ENCS3340 - Artificial Intelligence

Learning from Observations Part 2

STUDENTS-HUB.com

Supervised Learning

2 - Learning Decision Trees

STUDENTS-HUB.com

Problem: **To Wait or not to Wait**: decide whether to wait for a table at a restaurant, based on the following attributes:

- **1. Alternate:** is there an alternative restaurant nearby?
- 2. Bar: is there a comfortable bar area to wait in?
- **3. Fri/Sat:** is today Friday or Saturday?
- **4. Hungry:** are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- **6. Price:** price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- **8. Reservation:** have we made a reservation?
- 9. Type: kind of restaurant (French, Italian, Thai, Burger)
- 10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Attribute-based Representations

- Examples described by attribute values (Boolean, discrete, continuous)
- E.g., situations where I will/won't wait for a table: T wait, F don't wait

Example	Attributes							Target			
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

- We are learning Attribute Wait
- Classification of examples on Wait is positive (T) or negative (F)

STUDENTS-HUB.com

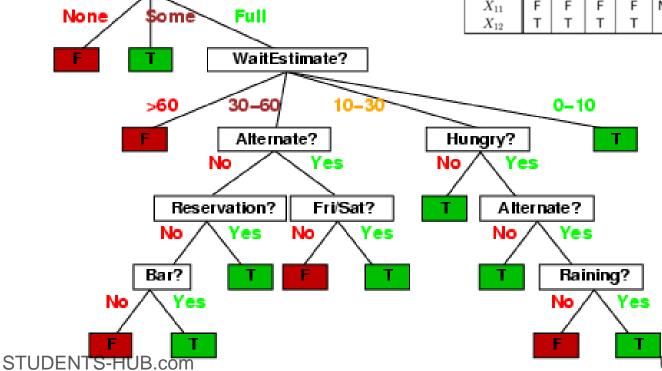
Uploaded By: Malak Da⁴ Obaid

Supervised Learning: Decision Trees

- DT: One possible representation for hypotheses
- E.g., here is the "true" tree for deciding whether to wait:

Patrons?

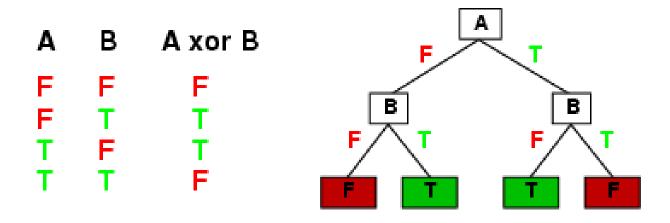
	Example	Attributes										Target
ן		Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
	X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
	X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
	X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
	X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
	X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
	X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
	X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
	X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
	X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
	X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
	X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
	X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т



Uploaded By: Malak Da⁵ Obaid

Expressiveness

- Decision trees can express any function of the input attributes.
- E.g., for Boolean functions, truth table row \rightarrow path to leaf:



- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples
- Generally, DT is not unique for a set of data

STUDENTS-HUB.com more compact decision trees

Uploaded By: Malak Da⁶ Obaid

How many distinct decision trees with *n* Boolean attributes?

= number of Boolean functions (Value: True or False, 1 or 0)

= number of distinct truth tables with 2^n rows = 2^{2n}

- E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees
- If variables are non_boolean: say 10 possibilities each: with n=6 such attributes, number of distinct values 10ⁿ :number of distinct truth tables with 10ⁿ rows = 10¹⁰ⁿ

How many distinct decision trees with *n* Boolean attributes?

