
Aziz M. QaroushComputer Vision Birzeit University

Artificial Neural

Networks

Uploaded By: anonymousSTUDENTS-HUB.com

Outline

 Introduction and Motivation

 Neural Network Architecture
◼ The Perceptron

◼ MLPs

◼ Multi-class Perceptron

 Training MLPs

 Choosing Network Structure
◼ Depth vs Width

◼ Expressive Power of MLPs

◼ Why Going Deeper?

◼ Deep Architectures Challenges

 Training and Optimizing Deep Architecture
◼ Data Preprocessing

◼ Activation Functions

◼ Weight Initialization

◼ Vanishing and Exploding Gradients

◼ Optimization Algorithms

◼ Learning Rates Decay

◼ Overfitting

Uploaded By: anonymousSTUDENTS-HUB.com

Artificial Neural Networks

 A neural network can be defined as a model of reasoning based
on the human brain.

 The brain consists of a densely interconnected set of nerve cells,
or basic information-processing units, called neurons.

 The human brain incorporates nearly 10 billion neurons and 60
trillion connections, synapses, between them.

 By using multiple neurons simultaneously, the brain can
perform its functions much faster than the fastest computers in
existence today.

 Each neuron has a very simple structure, but an army of such
elements constitutes a tremendous processing power.

 A neuron consists of a cell body, soma, a number of fibers called
dendrites, and a single long fiber called the axon.

Uploaded By: anonymousSTUDENTS-HUB.com

Artificial Neural Networks

 An artificial neural network consists of a number of very simple
processors, also called neurons, which are analogous to the
biological neurons in the brain.

 The neurons are connected by weighted links passing signals
from one neuron to another.

 The output signal is transmitted through the neuron’s outgoing
connection.

 The outgoing connection splits into a number of branches that
transmit the same signal.

 The outgoing branches terminate at the incoming connections
of other neurons in the network.

Uploaded By: anonymousSTUDENTS-HUB.com

Artificial Neural Networks

 ANNs can learn from training data and generalize to new
situations and have high expressive power.

 Neural networks have become one of the major thrust areas
recently in various AI tasks including pattern recognition,
prediction, and analysis problems.

 In many problems they have established the state of the art, often
exceeding previous benchmarks by large margins.

 An ANN is usually characterized by

 The way the neuruons are connected to each other.

 The method that is used for the determinations of the connection strengths
or weights.

 The activation function.

Uploaded By: anonymousSTUDENTS-HUB.com

Brain vs Computer

 There are approximately 10 billion neurons in the human cortex,
compared with 10’s of thousands of processors in the most
powerful parallel computers

 Each biological neuron is connected to several thousands of other
neurons, similar to the connectivity in powerful parallel computers

 The typical operating speeds of biological neurons is measured in
milliseconds (10-3 s), while a silicon chip can operate in
nanoseconds (10-9 s)

 The human brain is extremely energy efficient, using
approximately 10-16 joules per operation per second, whereas the
best computers today use around 10-6 joules per operation per
second

Uploaded By: anonymousSTUDENTS-HUB.com

Brain vs Computer

 Tasks that are easy for brains are not easy for computers and vice
versa

 Brains

 Recognizing faces

 Retrieving information based on partial descriptions

 Organizing information (the more information the better the brain operates)

 Computers

 Arithmetic

 Deductive logic

 Retrieving information based on arbitrary features

 Brains must operate very differently from conventional computers

Uploaded By: anonymousSTUDENTS-HUB.com

Outline

 Introduction and Motivation

 Neural Network Architecture
◼ The Perceptron

◼ MLPs

◼ Multi-class Perceptron

 Training MLPs

 Choosing Network Structure
◼ Depth vs Width

◼ Expressive Power of MLPs

◼ Why Going Deeper?

◼ Deep Architectures Challenges

 Training and Optimizing Deep Architecture
◼ Data Preprocessing

◼ Activation Functions

◼ Weight Initialization

◼ Vanishing and Exploding Gradients

◼ Optimization Algorithms

◼ Learning Rates Decay

◼ Overfitting

Uploaded By: anonymousSTUDENTS-HUB.com

Topologies of Neural Networks

Uploaded By: anonymousSTUDENTS-HUB.com

Feedforward Neural Networks (FNNs)

 Feedforward neural networks (FNNs), also known as Multi-Layer Perceptrons
(MLPs), are a type of artificial neural network that consists of multiple layers of
neurons interconnected in a feedforward manner.

 Information flows in one direction, from the input layer through one or more
hidden layers to the output layer.

 The neurons are organized into layers, where each neuron in a layer connects to
every neuron in the next layer.

 Each connection is associated with a weight, and each neuron has an associated
bias.

 The weights of the network are adjusted during training to minimize the error
between the predicted output and the desired output. This is done using a
variety of algorithms, such as backpropagation.

 FNNs are a very versatile type of neural network and can be used for a wide
variety of tasks, including: Classification, Regression, Universal Function
Approximators, Feature Learning,…

Uploaded By: anonymousSTUDENTS-HUB.com

FNNs Architecture

 FNNs can be categorized as Perceptrons and Multi-Layer Perceptrons (MLPs).

 A perceptron is a simple FNN that can be used to solve linearly separable

problems.

 An MLP is a more complex ANN that can be used to solve both linearly separable

and non-linearly separable problems.

 Choosing the right architecture for a FNN is a critical step in the machine

learning process.

 The main factors to consider when choosing an FNN architecture are:

 The complexity of the task: The more complex the task, the more layers and

hidden neurons will need.

 The size of the training data: The larger the training data, the more layers

and neurons the network will need.

 The computational resources available: The number of layers and neurons in

an FNN will also depend on the computational resources that are available. A

network with a large number of layers and neurons will require more

computing power to train.
Uploaded By: anonymousSTUDENTS-HUB.com

FNNs General Architecture

Uploaded By: anonymousSTUDENTS-HUB.com

Main Components of FNNs

 Input Layer: The input layer consists of neurons that receive input
features.
 The number of neurons in this layer corresponds to the number of input features.

 Each neuron in the input layer represents a specific feature of the input data.

 Hidden Layers: Hidden layers are intermediary layers between the input
and output layers.
 Each hidden layer consists of multiple neurons that process the information from the

previous layer and pass it on to the next layer.

 The number of hidden layers and the number of neurons in each layer are
hyperparameters that you can adjust based on the complexity of the problem and the
dataset.

 Hidden layers allow FNNs to learn complex hierarchical features and patterns in the data.

 Neurons (Nodes): Each neuron in a hidden layer or the output layer
receives inputs from the previous layer's neurons, applies weights to
these inputs, and passes the result through an activation function.
 Neurons in the hidden layers often use non-linear activation functions (e.g., ReLU, sigmoid,

tanh) to introduce non-linearity to the model, enabling it to capture complex relationships
in the data.

Uploaded By: anonymousSTUDENTS-HUB.com

Main Components of FNNs

 Weights and Biases: Each connection between neurons has an
associated weight that determines the strength of the connection.

 These weights are learned during training.

 Each neuron also has a bias term that influences its output. Biases are also learned during
training.

 Output Layer: The output layer produces the final predictions or
classifications based on the information processed in the hidden layers.

 The number of neurons in the output layer depends on the type of task you're solving.

 For binary classification, you may have a single neuron with output ranging from 0 to 1.

 For multi-class classification, you'd have a neuron for each class, outputting the probability
of that class.

 Activation Functions: Activation functions introduce non-linearity to the
network, enabling it to model complex relationships in the data.

 Common activation functions include ReLU (Rectified Linear Unit), sigmoid, tanh, and
softmax (for multi-class classification).

Uploaded By: anonymousSTUDENTS-HUB.com

The Perceptron

The perceptron is the simplest form of a neural network.

 The primary purpose of a perceptron is to make binary decisions, such as
classifying input data into two categories (e.g., yes/no, 1/0).

 It is made up of a single layer of neurons, each of which computes a
weighted sum of its inputs and applies a linear/non-linear activation
function to the result.

