Cybersecurity Mathematics

Chapter 2

7-1 = 8 m od 11 STUDENTS-HUB.com

Uploaded By: Mohammad ElRimawi

a = 7, p = 11 $7^{-1} = 7^9 \pmod{11}$ $= (-4)^9 \pmod{11}$ $= ((-4)^3)^3 \pmod{11}$ $= (-64)^3 \pmod{11}$ $= (-9)^3 \pmod{11}$ $= 2^3 \mod 11$

Using Fermat's theorem and fast powering algorithm Find the inverse of 7 (mod 11)?

Discrete logarithm problem (DLP): g^x = h (mod p)

solve log 9 mod 11 = n
g^x = h (mod p)
g = 2, h = 9, p = 11
2^x = 9 (mod 11)

 $2^{1} = 9 \pmod{11} \times 2^{4} = 9 \pmod{11} \times 2^{2} = 9 \pmod{11} \times 2^{5} = 9 \pmod{11} \times 2^{5} = 9 \pmod{11} \times 2^{3} = 9 \pmod{11} \times 2^{6} = 9 (2^{6} + 2^{6} +$

An Overview of the Theory of Groups Properties of multiplication in F*p :

1- Identity Element: There is an element $1 \in F^*p$ satisfying: **1*a = a** for every $a \in F^*p$.

2- Inverse: Every $a \in F^*p$ has an inverse $a^{-1} \in F^*p$ satisfying: $a^* a^{-1} = 1$

3- Associative : Multiplication is associative:
a* (b *c) = (a *b)*c for all a, b, c ∈ F*p

4- Commutativity: Multiplication is commutative: students' AUB.com a, $b \in F^*p$.

In addition, we use 0 in place of 1, and all operations are still true.

1. Identity: 0 + a = a for all $a \in F^*p$

2. Every $a \in F^*p$ has a inverse $-a \in F^*p$, with a+(-a) = 0

3. Addition is associative : a + (b+c) = (a+b) + c for all a, b, c ∈ Fp

4. Addition is commutive: a+b = b+a for all a,b ∈ Fp

STUDENTS-HUB.com

ls (Z , +) a group ??

N : Natural numbers
W : Whole numbers
Z : Set of all integers
C : Complex number
Q : Rational numbers
R : Set of all real numbers

Definition: A group consists of a set G and a rule which is denoted by $\$ for combining two element a, b \in G , a*b \in G. The composition operation $\$ is required to have the following three properties:

1.Identity law: There is an element $e \in G$ such that a * e = e * a = a

2. Inverse law: For every $a \in G$ there is a unique $a^{-1} \in G$ $a * a^{-1} = a^{-1} * a = e$

3.Associative law: a*(**b** * **c**)= (**a** * **b**)***c**

- If G has finitely many elements, we say that G is a finite group.

The order of G is the number of elements in G , denoted by |G|.

- Definition : Let G be a group and let $a \in G$ be an element of the group. Suppose there exists a positive integer d with $a^d = e$. The smallest such d is called the order of 2, If no such d, then a is said to have infinite order.

Proposition: Let G be a finite group. Then every element of G has finite order.

Students-HB.25m order d and if a^k = e then d Kuploaded By: Mohammad ElRimawi

(Lagrange's Theorem) : Let G be a finite group and let $a \in G$ Then the order of a divides order g

Ex : suppose that **G** is group with an element **x** of order 9 and an element g of order 5. what is min possible order of **G**

X G , g G 9 G , 5 G 9 G , 5 G STUDENTS-FUB-tom = 45

Ex : suppose that G is a group of order 360 with nested subgroup , $k \le H \le G$, where |k| = 18 , What are the possible value of |H|?

 $|G| = 360 = 2^3 * 3^2 * 5^1$ $|k| = 18 = 2^1 * 3^2$ |8| 72 + 5 $2^{180} + 5$

Answer: H = { 18, 36, 72, 90, 180, 360 } STUDENTS-HUB.com

Collision Algorithm for DLP :

Proposition : let G be a group and let $g \in G$ be an element of order N . Recall that means $g^N = e$ and that no smaller positive power of g is equal to identity element e . Then the DIP $g^x = h$

Shanks baby step:

Let G be a group and $g \in G$ be an element of order N \geq 2 The following algorithm .solve the DIP in O(N log(N)) Using Shanks baby step gaint step algorithm g^x = h mod p Find value of x for 6^x = 2 mod 41

N = Ord p g = Ord₄₁ 6 = \emptyset (N -1) = 40 n = 1+ \sqrt{N} = 1+ $\sqrt{40}$ = 1+ 6 = 7

List 1 = { 1, g, g^2 , g^3 ,...., g^n } $g^i \mod p$ { 1, 6, 36, 11, 25, 27, 39, 29}

