AVL Trees

Binary Search Tree
Best Time

» All BST operations are O(h), where d is
tree height.

* maximum h is h=|log,N |for a binary tree
with N nodes
» What is the best case tree?
» What is the worst case tree?

» S0, best case running time of BST
operations is O(log N)

4/4/2017 2

STUDENTS-HUB.com Uploaded By: anonymous1

Binary Search Tree
Worst Time

* Worst case running time is O(N)

» What happens when you Insert elements in
ascending order?
* Insert: 2, 4, 6, 8, 10, 12 into an empty BST
» Problem: Lack of “balance”:
« compare heights of left and right subtree
» Unbalanced degenerate tree

4/4/2017

Balanced and unbalanced BST

Is this “balanced”?

4/4/2017

STUDENTS-HUB.com Uploaded By: anonymous2

Approaches to balancing trees

« Don't balance
» May end up with some nodes very deep

« Strict balance
» The tree must always be balanced perfectly

» Pretty good balance
» Only allow a little out of balance

» Adjust on access
» Self-adjusting

4/4/2017 5

Balancing Binary Search
Trees

« Many algorithms exist for keeping
binary search trees balanced

» Adelson-Velskii and Landis (AVL) trees
(height-balanced trees)

» Splay trees and other self-adjusting trees
» B-trees and other multiway search trees

4/4/2017 6

STUDENTS-HUB.com Uploaded By: anonymous3

Perfect Balance

« Want a complete tree after every operation
» tree is full except possibly in the lower right
* This is expensive

» For example, insert 2 in the tree on the left and
then rebuild as a complete tree

a g Insert 2 & 2 a
complete tree
@ &G @ @® ©
7

4/4/2017

AVL - Good but not Perfect

Balance

» AVL trees are height-balanced binary
search trees

« Balance factor of a node
» height(left subtree) - height(right subtree)

* An AVL tree has balance factor calculated
at every node

» For every node, heights of left and right
subtree can differ by no more than 1

» Store current heights in each node

4/4/2017 8

STUDENTS-HUB.com Uploaded By: anonymous4

Height of an AVL Tree

N(h) = minimum number of nodes in an
AVL tree of height h.

Basis
» N(O) =1, N(1) =2

h

Induction
» N(h) = N(h-1) + N(h-2) + 1 /.\

e Solution (recall Fibonacci analysis) A
> N(h) > ¢" (¢~ 1.62) . h2
Height of an AVL Tree

* N(h)>¢" (¢ ~1.62)
« Suppose we have n nodes in an AVL
tree of height h.
> N > N(h) (because N(h) was the minimum)

» n>¢" hence log, n > h (relatively well
balanced tree!!)

» h<1.44 log,n (i.e., Find takes O(logn))

4/4/2017 10

STUDENTS-HUB.com Uploaded By: anonymous5

Node Heights

Tree A (AVL) Tree B (AVL)
height=2 BF=1-0=1

height of node = h
balance factor = hye-high
empty height = -1

4/4/2017 11

Node Heights after Insert 7

Tree A (AVL) Tree B (not AVL)

balance factor
1-(-1)=2

height of node = h
balance factor = hyeq-high
empty height = -1

4/4/2017 12

STUDENTS-HUB.com Uploaded By: anonymous6

Insert and Rotation in AVL
Trees

* Insert operation may cause balance factor
to become 2 or —2 for some node
» only nodes on the path from insertion point to
root node have possibly changed in height
» So after the Insert, go back up to the root
node by node, updating heights

» If a new balance factor (the difference h4-
hrigne) IS 2 Or =2, adjust tree by rotation around
the node

4/4/2017 13

Single Rotation in an AVL Tree

4/4/2017 14

STUDENTS-HUB.com Uploaded By: anonymous7

Insertions in AVL Trees

Let the node that needs rebalancing be a.

There are 4 cases:
Outside Cases (require single rotation) :
1. Insertion into left subtree of left child of a.
2. Insertion into right subtree of right child of a.
Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of a.
4. Insertion into left subtree of right child of a.

The rebalancing is performed through four
separate rotation algorithms.

4/4/2017 15

AVL Insertion: Outside Case

Consider a valid
AVL subtree

4/4/2017 16

STUDENTS-HUB.com Uploaded By: anonymous8

AVL Insertion: Outside Case

Inserting into X
destroys the AVL
property at node |

4/4/2017 17

AVL Insertion: Outside Case

PN

Do a “right rotation”

4/4/2017 18

STUDENTS-HUB.com Uploaded By: anonymous9

Single right rotation

Do a “right rotation”

4/4/2017 19

Outside Case Completed

“Right rotation” done!
(“Left rotation” is mirror
symmetric)

AVL property has been restored!