 Single perceptron is limited in its capabilities and can only solve linearly
separable problems.

Uploaded By: anonymousSTUDENTS-HUB.com

Performance of Perceptron

x1

x2

1

(a) AND (x1 x2)

1

x1

x2

1

1

(b) OR (x1 x2)

x1

x2

1

1

(c) Exclusive-OR

(x1 x2)

00 0

A perceptron can learn the operations AND and OR,
but not Exclusive-OR.

Uploaded By: anonymousSTUDENTS-HUB.com

A Multi-Layer Perceptron's (MLPs)

 MLPs is a type of artificial neural network that consists of multiple layers of
interconnected nodes (artificial neurons) arranged in a feedforward fashion.

 The neurons in the hidden layers of an MLP can learn non-linear relationships
between the inputs and outputs of the network, which allows it to solve
problems that a perceptron cannot.

 Their performance often depends on factors such as the architecture (number
of layers and neurons), choice of activation functions, and the amount and
quality of training data.

Input

layer

First

hidden

layer

Second

hidden

layer

Output

layer

O
 u

 t
 p

 u
 t

S

i g
 n

 a
 l

s

I
n

p
u

t
 S

 i
g

n
a

l s

Uploaded By: anonymousSTUDENTS-HUB.com

Activation Functions

 The activation function decides whether a neuron should be activated or not by
calculating the weighted sum and further adding bias to it.

 The purpose of the activation function is to introduce non-linearity into the
output of a neuron.

 The activation function enables the MLP to capture more complex patterns and
makes it capable of learning and approximating a wide variety of functions.

 Activation functions have distinct impacts on the training convergence speed,
dealing with noise and outliers, handling vanishing and exploding gradient
problems, and computational efficiency.

Uploaded By: anonymousSTUDENTS-HUB.com

Well-Known Activation Functions

 Step, and sign: used for binary Classifications

 Sigmoid, tanh, and ReLU are the most popular activation functions.

 Sigmoid and tanh

 Suffer from the vanishing gradient problem, which can slow down training in
deep networks.

 Sensitive to outliers.

 They are less commonly used in hidden layers of deep networks today.

 ReLU

 Faster convergence, mitigation of the vanishing gradient problem for positive
inputs.

 Computational efficient

 More robust to noise, outliers

 Become the default choice for most hidden layers in deep networks

 However, ReLU requires careful initialization and regularization techniques.
Uploaded By: anonymousSTUDENTS-HUB.com

20

How A Multi-Layer Neural Network Works?

 The inputs to the network correspond to the attributes measured for

each training tuple

 Inputs are fed simultaneously into the units making up the input layer

 They are then weighted and fed simultaneously to a hidden layer

 The number of hidden layers is arbitrary, although usually only one

 The weighted outputs of the last hidden layer are input to units making

up the output layer, which emits the network's prediction

 The network is feed-forward in that none of the weights cycles back to an

input unit or to an output unit of a previous layer

 From a statistical point of view, networks perform nonlinear regression:

Given enough hidden units and enough training samples, they can closely

approximate any function

Uploaded By: anonymousSTUDENTS-HUB.com

Multi-Class MLPs

 A multi-class MLPs, is an extension of the MlP model to handle multiple
classes.

 A multi-class MLPs, the number of neurons in the output layer
corresponds to the number of classes in the classification problem.

 Each neuron in the output layer uses the softmax activation function to
transform the weighted sum of inputs into a probability distribution over
the classes.

 The softmax function is used in the output layer of a multi-class
perceptron because it ensures that the output probabilities sum to 1.

 The cross-entropy loss function is commonly used for training multi-class
perceptron's, where the goal is to minimize the difference between the
predicted probabilities and the true class labels.

 In multi-class MLPs, input labels are often represented in one-hot
encoded format, where each class corresponds to a unique index in the
one-hot vector.

Uploaded By: anonymousSTUDENTS-HUB.com

Multi-Class MLPs

Uploaded By: anonymousSTUDENTS-HUB.com

Multi-Class MLPs

 For multi-class classification, the softmax activation function is applied to

the output layer of a neural network to convert the raw scores (logits)

into probabilities for each class. Here’s the equation:

Uploaded By: anonymousSTUDENTS-HUB.com

Outline

 Introduction and Motivation

 Neural Network Architecture
◼ The Perceptron

◼ MLPs

◼ Multi-class Perceptron

 Training MLPs

 Choosing Network Structure
◼ Depth vs Width

◼ Expressive Power of MLPs

◼ Why Going Deeper?

◼ Deep Architectures Challenges

 Training and Optimizing Deep Architecture
◼ Data Preprocessing

◼ Activation Functions

◼ Weight Initialization

◼ Vanishing and Exploding Gradients

◼ Optimization Algorithms

◼ Learning Rates Decay

◼ Overfitting

Uploaded By: anonymousSTUDENTS-HUB.com

Training ANNs – Main Idea

 Objective:
 The primary goal of training an MLP is to minimize the difference between the

predicted outputs (obtained from the network) and the actual target values
(ground truth) for a given dataset.

 ANNs learn by adjusting the weights and biases of their connections based on
observed data.

 The learning process involves:
 Forward propagation: calculating outputs for a given input
 and backward propagation: adjusting weights using gradient descent and

the backpropagation algorithm.
◼ Gradient Descent: Gradient descent is the optimization algorithm used to update

the model's parameters. It involves iteratively adjusting the weights and biases in
small steps (controlled by a learning rate) to minimize the loss function.

◼ Backpropagation: Backpropagation calculates the gradient of the loss function
with respect to the network's weights and biases. It essentially measures how a
small change in a weight or bias would affect the loss.

 This iterative process aims to minimize a loss function that quantifies the
difference between predicted and actual outcomes.

Uploaded By: anonymousSTUDENTS-HUB.com

Is this a good decision boundary?

tif 0 else ,1 then == outputoutput

=

i

M

i

iwx
1

Training ANNs – Main Idea

Uploaded By: anonymousSTUDENTS-HUB.com

w1 = 2.1

w2 = 0.2

t = 0.05

tif 0 else ,1 then == outputoutput

=

i

M

i

iwx
1

Training ANNs – Main Idea

Uploaded By: anonymousSTUDENTS-HUB.com

w1 = 1.9

w2 = 0.02

t = 0.05

tif 0 else ,1 then == outputoutput

=

i

M

i

iwx
1

Training ANNs – Main Idea

Uploaded By: anonymousSTUDENTS-HUB.com

➢ Changing the weights/threshold makes the decision boundary move.

➢ Pointless / impossible to do it by hand – only ok for simple 2-D case.

➢ We need an algorithm….

w1 = -0.8

w2 = 0.03

t = 0.05

Training ANNs – Main Idea

Uploaded By: anonymousSTUDENTS-HUB.com

MLPs Training Algorithm

1. Preparing Network Architecture:
❑ The architecture includes the number of layers, the number of

neurons in each layer, the activation functions, and the loss function.

2. Initializations: the initialization includes the following:
❑ Weights and biases: common techniques include random

initialization and using smart techniques like Xavier/Glorot

initialization.

❑ Hyperparameters: like learning rate, batch size, and number of

epochs.

3. Choose Optimization Algorithm: select optimization algorithm to

update the network's parameters. Gradient Descent as an

example.

Uploaded By: anonymousSTUDENTS-HUB.com

MLPs Training Algorithm

4. Gradient Descent with Backpropagation Training Loop:

A. Present a training example: A training example is presented to the

perceptron.
➢ The training example consists of a set of inputs and a desired output.

B. Forward Pass: During the forward pass, the input data is fed through the

network layer by layer, and the activations are calculated at each layer.

1. Input Layer: Initialize the input activations with the training data.

2. Hidden Layers: For each hidden layer, calculate the weighted sum of the

input activations and the layer's weights

3. Apply the activation function to the weighted sum to compute the

output activations.