- = number of Boolean functions
- = number of distinct truth tables with 2ⁿ rows = 2²ⁿ
- E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

<u>How many purely conjunctive hypotheses (e.g., *Hungry* ∧ ¬*Rain*)?</u>

- Each attribute can be in (positive), in (negative), or out
 ⇒ 3ⁿ distinct conjunctive hypotheses for n attributes
- More expressive hypothesis space
 - increases chance that target function can be expressed
 - increases number of hypotheses consistent with training set
 ⇒ may get worse predictions

Decision tree learning

- Aim: find a **small** tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default

else if all examples have the same classification then return the classification

else if attributes is empty then return MODE(examples)

else

best \leftarrow CHOOSE-ATTRIBUTE(attributes, examples)

tree \leftarrow a new decision tree with root test best

for each value v_i of best do

examples_i \leftarrow \{elements of examples with best = v_i\}

subtree \leftarrow DTL(examples_i, attributes - best, MODE(examples))

add a branch to tree with label v_i and subtree subtree

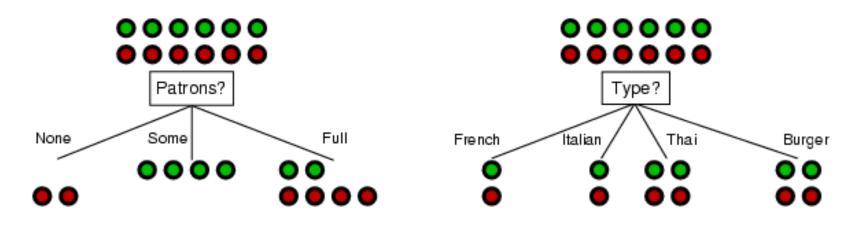
return tree
```

• Which attribute to choose? **Most discriminating**?

STUDENTS-HUB.com

Choosing an attribute

• Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative" for its values



- *Patrons?* is a better choice, Why?
- If we take Patrons: =none: Red, Some: Green, Full: Red (Why Red?). Errors: 2 out of 12=1/6 (on value=full).
- If we take Type: =French: Red, Italian: Green, Thai: Red, Burger: Red Errors: 6 out of 12=1/2 (on all values).

STUDENTS-HUB.com

Using information theory

- To implement Choose-Attribute in the DTL algorithm
- Information Content (Entropy):

$$I(P(v_1), ..., P(v_n)) = \Sigma_{i=1} - P(v_i) \log_2 P(v_i)$$

 For a training set containing p positive examples and n negative examples:

$$I(\frac{p}{p+n},\frac{n}{p+n}) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

Here: p=6, n=6; p/(n+p)=1/2; n/(n+p)=1/2; I(1/2,1/2)=1/2+1/2=1bit If p=3, n=9; p/(n+p)=1/4; n/(n+p)=3/4; I(1/4,3/4)=1/4*2+3/4*.4=0.8bit