List 2 = { hu^0 , hu, hu^2 ,, hu^n } $u = g^{-n} = 6^{-7} = 17 \mod 41$ { 2,34,4,27,8,13,16,26 } X = (list 1 power) + n * (list 2 power) = (5+7*3) mod 41 = 26, $6^{26} = 2 \mod 41$ Uploaded By: Mohammad ElRimawi

Chinese remainder theorem :

let m1, m2, ..., mk be a collection pair twice relatively prime integer this mean that gcd (mi,mj) =1 for all i = J

Let a1,a2,, ak be arbitrary integers .Then the system of congruent X= a1 (mod m1), x = a2 (mod m2) X= ak (mod mk) has solution x=c

Further , if x=c and x =c[,] are both solution then c = c[,] (mod m1, m2 , ..., mk)

Ex : $x = 2 \pmod{3}$, $x = 3 \pmod{7}$, $x = 4 \pmod{16}$

The C.R says : There is u unique solution Modula 336 (3 * 16 * 17)

a = b (mod p) a = by + p

Solve The following equations using C.R X = 2 (mod 3) X = 3 (mod 5) X = 2 (mod 7)

STUDENTS-HUB.com

X = ((a1 * M1 * M1⁻¹) + (a2 *M2 * M2⁻¹) + (a3 * M3 * M3⁻¹)) (mod M) X = ((2 * 35 * 2) + (3 * 21 * 1) + (2 * 15 * 1)) (mod 105) X = 23

Q: Solve The following equations using C.R X = 5 (mod 3) X = 2 (mod 5) X = 1 (mod 11)

Using CRT solve $X^2 = 21 \mod 70$ $7 \notin 5 \notin 2$

 $X^2 = 21 \mod 2$, $X^2 = 21 \mod 5$, $X^2 = 21 \mod 7$

 $X^2 = 1 \mod 2$, $X^2 = 1 \mod 5$, $X^2 = zero \mod 7$ X = 2k + 1X = 5k + 1 X = zeroX = 2k + (2-1) X = 5k + (5-1)X = 2k + 1X = 5k + 4M1 = M/m1 = 70/2 = 35 $M1 * M1^{-1} = 1 \pmod{2}, M1^{-1} = 1$ a1=1 $M2 * M2^{-1} = 1 \pmod{5}, M1^{-1} = 4$ M2 = M/m2 = 70 / 5 = 14a2=4M3 = M/m3 = 70/7 = 10 $M3 * M3^{-1} = 1 \pmod{7}$, $M1^{-1} = 5$ a3 = 0

X = (1*35*1+ 4*14*4+0) = 49or 4*14*1 = 21

X = 49 or X = -49 X = 21 or X = -21

Pohlig – hellman Algorithm: Compute Discreet logarithms problem (DLP) Works when: (p-1) has only small factors The goal find x: $a^{x} = b \ 0 < x < p-1$ $g^{x} = h$

Note: n° mod p=1

Solve 3^x = 22 (mod 31)

Find 0 (p) = 31 -1 = 30

30 = 5*6 ----> P1= 5, P2 =6

Assume x = a0 + P1 *a1

 $3^{(a0 + P1*a1)} = 22 \mod 31$

STUDENTS-HUB.com

 $3^{(a0 + 5*a1)*6} = 22^{6} \mod 31$ $3^{6a0} * 3^{20a1} = 22^{6} \mod 31$ $(3^{6})^{a0} = 22^{6} \mod 31$ $(729)^{a0} \mod 31 = 8 \mod 31$ $16^{a0} \mod 31 = 8 \mod 31 \longrightarrow 0^{a} = 2, \chi \equiv 0^{a} \mod \beta_{1}$ Uploaded By: Mohan Xreac ElBirget/D

Assume x = b0 + P2 * b1 $3^{(b0+6*b1)*5} = 22^5 \mod 31$ 3^{5b0} * 3^{30b1} = 22⁵ mod 31 $(3^5)^{b0} = 22^5 \mod 31$ $(243)^{b0} \mod 31 = 6 \mod 31$ 243^{b0} = 6 mod 31 \longrightarrow $b_0=5$, $X \equiv b_0 \mod Pa$, $X \equiv 5 \mod 6$ X=2 mod 5 X=5 mod 6

Solve it using CRT

••••

••••

The final answer x = 17

STUDENTS-HUB.com

Ring

 Arithmetic operations

1) Identity law

2) Inverse law

3) Associative law

4) Commutative law STUDENTS-HUB.com (+) Addition
(-) Additive inverse
(*) multiplication
(/) multiplicative inverse