4. Output Layer: for the output layer, calculate the weighted sum and

apply an appropriate activation function (e.g., sigmoid, softmax).

Uploaded By: anonymousSTUDENTS-HUB.com

MLPs Training Algorithm

C. Backward Pass (Backpropagation): During the backward pass, gradients of the loss

with respect to each parameter are calculated and propagated backward through

the layers.

1. Calculate the error at the output layer. This is the difference between the desired

output and the predicted output.

2. Compute Output Layer Gradient: the gradient of the loss function with respect to

the output layer weights (dloss/dWoutput). This is done using the chain rule.

3. Use the gradient to update the output layer weights.

4. Propagate the error to the hidden layers. This is done by multiplying the error at

the output layer by the weights connecting the output layer to the hidden layer.

5. Calculate the gradient of the loss function with respect to the hidden layer

weights. This is done using the chain rule.

6. Use the gradient to update the hidden layer weights.

7. Repeat steps 1 to 6 until updating parameters in the input layer.

5. Repeat steps a to c for a predefined number of iterations (epochs) or error is

minimized.
Uploaded By: anonymousSTUDENTS-HUB.com

How Does Gradient Descent Work?

 Gradient Descent is an Iterative Solver.
 The Iterative solver does not give the exact solution.

 The iterative solvers are used to get the approximate solution as the purpose

is to minimize the objective function.

 The algorithm starts with an initial set of parameters and updates them
in small steps to minimize the cost function.

 In each iteration of the algorithm, the gradient of the cost function with
respect to each parameter is computed.

 The gradient tells us the direction of the steepest ascent, and by moving
in the opposite direction, we can find the direction of the steepest
descent.

 The size of the step is controlled by the learning rate, which determines
how quickly the algorithm moves towards the minimum.

 The process is repeated until the cost function converges to a minimum,
indicating that the model has reached the optimal set of parameters.

Uploaded By: anonymousSTUDENTS-HUB.com

How Does Gradient Descent Work?

 The goal of the gradient descent algorithm is to minimize the cost function. To
achieve this goal, it performs two steps iteratively:

1. Compute the gradient (slope), the first order derivative of the cost function at that
point

2. Make a step (move) in the direction opposite to the gradient, opposite direction of
slope increase from the current point by alpha times the gradient at that point

Uploaded By: anonymousSTUDENTS-HUB.com

Gradient Descent Update Rules

MSE cost function is
equivalent to Y = f(x) = X2

Uploaded By: anonymousSTUDENTS-HUB.com

The Learning Rate

 We have the direction we want to move in, now we must decide the size
of the step we must take.

 The learning rate defined as the step size taken to reach the minima or
lowest point.

 Smaller learning rate: the model will take too much time before it reaches
minima might even exhaust the max iterations specified.

 Large (Big learning rate): the steps taken will be large and we can even miss
the minima the algorithm may not converge to the optimal point.

Uploaded By: anonymousSTUDENTS-HUB.com

Loss Function

 A loss function, also known as a cost function or objective function, is a crucial
component in training ANNs and other machine learning models.

 It is used during training to evaluate the performance of the neural network and
to update its weights in order to minimize the loss.

 Its primary purpose is to measure how well the model's predictions match the
actual target values (ground truth) during the training process.

 The goal is to find a set of weights and biases that minimizes the cost.

 Key properties of Loss Function:

 Accuracy: The loss function should be able to accurately measure the difference between
the predicted output of the model and the desired output.

 Differentiability: The loss function should be differentiable, so that the gradient of the loss
function with respect to the model parameters can be calculated.

 Convexity: The loss function should be convex, so that there is a single global minimum.
This ensures that the optimization algorithm will converge to the best possible solution.

 Computational efficiency: The loss function should be computationally efficient to
evaluate, so that it can be used to train large and complex models in a reasonable amount
of time.

Uploaded By: anonymousSTUDENTS-HUB.com

Loss Function

 Here are some examples of loss functions that satisfy these key
properties:

 Mean squared error (MSE): MSE is a simple and efficient loss function

that is often used for regression tasks. It is differentiable and convex, and

it is robust to outliers.

 Cross-entropy loss: Cross-entropy loss is a common loss function for
classification tasks. It is differentiable and convex, but it is not as robust
to outliers as MSE.

Uploaded By: anonymousSTUDENTS-HUB.com

Gradient Descent - Mathematics

 Forward Pass – Assume sigmoid activation function

Outputpredicted = Sigmoid(S)

Where:
S = ∑wi*xi + bias

Sigmoid = 1/(1 + e-x)

 Backward Pass

 Calculate Error – Assume MSE loss

MSE Loss = ½ (Outputdesired - Outputpredicted)2

 Calculate Gradients
By chain rule,

dLoss/dWi = [(dE/dpredicted)*(dpredicted/ds)*(ds/dWi)]

dE/dpredicted = Outputpredicted - Outputdesired

dpredicted/ds = [(1/(1 + e-s))(1-(1/ (1 + e-s))]

ds/dWi = Xi

dLoss/dWi = (Outputpredicted - Outputdesired)*[(1/(1 + e-s))(1-(1/ (1 + e-s))]*Xi

 Update

Winew = Wiold - (larning_rate * dLoss/dWi)

Uploaded By: anonymousSTUDENTS-HUB.com

Case study - Perceptron Training: Step-by-step

 Training of a two-input perceptron using stochastic gradient
descent with backpropagation, sigmoid activation function, and
Mean Squared Error (MSE) loss function.

 Step 1: Initialize Weights and Bias

 Initialize the weights (w1 and w2) and bias (b) with small random
values.

w1 = random_initialization

w2 = random_initialization

b = random_initialization

 Step 2: Forward Pass

 Calculate the weighted sum of the inputs and add the bias to get the
linear combination (z):

z = w1*x1 + w2*x2 + b

Uploaded By: anonymousSTUDENTS-HUB.com

Perceptron training – Case study: step-by-step

 Step 3: Apply Sigmoid Activation Function
 Pass the linear combination (z) through the sigmoid activation function to obtain

the predicted probability of class 1 (y_pred):

y_pred = 1 / (1 + exp(-z))

 Step 4: Calculate Error (MSE)
 Compute the Mean Squared Error (MSE) between the predicted output (y_pred)

and the actual target (y_true):

MSE = (1/2) * (y_true - y_pred)^2

 Step 5: Calculate Gradients
 Calculate the gradients of the MSE with respect to the weights (w1 and w2) and

bias (b) using backpropagation.

◼ Gradients with respect to weights:

∂MSE/∂w1 = -(y_true - y_pred) * y_pred * (1 - y_pred) * x1

∂MSE/∂w2 = -(y_true - y_pred) * y_pred * (1 - y_pred) * x2

◼ Gradient with respect to bias:

∂MSE/∂b = -(y_true - y_pred) * y_pred * (1 - y_pred)

Uploaded By: anonymousSTUDENTS-HUB.com

Perceptron training – Case study: step-by-step

 Step 6: Update Weights and Bias

 Update the weights and bias using the calculated gradients and a learning
rate (α):

w1 = w1 - α * ∂MSE/∂w1

w2 = w2 - α * ∂MSE/∂w2

b = b - α * ∂MSE/∂b

 Step 7: Repeat

 Repeat Steps 2 to 6 for each data point in the training dataset or for a mini-
batch of data points.

 Repeat this process for a fixed number of epochs or until convergence.

Uploaded By: anonymousSTUDENTS-HUB.com

Training Multi-class Perceptron: Step by step

❑ Step1: Convert the training labels to one-hot vectors. This means
that we represent each training label as a vector of three
elements, with a 1 in the element corresponding to the correct
class and a 0 in all other elements.

❑ Step 2: Initialize the weights and bias. We can initialize the weights
and bias randomly, or we can use a more sophisticated
initialization scheme, such as Xavier initialization.