STUDENTS-HUB.com

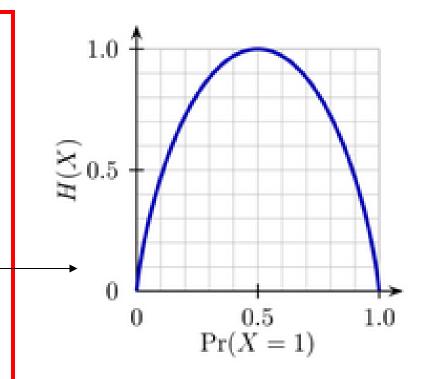
Using information theory

• Entropy measures the amount of uncertainty in a probability distribution:

Consider tossing a biased coin. If you toss the coin VERY often, the frequency of heads is, say, p, and hence the frequency of tails is 1-p. (fair coin p=0.5).

The uncertainty in any actual outcome is given by the entropy:

Note, the uncertainty is zero if p=0 or 1 and maximal if we have p=0.5.

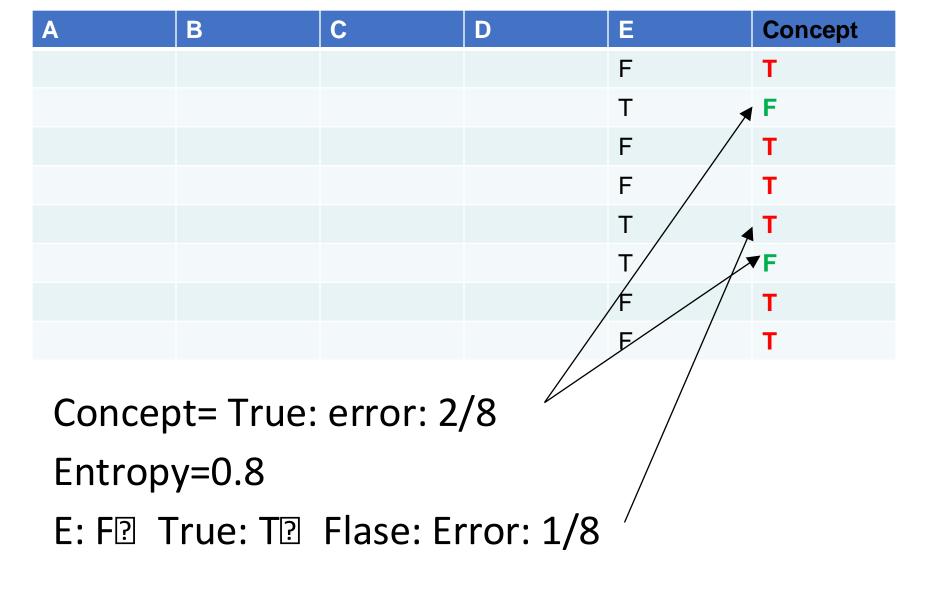


Information gain

• A chosen attribute A divides the training set E into subsets E_1, \dots, E_v according to A values, where A has v distinct values.

remainder(A) =
$$\sum_{i=1}^{v} \frac{p_i + n_i}{p + n} I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

- Defines how discriminating this Attribute is
- Information Gain (IG)/reduction in entropy from the attribute test: $IG(A) = I(\frac{p}{p+n}, \frac{n}{p+n}) - remainder(A)$
- IG: entropy of the parent weighted sum of entropy of children
- Defines difference (improvement) in discrimination between the **Learned attribute** and the **tested attribute**.
- Choose the attribute with the largest IG STUDENTS-HUB.com



Information gain: example

$$I(\frac{p}{p+n},\frac{n}{p+n}) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

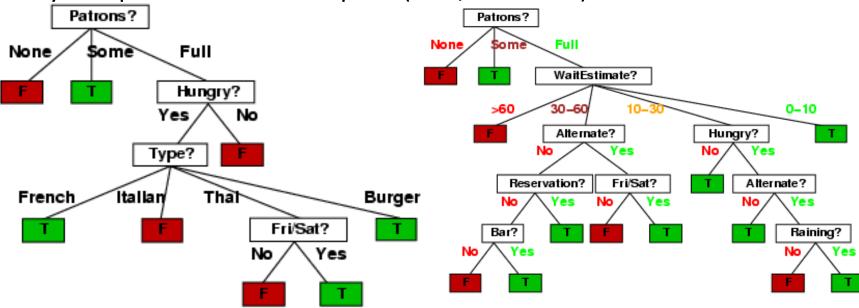
- For the training set, *p* = *n* = 6, *l*(6/12, 6/12) = 1 bit
- Consider the attributes *Patrons* and *Type* (and others too):

$$remainder(A) = \sum_{i=1}^{v} \frac{p_i + n_i}{p + n} I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}) \quad IG(A) = I(\frac{p}{p + n}, \frac{n}{p + n}) - remainder(A)$$
$$IG(Patrons) = 1 - \left[\frac{2}{12}I(0,1) + \frac{4}{12}I(1,0) + \frac{6}{12}I(\frac{2}{6}, \frac{4}{6})\right] = .0541 \text{ bits}$$

- $IG(Type) = 1 [\frac{2}{-1}I(\frac{1}{-1}, \frac{1}{-1}) + \frac{2}{-1}I(\frac{1}{-1}, \frac{1}{-1}) + \frac{4}{-1}I(\frac{2}{-1}, \frac{2}{-1}) + \frac{4}{-1}I(\frac{2}{-1}, \frac{2}{-1})] = 0 \text{ bits}$ • Do that for all 1012 Assume Paterons has the highest IG by all attributes and so