+/-	Closed	Additive Inverse	Commutative	Identity &Associativity
Z	\checkmark	\checkmark	\checkmark	\checkmark
R ^{2x2}	\checkmark	\checkmark	\checkmark	\checkmark
R ^{2x3}	\checkmark	\checkmark	\checkmark	\checkmark
Q[x]	\checkmark	\checkmark	\checkmark	\checkmark
Z/ 5Z	\checkmark	\checkmark	\checkmark	
Z /6Z	\checkmark	\checkmark	\checkmark	\checkmark

STUDENTS-HUB.com

	Closed Under *	Multiplication Inverse	Identity &Associativity
Z	\checkmark	\times	\checkmark
R ^{2x2}		\times	\checkmark
R ^{2x3}	\times	\times	\times
Q[x]		\times	
Z/ 5Z			
Z /6Z	\checkmark	\times	

STUDENTS-HUB.com

In this example, the word **closed** means the set is closed under multiplication if we multiplying any two elements in the set then the result of multiplication belong to the set

Multiplicative inverse: this property checks if each non-zero element in the set has multiplicative inverse within the set

Identity and associativity: this checks if there exist and identity element for multiplication and if multiplication is associative

Z, R, R^{2x3}, Q[x]: are commutative group
Z, R, Q[x]: have multiplication
R has multiplication inverse

Ring : is a set R with two operations + , * , Both operation are closed

If x, $y \in R$, then $x + y \in R$ and $x + y \in R$

Addition

Group Axioms

- 1) $X \in R \to -X \in R$ (inverse) 3) $x + (y + z) \to (x + y) + z$ (associative)
- 2) X+0, 0+y=y (identity) 4) $x, y \in R \to x+y \in R$ (closed)

Multiplication

- 1) a⁻¹ exists ?? (Not required) 3) x * (y * z) -> (x * y) * z (associative)
- 2) a * b = b * a (not required) 4) 1 in R (most required)
- **Distributive properties :** a*(b+c) = (a * b) + (b*c)

Note: (+,-) group (+,-,*) Ring (+,-,*,/) field

STUDENTS-HUB.com

STUDENTS-HUB.com

Uploaded By: Mohammad ElRimawi

[1]4 = {, -7, -3, 1, 5, 9, 13, }
[2]4 = {, -6, -2, 2, 6, 10, 14, }
[3]4 = {, -5, -1, 3, 7, 11, 15, }

[0]4 = { , -8 , -4 , 0 , 4 ,8 ,12 , }

Exp : Find the congruence classes corresponding to mod 4

 $[x] = \{a \in Z \mid a = x \pmod{n} \}$

Congruences classes

Polynomial Rings and EA :

If **R** is any ring, then we can create a polynomial ring with coefficients taken from **R** taken from **R R** [x] = { $a0 + a1x + a2x + \dots + an x^n$ } $n \ge 0$ and a0, a1,, $an \in \mathbf{R}$

Let $f(x) = x^3 + x^2 - x - 1$, $g(x) = x^2 + 3x + 2$ be polynomial in Q [x]

- a) Use the **E.A** for **Q [x]** to compute the gcd(f,g)
- b) Use the fundamental theorem of arithmetic for Q [x] to compute gcd(f, g)

Find gcd (a(x), b(x)) using EA , In Galois field (2). (F2) $a(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$

STUDENTS-HUB.com

$f(x) = x^6 + 2x^5 + 2x^4 - 3x^3 - 9x^2 - 9x - 5$ Given $g(x) = x^4 - x^2 - 2x - 1$ $\frac{\chi + 1}{\chi^3 - \chi - \chi} - \frac{\chi + 1}{\chi} - \frac{\chi}{\chi} - \frac{1}{\chi} - \frac{1}{\chi}$ In Q $-\chi^2 - \chi^3 - \chi - \chi \chi$ Using EEA find u(x) and v(x) 💥 -x¹-x -7 $\widetilde{\chi^2 + \chi + 1}$

 $\begin{array}{c} \chi^{4} + \chi + 1 \\ \chi^{2} + \chi + 1 \\ \chi^{3} - \chi^{2} - \chi - \chi \\ - \chi^{3} + \chi^{1} + \chi \\ - \chi^{2} - \chi - 2 \\ - \chi^{2} - 2\chi - 2 \\ - \chi^{2} - 2\chi - 2 \\ \end{array}$ Uploaded By: Mignammad ElRimawi

Gcd (f(x), g(x)) = $x^2 + x + 1$

STUDENTS-HUB.com

From step 2 : r2 = g(x) - (q2 * r1)

From step 1 : r1 = f(x) - (q1 * g(x))r2 = g(x) - (q2 * (f(x) - (q1 * g(x))))= g(x) - (q2 * f(x) - q2*q1* g(x))= g(x) – q2 * f (x) + q2 * q1 * g(x) =-q2 * f(x) + (g(x) + q2 * q1 * g(x) u(x) = -q2 = -(x + 1) = -x-1 $v(x) = 1 + q2*q1 = x^3 + 3x^2 + 5x + 9$