❑ Step 3: Forward Pass

logits = np.dot(features, weights) + biases

probabilities = softmax(logits)

Uploaded By: anonymousSTUDENTS-HUB.com

Training Multi-class Perceptron: Step by step

 Step 4: Calculate the cross entropy loss.

loss = -sum(y_true * log(y_pred))

 y_true is the one-hot vector representing the correct class

 y_pred is the predicted output vector (probability)

 Step 5: Calculate the gradients of the loss with respect to the
weights and bias.

∂loss/∂wi = xi*(y_true – y_pred)

∂loss/∂b = (y_true – y_pred)

 Step 6: Update the weights and bias using SGD:
w = w - alpha * ∂loss/∂w
b = b - alpha * ∂loss/∂b

 Repeat steps 3-6 until the loss converges.

Uploaded By: anonymousSTUDENTS-HUB.com

Numerical Examples

 Appendix A: Perceptron numerical training example

 Appendix B: MLPs with one hidden layer numerical
training example.

Uploaded By: anonymousSTUDENTS-HUB.com

Outline

 Introduction and Motivation

 Neural Network Architecture
◼ The Perceptron

◼ MLPs

◼ Multi-class Perceptron

 Training MLPs

 Choosing Network Structure
◼ Depth vs Width

◼ Expressive Power of MLPs

◼ Why Going Deeper?

◼ Deep Architectures Challenges

 Training and Optimizing Deep Architecture
◼ Data Preprocessing

◼ Activation Functions

◼ Weight Initialization

◼ Vanishing and Exploding Gradients

◼ Optimization Algorithms

◼ Learning Rates Decay

◼ Overfitting

Uploaded By: anonymousSTUDENTS-HUB.com

MLPs Network Structure

 The number of hidden neurons and the number of layers in MLP have a
significant impact on the network's ability to handle different levels of problem
complexity, as well as its susceptibility to overfitting and underfitting.

 In complex problems, determining whether to increase the number of hidden
neurons (width) or the number of layers (depth) in a neural network depends
on various factors.

 Width vs. Depth

 Increasing the number of hidden neurons in a layer allows the network to capture or learn
more complex representations or patterns in the data.

◼ Learning more complex representations means capturing non-linear relationships, fine-grained
patterns, and subtle variations in the input data.

 Increasing the number of layers enables the network to capture hierarchical features and
abstractions.

◼ This means that the network's ability to learn and represent information at multiple levels of
abstraction. In many real-world problems, data can be organized in a hierarchical manner, where
high-level features are built upon lower-level features.

 There is no one-size-fits-all answer, and often a combination of both approaches may yield
the best results.

Uploaded By: anonymousSTUDENTS-HUB.com

Number of Neurons in the Hidden Layer

 Larger Neural Networks can represent more complicated functions.
The data are shown as circles colored by their class, and the decision
regions by a trained neural network are shown underneath.

Uploaded By: anonymousSTUDENTS-HUB.com

Number of Hidden Layer

Uploaded By: anonymousSTUDENTS-HUB.com

Expressive Power of MLPs

 The expressive power of an MLP is quite significant, and it can
theoretically approximate any function with high accuracy given
enough hidden neurons and appropriate training.

 Boolean functions:

 Every Boolean function can be represented by network with single
hidden layer.

 But might require exponential hidden units.

 Continuous functions:

 Every bounded continuous function can be approximated with
arbitrarily small error by network with one hidden layer. [Cybenko
1989; Hornik et al. 1989]

 Any function can be approximated to arbitrary accuracy by a network
with two hidden layers [Cybenko 1988].

Uploaded By: anonymousSTUDENTS-HUB.com

Why Going Deeper?

 Feature Hierarchies
 Deeper networks are better at automatically learning hierarchical representations of

data.

 Each layer in a deep network can capture different levels of abstraction, allowing the
model to learn complex features and patterns in the data.

 Lower layers in the network learn basic features (e.g., edges, textures), and higher
layers learn more abstract and complex features (e.g., object parts, object shapes).

Uploaded By: anonymousSTUDENTS-HUB.com

Why Going Deeper?

 Deeper networks can learn more complex functions.
 While a two-layer network can approximate any function, it may require a very

large number of neurons and parameters to do so.

 A deeper network, on the other hand, can learn more complex functions with
fewer neurons and parameters.

 This is because deeper networks can learn to represent the input data in a more
hierarchical way.

 Deeper networks can generalize better.
 Deeper networks are often better at generalizing to new data than shallower

networks.

 They have the capacity to learn intricate patterns and variations in the training
data,

 This is because deeper networks can learn more abstract representations of the
data.

 Transfer Learning
 Deeper networks pretrained on large datasets (e.g., deep convolutional neural

networks pretrained on ImageNet) can be fine-tuned for specific tasks.

 This transfer learning is highly effective and allows you to leverage the
knowledge learned from one domain for another.

Uploaded By: anonymousSTUDENTS-HUB.com

Performance of Network Size

Uploaded By: anonymousSTUDENTS-HUB.com

Deep Architectures Challenges and Problems
55

 Choosing the right architecture: The architecture of a deep model
include the number of layers, number of neurons in each layer, the
connections between the layers, and the activation function.

 Optimization: Gradient descent with backpropagation is the most
common algorithm used to train deep learning models. However, it has a
number of drawbacks, including:
 Vanishing or Exploding Gradients: Gradients may become too small (vanishing) or too

large (exploding) during backpropagation, making it difficult to update the weights
effectively.

 Local minima: Deep learning models are often non-convex, which means that they have
many local minima. Getting stuck in a local minimum can prevent the model from reaching
the global minimum, which is the set of parameters that produces the lowest possible loss.

 Saddle Points: Saddle points are points in the parameter space where the gradient is zero.
They are flat regions where the loss function is relatively flat in some directions and steep
in others. Saddle points can slow down the convergence of the optimization algorithm
because the gradient is close to zero, making it difficult for the optimizer to decide
whether to continue or stop.

 Slow convergence: Gradient descent can be a slow algorithm, especially for deep models
with many parameters.

Uploaded By: anonymousSTUDENTS-HUB.com

Deep Architectures Challenges and Problems
56

 Overfitting: Overfitting occurs when the model learns the training
data too well and is unable to generalize to new data. This can be
caused by a number of factors, such as the model being too
complex, the training data being too small, or the training process
not being stopped at the right time.

 Hyperparameter Tuning: Suboptimal choices of hyperparameters,
such as learning rate, batch size, etc.

 Lack of computational resources: Deep models can be
computationally expensive to train. If you do not have enough
computational resources, you may need to use a smaller model or
train the model for a shorter period of time.

 Memory Constraints: Limited GPU memory may prevent the
training of large models or batch sizes.

Uploaded By: anonymousSTUDENTS-HUB.com

Outline

 Introduction and Motivation

 Neural Network Architecture
◼ The Perceptron

◼ MLPs

◼ Multi-class Perceptron

 Training MLPs

 Choosing Network Structure
◼ Depth vs Width

◼ Expressive Power of MLPs

◼ Why Going Deeper?

◼ Deep Architectures Challenges

 Training and Optimizing Deep Architecture
◼ Data Preprocessing

◼ Activation Functions

◼ Weight Initialization

◼ Vanishing and Exploding Gradients

◼ Optimization Algorithms

◼ Learning Rates Decay

◼ Overfitting

Uploaded By: anonymousSTUDENTS-HUB.com

Data Preprocessing – Normalization
58

 In gradient descent-based optimization, if features are on different
scales, the optimization algorithm might take longer to converge.
 Large input values can lead to numerical instability during training, especially

when using activation functions that are sensitive to input magnitudes.

 Some activation functions, like sigmoid or tanh, are more effective when
inputs are within a certain range (e.g., -1 to 1 for tanh).