4/4/2017 20

STUDENTS-HUB.com Uploaded By: anonymou§O

AVL Insertion: Inside Case

Consider a valid
AVL subtree

4/4/2017

AVL Insertion: Inside Case

Does “right rotation”

Inserting into Y
restore balance?

destroys the
AVL property
at node |

4/4/2017

STUDENTS-HUB.com Uploaded By: anonymou§1

AVL Insertion: Inside Case

“Right rotation”
does not restore
balance... now Kk is
out of balance

4/4/12017 23

AVL Insertion: Inside Case

Consider the structure
of subtree Y...

4/4/2017 24

STUDENTS-HUB.com Uploaded By: anonymou§2

AVL Insertion: Inside Case

Y = node i and
subtrees V and W

4/4/2017 25

AVL Insertion: Jnside Case

p—

-
Ld 1

/ We will do a left-right
“‘double rotation” . . .

4/4/2017 26

STUDENTS-HUB.com Uploaded By: anonymou§3

Double rotation : first rotation

left rotation complete

4/4/2017 27

Double rotation : second

rotation

Now do a right rotation

4/4/2017 28

STUDENTS-HUB.com Uploaded By: anonymou§4

Double rotation : second
rotation

right rotation complete

Balance has been
restored

4/4/12017 29

Implementation

balance (1,0,-1)
key

left right

No need to keep the height; just the difference in height,
i.e. the balance factor; this has to be modified on the path of
insertion even if you don’t perform rotations

Once you have performed a rotation (single or double) you won’t
need to go back up the tree

4/4/2017 30

STUDENTS-HUB.com Uploaded By: anonymou%

Single Rotation

RotateFromRight (n : reference node pointer) ({
p : node pointer;

p := n.right; n

n.right := p.left;

p.left := n;

n :=p

}

You also need to
modify the heights

or balance factors Jnsert
of nand p
4/4/2017 31

Double Rotation

* Implement Double Rotation in two lines.

DoubleRotateFromRight (n : reference node pointer) {
227?27 n

}

{
é
ol

STUDENTS-HUB.com Uploaded By: anonymou%

Double Rotation

DoubleRotateFromRight (n : reference node pointer) {
RotateFromLeft (n.right) ; n
RotateFromRight (n) ;

} py
LA

4/4/2017 33

Insertion in AVL Trees

* Insert at the leaf (as for all BST)

» only nodes on the path from insertion point to
root node have possibly changed in height

» So after the Insert, go back up to the root
node by node, updating heights

» If a new balance factor (the difference h;.-
hiigny) IS 2 Or =2, adjust tree by rotation around
the node

4/4/2017 34

STUDENTS-HUB.com Uploaded By: anonymou%

Insert in BST

Insert (T : reference tree pointer, x : element) : integer {
if T = null then
T := new tree; T.data := x; return 1;//the links to

//children are null
case
T.data = x : return 0; //Duplicate do nothing
T.data > x : return Insert(T.left, x);
<

T.data x : return Insert(T.right, x);
endcase
}
4/4/2017 35
Insert (T : reference tree pointer, x : element) : {
if T = null then
{T := new tree; T.data := x; height := 0; return;}
case

T.data = x : return ; //Duplicate do nothing
T.data > x : Insert(T.left, x);
if ((height(T.left)- height (T.right)) = 2){
if (T.left.data > x) then //outside case
T = RotatefromLeft (T);

else //inside case
T = DoubleRotatefromLeft (T);}
T.data < x : Insert (T.right, x);
code similar to the left case

Endcase

T.height := max(height (T.left),height(T.right)) +1;

return;
}
4/4/2017 36

STUDENTS-HUB.com Uploaded By

: anonymous
18

Example of Insertions in an
AVL Tree

Insert 5, 40

4/4/2017 37

Example of Insertions in an
AVL Tree

4/4/2017 38

STUDENTS-HUB.com Uploaded By: anonymou§,9

Single rotation (outside case)

2

(30,
e ‘
Imbalance 1 @ p
O Now Insert 34

4/4/2017 39

Double rotation (inside case)

Insertion of 34 0

4/4/2017 40

STUDENTS-HUB.com Uploaded By: anonymougO

AVL Tree Deletion

» Similar but more complex than insertion

» Rotations and double rotations needed to
rebalance

» Imbalance may propagate upward so that
many rotations may be needed.

4/4/2017 41

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. Searchis O(log N) since AVL trees are always balanced.

2. Insertion and deletions are also O(logn)

3. The height balancing adds no more than a constant factor to the
speed of insertion.

Arguments against using AVL trees:

1. Difficult to program & debug; more space for balance factor.

2. Asymptotically faster but rebalancing costs time.

3. Most large searches are done in database systems on disk and use
other structures (e.g. B-trees).

4. May be OK to have O(N) for a single operation if total run time for
many consecutive operations is fast (e.g. Splay trees).

4/4/2017 42

STUDENTS-HUB.com Uploaded By: anonymoug1