- is chosen by the DTL algorithm as the root

DT Example: contd.

- Decision tree learned from the 12 examples: tested 10 attributes, Started with Patrons, Then tested 9: Hungry,...
- Always Stop when leaves are pure (all T/all F here)



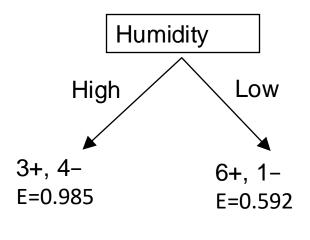
- Substantially simpler than "true" tree. Less leaves also.
- a more complex hypothesis isn't justified by small amount of data STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

DT Example2: To Play or Not to Play

• 14 examples, 4 attributes, Yes/No Concept

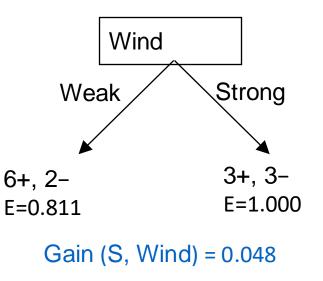
	Day	Outlook	Temp	Humidity	Wind	Tennis
						?
	<i>D1</i>	Sunny	Hot	High	Weak	No
	<i>D</i> 2	Sunny	Hot	High	Strong	No
	<i>D3</i>	Overcast	Hot	High	Weak	Yes
	D4	Rain	Mild	High	Weak	Yes
	D5	Rain	Cool	Normal	Weak	Yes
	<i>D6</i>	Rain	Cool	Normal	Strong	No
	<i>D</i> 7	Overcast	Cool	Normal	Strong	Yes
	<i>D</i> 8	Sunny	Mild	High	Weak	No
	D9	Sunny	Cool	Normal	Weak	Yes
	D10	Rain	Mild	Normal	Weak	Yes
	D11	Sunny	Mild	Normal	Strong	Yes
	D12	Overcast	Mild	High	Strong	Yes
	D13	Overcast	Hot	Normal	Weak	Yes
STUDENTS-HUB.	D14	Rain	Mild	High	Strong	Uploaded B

9+, 5- E=0.940



Gain (S, Humidity) = 0.151

9+, 5- E=0.940

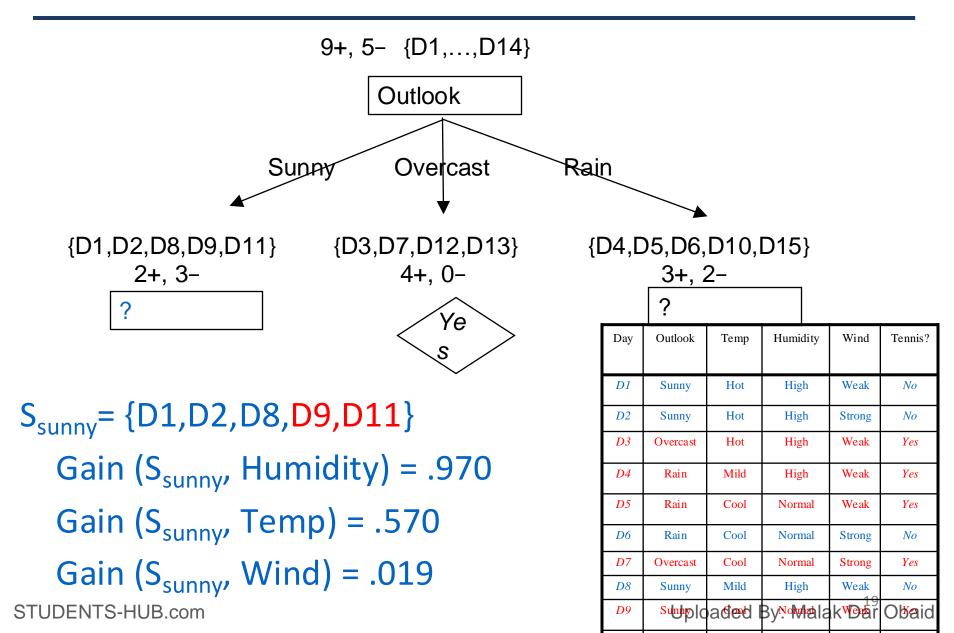


Gain (S, Outlook) = 0.246

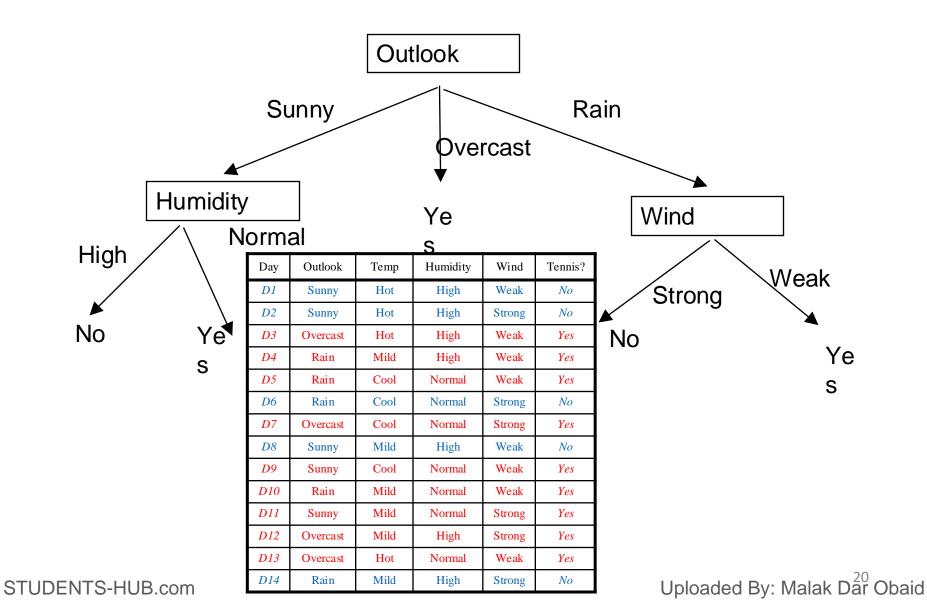
Gain (S, Temp) = 0.029

STUDENTS-HUB.com

Sort the Training Examples



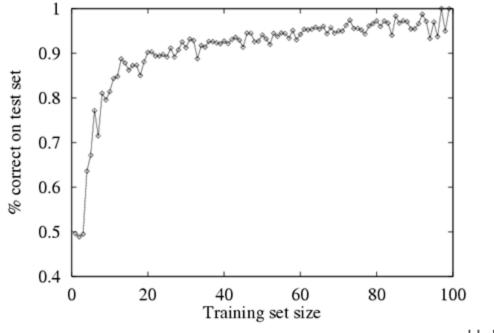
Final Decision Tree for Example



- How do we know that h ≈ f?
 - Use theorems of computational/statistical learning theory
 - Try *h* on a new test set of examples

(use same distribution over example space as training set)

Learning curve = % correct on test set as a function of training set size



STUDENTS-HUB.com

- Holdout set: the available dataset *D* is divided into two disjoint subsets,
 - the *training set* D_{train} (for learning a model)
 - the *testing set* D_{test} (for testing the model)
- Important: training set should not be used in testing and the test set should not be used in learning.