 Normalization ensures that all features are on the same scale,
which can help stabilize the gradient descent algorithm, leading to
faster convergence.
 Before normalization: classification loss very sensitive to changes in weight

matrix; hard to optimize

 After normalization: less sensitive to small changes in weights; easier to
optimize

 Common methods of feature normalization include Z-Score
Normalization (standardization), Min-Max Scaling, and
Normalization by Scaling to Unit Length (L2 normalization)

Uploaded By: anonymousSTUDENTS-HUB.com

Data Preprocessing for Images

 Consider CIFAR-10 example with [32,32,3] images

 Subtract the mean image (e.g. AlexNet)

◼ mean image = [32,32,3] array

 Subtract per-channel mean (e.g. VGGNet)

◼ mean along each channel = 3 numbers

 Subtract per-channel mean and Divide by per-channel std
(e.g. ResNet)

◼ mean along each channel = 3 numbers

Uploaded By: anonymousSTUDENTS-HUB.com

Effect of Data Preprocessing
60

Uploaded By: anonymousSTUDENTS-HUB.com

Activation Functions

 Activation functions are essential components of ANNs, providing
the non-linearity and information gating that enable them to learn
complex patterns and relationships in data.

Uploaded By: anonymousSTUDENTS-HUB.com

Well-Known Activation Functions

Uploaded By: anonymousSTUDENTS-HUB.com

Choosing Activation Function
63

 Choice Based on Task:

 Use Sigmoid or Tanh in the output layer.

 ReLU is commonly used in hidden layers for a variety of tasks, especially in deep
convolutional neural networks (CNNs).

 Vanishing Gradient:

 Sigmoid and Tanh are prone to the vanishing gradient problem, especially in deep
networks. ReLU, by allowing non-zero gradients for positive inputs, helps mitigate this
issue.

 Training Dynamics:

 ReLU often leads to faster convergence during training as it does not suffer from
vanishing gradients and can train faster.

 Dying Neurons:

 Consider using variants of ReLU, such as Leaky ReLU or Parametric ReLU, to mitigate
the issue of "dying neurons."

 Computational resources:

 If computational resources are limited, then a ReLU function may be a better choice,
as it is simpler to compute than the sigmoid and tanh functions.

Uploaded By: anonymousSTUDENTS-HUB.com

Vanishing Gradients
64

 As more layers are added to neural networks, the gradients of the loss function
approaches zero, making the network hard to train.

 When the gradients become extremely small, the updates to the weights during
training become negligible, effectively hindering the learning process. Layers
closer to the input are often more severely affected, leading to slow or stalled
learning in these layers.

Popular activation functions in deep neural networks and their corresponding derivatives.Uploaded By: anonymousSTUDENTS-HUB.com

Exploding Gradients
65

 Exploding gradients occur when the gradients of the loss with
respect to the parameters become extremely large during the
backpropagation process in deep neural networks.

 The exploding gradient problem is caused by the chain rule, which
is used to calculate the gradient of a composite function.

 The chain rule states that the gradient of a composite function is the product
of the gradients of the individual functions in the composition.

 If any of the gradients of the individual functions in the composition are very
large, then the overall gradient will also be very large

 When the gradients are too large, weight updates become
excessively large, and the model's parameters can diverge, making
the optimization process challenging.

Uploaded By: anonymousSTUDENTS-HUB.com

Vanishing/Exploding Gradients - Solutions

 Change Activation Function

 Initialization Techniques

 Batch Normalization

 Residual Connections

 Gradient clipping

Uploaded By: anonymousSTUDENTS-HUB.com

Replace Activation function
67

 Replace sigmoid and tanh activations with Rectified Linear Unit (ReLU) or Variants
like Leaky ReLU.

Uploaded By: anonymousSTUDENTS-HUB.com

Initialization Techniques
68

 Initialization is a crucial aspect of training deep architectures.

 Proper initialization helps prevent issues such as vanishing or exploding
gradients, and it can contribute to faster convergence and better overall
performance.

 The choice of weight initialization can depend on the activation function
used in the network.

 Initialization techniques

 Zero Initialization:

▪ Initialize all weights to zero.

▪ Not recommended for deep networks as it breaks the symmetry, but it
doesn't provide the necessary diversity for learning.

 Random Initialization:

▪ Initialize weights randomly from a small Gaussian or uniform distribution.

▪ Common practice is to draw weights from a Gaussian distribution with a
mean of 0 and a small standard deviation (e.g., 0.01).

Uploaded By: anonymousSTUDENTS-HUB.com

Initialization Techniques
69

 Xavier/Glorot Initialization:

 Introduced by Xavier Glorot et al.

 Scales the weights based on the number of input and output units.

 For a layer with nin input units and out nout output units, weights are initialized
from a Gaussian distribution with mean 0 and standard deviation:

 Suitable for sigmoid and hyperbolic tangent (tanh) activations.

 He Initialization (also known as Kaiming Initialization):

 Introduced by Kaiming He et al.

 Scales the weights based on the number of input units.

 For a layer with nin input units, weights are initialized from a Gaussian
distribution with mean 0 and standard deviation

 Particularly effective for rectified linear unit (ReLU) activations.
Uploaded By: anonymousSTUDENTS-HUB.com

Initialization Techniques
70

Uploaded By: anonymousSTUDENTS-HUB.com

Batch Normalization
71

 Batch normalization is a technique used in deep learning to normalize
the inputs of each layer in a neural network, before the activation
function.

 BatchNorm reduce the internal covariate shift and stabilizing the training
process.
 Internal covariate shift is a phenomenon that occurs when the distribution of the

input data to each layer of the network changes as the network is trained. This
can make it difficult for the network to learn, and it can also lead to overfitting.

 It is done along mini-batches instead of the full data set.

 Benefits:
 BatchNorm helps mitigate the internal covariate shift. This helps stabilize and

accelerate the training process by mitigating issues like vanishing/exploding
gradients.

 The normalization allows for more stable and faster convergence during training

 Allow to Use Large Learning Rates

 Gradient Smoothing

 BatchNorm introduces a slight amount of noise during training, acting as a form
of regularization and reducing the need for other regularization techniques.

Uploaded By: anonymousSTUDENTS-HUB.com

Batch Normalization
72

 To implement batch
normalization, you can use the
following steps:

1. Calculate the mean and
standard deviation of the
batch of inputs to each layer.

2. Subtract the mean and divide
by the standard deviation of
the batch of inputs to each
layer.

3. Apply a scaling factor and shift
factor to the normalized
inputs, if desired.

4. Pass the normalized inputs to
the activation function.

Uploaded By: anonymousSTUDENTS-HUB.com

Effect Of Batch Normalization
73

➢ Inception: Inception-v1 without BN
➢ BN-Baseline: Inception with BN
➢ BN-×5: Initial learning rate is increased

by a factor of 5 to 0.0075
➢ BN-×30: Initial learning rate is

increased by a factor of 30 to 0.045
➢ BN-×5-Sigmoid: BN-×5 but with

Sigmoid

Since the introduction of GoogLeNet, Batch Normalization has
become a standard component in many deep learning

architectures, providing benefits in terms of training stability,
convergence speed, and generalization performance.

Uploaded By: anonymousSTUDENTS-HUB.com

Residual Connections

 Residual connections, also known as shortcut connections, are connections that
allow information to flow from one layer of the network to a later layer without
passing through any intermediate layers.

 This is in contrast to traditional neural networks, where information flows
sequentially from one layer to the next.

 Residual connections help to alleviate the vanishing gradient problem by
providing a direct path for the gradients to flow through the network. This helps
to ensure that the gradients of the loss function are able to reach the earlier
layers of the network, which is necessary for the network to learn effectively.

Uploaded By: anonymousSTUDENTS-HUB.com

Residual connections

 Effect of residual connection: CIFAR-10 Dataset Results

Uploaded By: anonymousSTUDENTS-HUB.com

Gradient clipping

 Gradient clipping is a technique that sets a maximum value for the
gradient of the loss function with respect to the model
parameters. This can help to prevent the exploding gradient
problem by ensuring that the gradient is never too large.

Uploaded By: anonymousSTUDENTS-HUB.com

Optimization Algorithms
77

 Gradient descent is an optimization algorithm that is used to
train deep learning models.

