-hub.com

45

Module Example

STUDENTS-HUB.com

https://students-hub.com

46

Packages

 New design element similar to a module:

– Must be compiled separately.

– Must be compiled before elements that

reference the package.

 They contain declarations to be shared

between elements:

– Types, variables, subroutines...

STUDENTS-HUB.com

https://students-hub.com

47

Package Example

STUDENTS-HUB.com

https://students-hub.com

48

Importing a Package

 Explicit – specifically named. Allows to reference selected

package declarations

 Implicit – all using wildcard (*)

 Or directly access a declaration using the resolution

operator (::):

 Does not require import.

STUDENTS-HUB.com

https://students-hub.com

49

Explicit Import

 An explicit import only imports the symbols specifically
referenced by the import.

 It directly loads declaration into the design element as if it was

declared in the design element.

 Declaration must be unique in the current scope:

 Compilation error if local and other explicitly imported declarations have

same name.

STUDENTS-HUB.com

https://students-hub.com

50

Wildcard Import

 A wildcard import allows all identifiers declared within a

package to be imported provided the identifier is not otherwise

defined in the importing scope.

 Local or explicitly imported declarations can override wildcard

imported declarations.

 Package declarations still visible through resolved name.

STUDENTS-HUB.com

https://students-hub.com

51

Wildcard Import Example

STUDENTS-HUB.com

https://students-hub.com

52

Program Block

 A program is very similar to a module, but intended for

testbench code.

 Program blocks have special features and restrictions for

testbench use.

 In particular, a program cannot instantiate hierarchy.

– Programs are leaf elements.

– Must be instantiated in a module.

STUDENTS-HUB.com

https://students-hub.com

53

Program Block (Cont.)

 The program is usually declared in a separate file, compiled

separately and then instantiated in a module or interface.

 In a verification methodology using programs, all testbench

code would be contained in programs, and all design

(synthesizable) code in modules.

 By using programs only for verification code and modules

or interfaces only for design code, race conditions between

design and testbench can be reduced

STUDENTS-HUB.com

https://students-hub.com

54

Program Example

STUDENTS-HUB.com

https://students-hub.com

55

Allowed Constructs in Program

STUDENTS-HUB.com

https://students-hub.com

56

final Procedural Block

 It is a procedural block that executes once at the end of

simulation:

 After explicit or implicit call to $finish.

 Cannot invoke scheduler (no scheduled assignments or

delays).

 Can be used to calculate and display simulation statistics.

STUDENTS-HUB.com

https://students-hub.com

57

Not Allowed Constructs in Program

 As a general rule, constructs that clearly represent design

rather than verification are not allowed.

STUDENTS-HUB.com

https://students-hub.com

58

Interfaces

 The interface encapsulates the communication between

design blocks, and between design and verification blocks

 It is a construct representing a bundle of defined wires. In

other words, it is a separately declared and named group of

signals.

 All connections associated with a specific interface are

declared and maintained in one place.

 Normally used to represent the signals which comprise a

single instance of a protocol interface between a DUT and a

testbench.

STUDENTS-HUB.com

https://students-hub.com

59

Interfaces (Cont.)

 The interface is created in a separate file and must be

compiled separately by the simulator.

 A useful abstraction used during testbench definition, avoiding

the need to replicate declarations for each member signal

along the way.

 The interface is instantiated in a design and can be connected

to interface ports of other instantiated modules, interfaces and

programs

STUDENTS-HUB.com

https://students-hub.com

60

Interfaces (Cont.)

STUDENTS-HUB.com

https://students-hub.com

61

Interfaces: Motivation

 One Verilog hierarchical connection between and a CPU and

memory modules requires 5 declarations:

 Two port declarations in modules mem and cpu

 Signal declaration in top

 Signal added to each instantiation of mem and cpu

 Problem: Creating and maintaining multiple connections is tedious.

STUDENTS-HUB.com

https://students-hub.com

62

Example: Without Interface

STUDENTS-HUB.com

https://students-hub.com

63

Example: With Interface

STUDENTS-HUB.com

https://students-hub.com

64

More Facts on Interfaces
 A SystemVerilog interface is declared as a design element like a module.

 It can be instantiated in a module, like a module instantiation, but the

interface name is also used as port type in module declarations to create

interface ports

 Interfaces can also contain module-like features for defining signal

relationships:

– Continuous assignments, tasks, functions, initial/always blocks, etc.

– Can further instantiate interfaces.

 Cannot declare or instantiate module-specific items: Modules, primitives,

specify blocks, and configurations.

 Interfaces can instantiate other interfaces to create nested interface

structures

STUDENTS-HUB.com

https://students-hub.com

65

Access Interface Items

STUDENTS-HUB.com

https://students-hub.com

66

Interface Ports

 An interface can have its own ports:

– Connected like any module port.

– Used to share an external signal.

STUDENTS-HUB.com

https://students-hub.com

67

modport

 To restrict interface access within a module, there are
modport lists with directions declared within the interface.

 The keyword modport indicates that the directions are

declared as if inside the module.

 Modports create different views of an interface.

– Specify a subset of interface signals accessible to a module.

– Specify direction information for those signals.

 We can specify a modport view for a specific module in two

ways:

– In the module declaration.

– In the module instantiation.

STUDENTS-HUB.com

https://students-hub.com

68

Modport (Cont.)

 An interface can have any number of modports, and each defines a

different view of the interface contents

 A module can specify which modport to use in its port list declaration

STUDENTS-HUB.com

https://students-hub.com

69

Modport (Cont.)

 The interface mod_if declares the following modports:

 ▪ Modport master which defines signals a and b as input and

signals c and d as output.

 Modport slave which defines signals a and b as output and

signals c and d as input.

 Modport subset which defines signal a as output and b as

input. Any connections to the interface via modport subset
would not be able to access signals c or d.

STUDENTS-HUB.com

https://students-hub.com

70

Selecting the Interface Modport by Qualifying the

Module Port Interface Type

 An interface modport can be selected using the module

declaration port of interface type.

STUDENTS-HUB.com

https://students-hub.com

71

Selecting the Interface Modport (Cont.)

 busmaster declares interface port mbus:

 Type is mod_if

 Modport is master

 busslave declares interface port sbus:

 Type is mod_if

 Modport is slave

 testbench instantiates interface and modules as before.

STUDENTS-HUB.com

https://students-hub.com

72

Selecting the Interface Modport by Qualifying the

Module Port Interface Binding

 An interface modport can be selected during the port mapping

of module instantiation.

STUDENTS-HUB.com

https://students-hub.com

73

Interface Methods

 A sub-routine defined within an interface is called an

interface method.

 We can declare tasks as part of the interface

 These tasks are accessible to any module connected to

the interface

STUDENTS-HUB.com

https://students-hub.com

74

Interface Methods Example

STUDENTS-HUB.com

https://students-hub.com