 - unseen test set provides a unbiased estimate of accuracy.
- The test set is also called the holdout set (the examples in the original dataset *D* are all labeled with classes).
- This method is mainly used when the dataset *D* is large

Given 120 examples: Holdout: 25%:75% (30:90) or 50%:50% (60:60) or **34%:66% (40:80) usual [one test, random]**

STUDENTS-HUB.com

Evaluation methods (Cont.)

- n-fold cross-validation: the evaluation data is partitioned into n equalsize disjoint subsets.
- Use each subset as the test set and combine the rest *n*-1 subsets as the training set to learn a classifier.
- The procedure is run *n* times, which give *n* accuracies.
- The final estimated accuracy of learning is the average of the *n* accuracies.
- 10-fold and 5-fold cross-validations are commonly used.
- This method is used when the available data is not large.

Consider our 12 example: 6 fold: 6x2:

- S1: Test {1,2}, Training{3,4,...12}, S2: Test {3,4}, Training{1,2,5,6,...12}, S3: Test {5,6}, Training{1-4,7,8-12}, S4: Test {7,8}, Training{1-6,9-12},
- S5: Test {9,10}, Training{1-8,11,12}, S6: Test {11,12}, Training{1-10}.
- Each can have: 100% success, 0% success, 50% success: average=?

STUDENTS-HUB.com! 0 6 runs, 12 tests, 8 correct: success=8/12 Uploaded By: Malak Dar Obaid

Evaluation methods (Cont.)

- Leave-one-out cross-validation: This method is used when the dataset is very small.
- It is a special case of cross-validation.
- Each fold of the cross validation has only a single test example and all the rest data is used in training.
- If the original data has m examples, this is m-fold cross-validation.

Given total of 12 examples: [12 tests, 12 runs]: each success or fail: 8 fails: accuracy: 4/12

Evaluation methods (Cont.)

- Validation set: the available data is divided into three subsets,
 - a training set,
 - validation set and
 - a test set
- A validation set is used frequently for estimating parameters in learning algorithms.
- In such cases, the values that give the best accuracy on the validation set are used as the final parameter values.