 There are a number of different variants of gradient descent,
each with its own advantages and disadvantages. Some of the
most common variants include:

 Batch gradient descent

 Stochastic gradient descent (SGD)

 Mini-batch gradient descent

 Momentum

 Adaptive learning rate algorithms

Uploaded By: anonymousSTUDENTS-HUB.com

Variations of Gradient Descent

 Batch Gradient Descent
 In Batch GD, the entire training dataset is used to compute the gradient of the cost

function with respect to the model parameters (weights and biases).
 The gradients are averaged over all training examples.
 The model parameters are then updated once per epoch.
 Batch GD is guaranteed to converge to a global minimum (for convex problems).
 However, it is computationally expensive, especially for large datasets, and has slow

convergence, especially in high-dimensional spaces.

 Stochastic Gradient Descent (SGD)
 In SGD, a single training example is randomly selected at each iteration to compute

the gradient of the cost function.
 The model parameters are updated after each selected example, resulting in more

frequent updates compared to GD.
 SGD is Well-suited for large datasets where computing the full gradient is impractical.
 SGD has faster convergence due to frequent updates and also has the ability to

escape local minima due to randomness.
 However, training with SGD can result in noisy updates and oscillations in the loss

function, which may require careful tuning of the learning rate.

Uploaded By: anonymousSTUDENTS-HUB.com

Variations of Gradient Descent

 Mini-Batch Gradient Descent

 Mini-Batch combines the benefits of both Batch GD and SGD by dividing the training

dataset into small batches of a fixed size (Common mini-batch sizes include 32, 64,

128, or 256).

 The gradient is computed by averaging the gradients of the cost function over the

examples in the current batch.

 Model parameters are updated after processing each mini-batch, which strikes a

balance between the frequent updates of SGD and the more stable convergence of

batch methods.

 Mini-Batch GD converges faster than pure Batch GD due to more frequent updates,

which is especially beneficial for large datasets, and has efficient computation by

utilizing hardware parallelism (e.g., GPUs).

 In addition, Mini-Batch GD provides more stable parameter updates compared to

pure SGD, leading to smoother convergence.

 However, training with Mini-Batch GD requires careful selection of mini-batch size

and learning rate, which can impact convergence speed and stability.

Uploaded By: anonymousSTUDENTS-HUB.com

Effect of mini-batch size
80

 Mini-batch sizes, typically ranging from a few tens to a few hundreds, strike a balance
between the computational efficiency of larger batches and the faster convergence
associated with smaller batches.

 A batch size of 1 corresponds to pure stochastic gradient descent, where the model
parameters are updated after each individual sample.

 Smaller batch sizes provide a form of regularization and may lead to better
generalization. If you observe overfitting with larger batch sizes, consider reducing the
batch size.

 When using batch normalization, smaller batch sizes might introduce more variability in
the batch statistics, potentially affecting the performance of the normalization. Larger
batch sizes are often preferred with batch normalization.

 The learning rate may need to be adjusted based on the batch size. Smaller batch sizes
might require a smaller learning rate to prevent overshooting, while larger batch sizes
may tolerate a larger learning rate.

 A larger batch size can improve the efficiency of the training process by reducing the
number of updates required to train the model. However, a larger batch size can also
lead to overfitting.

Uploaded By: anonymousSTUDENTS-HUB.com

Effect of mini-batch size
81

Uploaded By: anonymousSTUDENTS-HUB.com

Variations of Gradient Descent
82

Uploaded By: anonymousSTUDENTS-HUB.com

Local Minimum and Saddle Points
83

 Local Minima: Local minima are points in the parameter space
where the gradient of the loss function is zero, and the function has
a lower value than in the surrounding region. However, they are not
necessarily the global minimum.

 Using momentum, adaptive learning rate during training, and introducing
stochasticity into the optimization process (e.g., SGD) can help escape local
minima.

 Saddle Points: Saddle points are points in the parameter space
where the gradient is zero. They are flat regions where the loss
function is relatively flat in some directions and steep in others.

 Using momentum in optimization algorithms can help the optimizer continue
moving even when encountering flat regions, making it more likely to escape
saddle points.

Uploaded By: anonymousSTUDENTS-HUB.com

Local Minimum and Saddle Points
84

Uploaded By: anonymousSTUDENTS-HUB.com

Gradient Descent with Momentum
85

 Momentum is a technique that can help to accelerate the training process and
to prevent the model from getting stuck in local minima.

 It works by adding a weighted average of the previous gradients to the current
gradient.

 Momentum involves adding an additional hyperparameter that controls the
amount of history (momentum) to include in the update equation, i.e., the step
to a new point in the search space.

 Advantages:
 More stable training anf Faster convergence, especially in the presence of high

curvature or noisy gradients.

 Improved performance: Gradient descent with momentum can help to improve the
performance of deep learning models by preventing them from getting stuck in local
minima.

 Drawbacks
 In some cases, too much momentum can lead to overshooting, causing the algorithm

to oscillate or even diverge.

 The optimal choice of the momentum parameter may depend on the specific
characteristics of the optimization landscape.

 Maintaining historical information for each parameter can lead to increased memory
requirements.

Uploaded By: anonymousSTUDENTS-HUB.com

Gradient Descent with Momentum
86

 Introducing momentum to maintain the change in the gradient descent will be

as follows:

 In each iteration:
1. Compute Gradients: Calculate the gradients of the loss function with respect to the model's

parameters (compute dE/dWi).

2. Update Velocity: Update the velocity vector using the gradient and the momentum term:

velocity(t) = β * velocity(t-1) + (1 - β) * gradient(t)

3. Update Parameters: Update the model's parameters (weights and bias) using the velocity and the

learning rat

parameter(t) = parameter(t-1) - α * velocity(t)

 Note that, the initialization of the momentum optimizer is as follows:
 Learning rate (α): a typical value is 0.001.

 β: typically range between 0 and 1. A momentum value of 0 means no momentum is applied, while a

value close to 1 means strong momentum. The commonly used momentum value is 0.9.

 velocity(t-1) initialized to 0.

Uploaded By: anonymousSTUDENTS-HUB.com

Gradient Descent with Momentum
87

Nesterov Momentum is an extension of momentum that adjusts the momentum term by considering
the gradient of the loss not at the current position but at an adjusted position. This correction can help

in more accurate updates, especially when the optimization is near the minimum.Uploaded By: anonymousSTUDENTS-HUB.com

Adaptive Learning Rate
88

 Adaptive learning rate gradient descent is a variant of gradient descent

that can automatically adjust the learning rate during training

 It work by tracking the past gradients of the loss function with respect to

the model parameters. This information is then used to adjust the

learning rate for each model parameter. This ensures that the learning

rate is always appropriate for the current state of the model and the

data.

 For example:
 If the change in the sum of squared errors has the same algebraic sign for several

subsequent epochs, then the learning rate parameters should be increased.

 On the other hand, If the algebraic sign of the change of the sum of squared errors

alternates for several subsequent epochs, then the learning rate parameter should be

decreased.

 Advantages
 Can lead to faster convergence and improved training performance.

 The adaptive methods tend to be more robust in the presence of noisy or sparse gradients.

Uploaded By: anonymousSTUDENTS-HUB.com

Adam
89

 Several methods have been introduced to tune learning rates, such as AdaGrad,

RMSprop, and Adam.

 The Adaptive Movement Estimation algorithm, or Adam for short, is the most

widely used first order optimization algorithm.

 The Adam optimizer adapts the learning rate for each parameter by considering

both the magnitude of the gradient (first moment) and the variability of the

gradient (second moment).

 Combines ideas from both momentum-based methods and adaptive learning

rate methods.

 Maintains a moving average of past gradients and their squared gradients.

 Adam introduces two more parameters, beta1 (β₁) (A parameter that controls

the exponential decay of the moving average of past gradients) and beta2 (β₂)

(A parameter that controls the exponential decay of the moving average of past

squared gradients).

Uploaded By: anonymousSTUDENTS-HUB.com

Adam
90

 Introducing Adam optimizer to maintaining the change of the gradient
descent will be as follows:

 In each iteration:
 Compute Gradients: Compute the gradients of the loss function with respect to

the model's parameters.

gradient(t) = dLoss/dWi

 Update First Moment Estimate as:

m_t = β₁ * m_(t-1) + (1 - β₁) * gradient(t)

 Update Second Moment Estimate as:

v_t = β₂ * v_(t-1) + (1 - β₂) * gradient(t)^2

 Bias Correction: Since the moving averages are initialized with zeros, they can be
biased towards zero, especially in the early iterations. To correct this bias,
compute bias-corrected first and second moment estimates as:

m_t_hat = m_t / (1 - β₁^t)

v_t_hat = v_t / (1 - β₂^t)

 Update Parameters: Update the model's parameters (weights and bias) using the
bias-corrected estimates and the learning rate as follows:

parameter(t) = parameter(t-1) - α * m_t_hat / (sqrt(v_t_hat) + ε)
Uploaded By: anonymousSTUDENTS-HUB.com

Adam
91

 The initialization of the Adam optimizer is as follows:

 Learning rate (α): a typical value is 0.001.

 β₁: A typical value is 0.9.

 β2: A typical value is 0.999.

 ε (epsilon): A small constant added to the denominator to
prevent division by zero. A typical value is 1e-7 or 1e-8.

 m_(t-1) and v_(t-1) initialized to be 0.

Uploaded By: anonymousSTUDENTS-HUB.com

Comparisons
92

 Results for Multi-layer Perceptron in MNIST

Uploaded By: anonymousSTUDENTS-HUB.com

Comparisons
93

 Results for Convolutional Neural Network in MNIST

Uploaded By: anonymousSTUDENTS-HUB.com

Comparisons
94

Nadam (Nesterov-accelerated Adam): Integrates Nesterov
momentum into Adam.

Uploaded By: anonymousSTUDENTS-HUB.com

Comparisons
95

In practice:
➢ Adam is a good default choice.
➢ In many cases SGD+Momentum can outperform Adam but may require more tuning.

Uploaded By: anonymousSTUDENTS-HUB.com

Learning rate decay

 The learning rate is a crucial hyperparameter in neural network training.

 SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a
hyperparameter.

 It controls the magnitude of the updates made to the network's weights
during each iteration of training.

 A too-high learning rate can cause the network to overshoot the optimal
solution, leading to oscillations and instability.

 On the other hand, a too-low learning rate can make training slow and
inefficient.

 Learning rate decay is a technique used in training neural networks to
improve their performance.

 It involves gradually decreasing the learning rate which determines the
size of the steps taken during optimization during training.

 This helps to prevent the network from overshooting the optimal
solution and to improve its generalization ability.

Uploaded By: anonymousSTUDENTS-HUB.com

Adaptive Learning Rate
97

 Effect of learning rate

Uploaded By: anonymousSTUDENTS-HUB.com

Learning rate decay – General Approach

 Initially use higher learning rate allows the model to make
larger updates, exploring the parameter space broadly.

 As training progresses, reducing the learning rate by decay
rate:

α=(1/(1+decayRate×epochNumber))*α0

α : learning rate (current iteration)
α0 : Initial learning rate
decayRate : hyper-parameter for the method

 This approach balances fast convergence in the beginning
with precise optimization later in the training process.

Uploaded By: anonymousSTUDENTS-HUB.com

Learning rate decay methods

Linear

Cosine

Step

Inverse sqrt

Uploaded By: anonymousSTUDENTS-HUB.com

Generalization
100

 How well our model generalizes can
be characterized by the difference
between the performance on data
we have seen vs not seen

 If we made our model more complex,
we might be able to get more
complex patterns, but we risk starting
to “memorize” the data instead of
learning meaningful

Uploaded By: anonymousSTUDENTS-HUB.com

Bias / Variance
101

 Bias:
 A tendency towards certain predictions,

usually coming at the cost of lower
complexity models

 How wrong our model is on average

 Small changes in dataset -> little change
in our model and its predictions

 Variance:
 Our ability to match the spread of our

data

 Small changes in dataset -> large
changes in our model and its predictions

 Our model needs to be both firm and
flexible, able to capture varying and
complex data we have, yet robust
enough to generalize.

Uploaded By: anonymousSTUDENTS-HUB.com

Overfitting and Underfitting
102

 When we train (or even do hyperparameter tuning), the thing we care
about is generalization
 When we do either of these, we need to hold our a small segment of our data to

test our model with as we train

 We care about the discrepancy between training and held out dataset accuracy,
as it indicates generalization

 This involves a balance between bias and variance
 Overfitting: our training data does much worse than our held out portion of data

◼ This indicates that our model is in some way too complex and needs to be scaled down

 Underfitting: our training data performs similarly to our held out data
◼ This indicates that you can likely increase model complexity without taking too much of

a hit to generalization performance

 Models with optimal generalization usually fall somewhere between these two

Uploaded By: anonymousSTUDENTS-HUB.com

Overfitting
103

 Overfitting in deep networks is a problem that occurs when the network
learns the training data too well capturing noise and random fluctuations
rather than the underlying patterns.

 This can cause the network to perform poorly on test data or unseen
data.

 Overfitting can be caused by a number of factors, including:
 Model complexity

 Insufficient training data

 Existence of Noise

 Training for too long

 Handling overfitting in deep neural networks is crucial to ensure that the
model generalizes well to unseen data. Here are some techniques
commonly used to mitigate overfitting in deep architectures:
 Early Stopping

 Dropout, DropConnect, Stochastic Depth

 Weight Regularization (L1 and L2 Regularization)

 Batch Normalization

 Residual Connections
Uploaded By: anonymousSTUDENTS-HUB.com

Early Stopping
104

 The idea is to monitor the performance of the model on a validation
dataset during training and stop the training process once the
performance starts to degrade.

 It works by stopping the training process before the model has fully
converged. This can help to prevent the model from learning the noise
and random fluctuations in the training data, which can lead to
overfitting.

 To implement early stopping, you need to split the training data into two
sets: a training set and a validation set. The training set is used to train
the model, and the validation set is used to evaluate the performance of
the model.

 The patience parameter is a key hyperparameter in early stopping. It
represents the number of consecutive epochs without improvement on
the validation set before training is stopped.

 Training stops when the monitored metric on the validation set does not
improve for a specified number of epochs (patience). This is an indication
that the model may be overfitting and further training could lead to
memorization of the training data.

Uploaded By: anonymousSTUDENTS-HUB.com

Early Stopping
105

Uploaded By: anonymousSTUDENTS-HUB.com

Dropout
106

 It involves randomly "dropping out" a subset of neurons during training,
meaning that their contributions to the forward and backward passes are
temporarily removed.

 To implement dropout, you need to specify a dropout rate, which is the
probability that a neuron will be dropped out. During training, each
neuron in the network will be dropped out with the probability specified
by the dropout rate. This means that some neurons will be active during
training and some neurons will be inactive.

 The dropout rate is a hyperparameter that needs to be tuned for each
specific task and network architecture. A good starting point is to use a
dropout rate of 0.5. This means that half of the neurons in the network
will be dropped out during training.

 Dropout is typically applied after activation functions (e.g., ReLU) and
before the next layer's weights.

 During inference or testing, dropout is turned off, and the model uses all
neurons for predictions.

Uploaded By: anonymousSTUDENTS-HUB.com

Dropout
107

 Dropout works by forcing the network to learn to rely on multiple
neurons instead of just a few.

 This helps to prevent overfitting, as the network is not able to learn the noise
and random fluctuations in the training data as easily.

 Here is a step-by-step description of the dropout algorithm:

1. Initialize the dropout rate.

2. For each epoch of training:

a. For each neuron in the network:

I. Generate a random number.

II. If the random number is less than the dropout rate, then drop out the
neuron.

III. Otherwise, keep the neuron active.

b. Train the network using the remaining neurons.

3. Evaluate the network on the test data.

Uploaded By: anonymousSTUDENTS-HUB.com

Dropout
108

 At each iteration, “turn off” each neuron (including inputs) with a
probability p

 In practice, set them to 0 according to the success of a Bernoulli random
number generator with success probability p

Uploaded By: anonymousSTUDENTS-HUB.com

Dropout
109

Uploaded By: anonymousSTUDENTS-HUB.com

DropConnect
110

 The idea behind DropConnect is similar to dropout, but instead of dropping out
neurons, it drops out connections between neurons.

 This forces the network to learn to rely on multiple connections instead of just a
few. This can help to reduce overfitting, as the network is not able to learn the
noise and random fluctuations in the training data as easily.

 To implement DropConnect, you need to specify a dropout rate, which is the
probability that a connection will be dropped out.

 During training, each connection in the network will be dropped out with the
probability specified by the dropout rate.

 The dropout rate is a hyperparameter that needs to be tuned for each specific
task and network architecture.

 A good starting point is to use a dropout rate of 0.5. This means that half of the
connections in the network will be dropped out during training.

 DropConnect is more computationally expensive than dropout, as it needs to
keep track of the connections that have been dropped out.

Uploaded By: anonymousSTUDENTS-HUB.com

DropConnect
111

 Training: Drop connections between neurons (set weights to 0)

 Testing: Use all the connections

Uploaded By: anonymousSTUDENTS-HUB.com

Stochastic Depth
112

 Stochastic depth works by randomly dropping out entire layers of
the network during training.

 This means that some layers will be active during training and some
layers will be inactive.

Uploaded By: anonymousSTUDENTS-HUB.com

L1 and L2 Regularization
113

 Regularization involves adding a penalty term to the loss function during
training.

 This penalty discourages the model from becoming too complex or
having large parameter values, which helps control the model’s ability to
fit noise in the training data.

 L1 and L2 are the most common types of regularization.
 L1 and L2 update the general cost function by adding another term

known as the regularization term:

Data loss: Model predictions should
match training data

Regularization: Prevent the model from
doing too well on training data

= Regularization strength
(hyperparameter)

Uploaded By: anonymousSTUDENTS-HUB.com

Do not use size of neural network as a regularizer. Use stronger
regularization instead:

Effect of regularization

Uploaded By: anonymousSTUDENTS-HUB.com

L1 Regularization
115

 The loss function becomes:

Loss = MSE + λ * Σ|w|

where w are the weights of the model, and λ is the regularization strength (a

hyperparameter that determines the trade-off between fitting the data and

minimizing the magnitude of weights).

 The gradient calculation of the loss function with respect to the weights becomes:

∂Loss/∂w = ∂(MSE + λ * Σ|w|)/∂w.

The gradient for the MSE part is computed as usual, and the gradient for the L1

regularization term is λ * sign(w_old).

 The update rule for the weights becomes:

w_new = w_old - η * (∂Loss/∂w + λ * sign(w_old)),

where η is the learning rate and sign(w_old) is the sign function that assigns +1 to

positive values and -1 to negative values of w_old.

Uploaded By: anonymousSTUDENTS-HUB.com

L2 Regularization
116

 The loss function becomes:

Loss = MSE + λ * Σ(w^2)

where w are the weights of the model, and λ is the regularization strength
(a hyperparameter that determines the trade-off between fitting the data
and minimizing the magnitude of weights).

 The gradient calculation of the loss function with respect to the weights
becomes:

∂Loss/∂w = ∂(MSE + λ * Σ(w^2))/∂w

The gradient for the MSE part is computed as usual, and the gradient for
the L2 regularization term is 2 * λ * w_old.

 The update rule for the weights becomes:

w_new = w_old - η * (∂Loss/∂w + 2 * λ * w_old)

where η is the learning rate.

Uploaded By: anonymousSTUDENTS-HUB.com

L1 vs. L2 Regularizations
117

Uploaded By: anonymousSTUDENTS-HUB.com

L1 vs. L2 Regularizations
118

 L1 regularization is often used in classification tasks, where it can be used to
select the most informative features.

 L2 regularization is often used in regression tasks, where it can be used to
produce smooth and continuous predictions.

Uploaded By: anonymousSTUDENTS-HUB.com

Choosing Overfitting Handling Tech.
119

 The best technique to use will depend on the specific task and the available
resources.

 Here are some additional things to consider when choosing a regularization
technique:

 Computational resources: If computational resources are limited, then early stopping
or dropout may be good choices.

 Performance: If performance is the most important factor, then L1 and L2
regularization or batch normalization may be better choices.

 Expressiveness: If expressiveness is important, then L2 regularization is a good
choice.

 Data set limitation: Dropout effective when training a large neural network on a
limited dataset.

 Deep Architecture: Early stopping, L1 or L2 regularization, Batch Normalization

 It is also possible to use a combination of regularization techniques.

 You could use early stopping with dropout and L1/L2 regularization.

 You could use early stopping and L1/L2 regularization and Batch Normalization..

 Data augmentation is always a good idea and can be used with other methodsUploaded By: anonymousSTUDENTS-HUB.com

Choosing Hyperparameters
120

 Choosing the right hyperparameters is one of the most important aspects of training deep

learning models.

 Hyperparameters are the parameters that control the training process, such as the learning

rate, the number of epochs, and the batch size.

 There is no one-size-fits-all answer to the question of how to choose the right

hyperparameters.

 The best hyperparameters for a particular model and dataset will vary depending on a number

of factors, including the size and complexity of the dataset, the type of model being used, and

the desired performance goals.

 However, there are some general tips that can help you choose good hyperparameters for

your deep learning models:

 Start with a small number of hyperparameters to tune.

 Use a validation set. A validation set is a held-out dataset that is used to evaluate the performance of

the model during training. This can help you to avoid overfitting the model to the training data.

 Use a grid search or random search. A grid search or random search is a technique for searching for the

best hyperparameter values. A grid search tries all possible combinations of hyperparameter values,

while a random search tries a random sample of hyperparameter values.

Uploaded By: anonymousSTUDENTS-HUB.com

Acknowledgement
121

 The material in these slides are based on:
 Digital Image Processing: Rafael C. Gonzalez, and Richard

 Forsythe and Ponce: Computer Vision: A Modern Approach

 Rick Szeliski’s book: Computer Vision: Algorithms and Applications

 cs131@ Stanford University

 cs131n@ Stanford University

 CS198-126@ University of California, Berkely

 CAP5415@ University of Central Florida

 CSW182 @ University of California, Berkely

 Deep Learning Lecture Series @ UCL

 EECS 498.008 @ University of Michigan

 CSE576 @ Washington University

 11-785@ Carnegie Mellon University

 CSCI1430@ Brown University

 Computer Vision@ Bonn University

 ICS 505@ KFUPM

 Digital Image Processing@ University of Jordan
Uploaded By: anonymousSTUDENTS-HUB.com

http://www.cmu.edu/

Appendix A:
Training Perceptron

Uploaded By: anonymousSTUDENTS-HUB.com

Training Perceptron

Uploaded By: anonymousSTUDENTS-HUB.com

Forward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Weights Update

Uploaded By: anonymousSTUDENTS-HUB.com

Weights Update

Uploaded By: anonymousSTUDENTS-HUB.com

Appendix B
Training MLPs with One Hidden Layer

Uploaded By: anonymousSTUDENTS-HUB.com

Training MLPs with One Hidden Layer

Uploaded By: anonymousSTUDENTS-HUB.com

Training MLPs with One Hidden Layer

Uploaded By: anonymousSTUDENTS-HUB.com

Training MLPs with One Hidden Layer

Uploaded By: anonymousSTUDENTS-HUB.com

Forward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Forward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Forward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Forward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Backward Pass

Uploaded By: anonymousSTUDENTS-HUB.com

Weights Update

Uploaded By: anonymousSTUDENTS-HUB.com