- cross-validation can be used for parameter estimating as well

STUDENTS-HUB.com

Evaluation: Classification measures

- Accuracy is only one measure (error = 1-accuracy).
- Accuracy is not suitable in some applications.
- In text mining, we may only be interested in the documents of a particular topic, which are only a small portion of a big document collection.
- In classification involving skewed or highly imbalance data, e.g., network intrusion and financial fraud detection, we are interested only in the minority class.
 - High accuracy does not mean any intrusion is detected.
 - E.g., 1% intrusion. Achieve 99% accuracy by doing nothing.
- The class of interest is commonly called the positive class, and the rest negative classes.

Evaluation: Classification measures (Cont.)

- Accuracy is about correct answers.
- Go with the majority class to get it high: very high if negative class dominates: Web Search
- 1000K items, only 1K positive: All negative! 99.9%

- So need better measure: we classify to Positive (our class) and Negative (the rest):
- Some of the declared positive are really positive (TPV) and some are not (FP)
- Some of the declared negative are really negative (TNV) and some are not (FN)
- Really (actual) positive= TPV + FN
- Really (actual) negative= TNV + FP

Evaluation

- Database with 10 localities: 6 cities and 4 villages: Jaffa, Ramallah, Ram, Jerusalem, Hebron, Abu Qash, Birzeit, Surda, Jifna, Gaza
- Query: List **villages** in Palestine: RED: Actual Positive, Green?
- Answer (Positive): Abu Qash, Birzeit, Surda, Jifna, Gaza
 TP FP TP TP FP
- Not Village (negative) by default: implicit not listed!: Jaffa, Ramallah, Ram, Jerusalem, Hebron, TN TN FN TN TN TN
- How many errors made? 3/10
- If we always return all as cities: error =4/10
- If we always return all as Villages: error =6/10 (majority rule)
- What if: 1000 localities, all villages but only 10 cities!

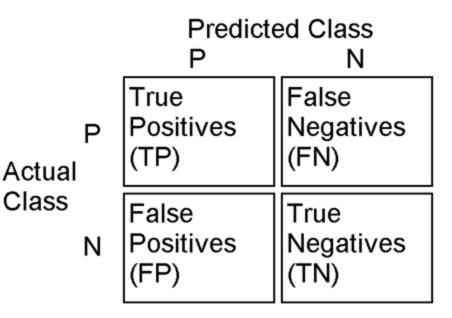
STUDENTS-HUB.com

Evaluation: Precision and recall measures

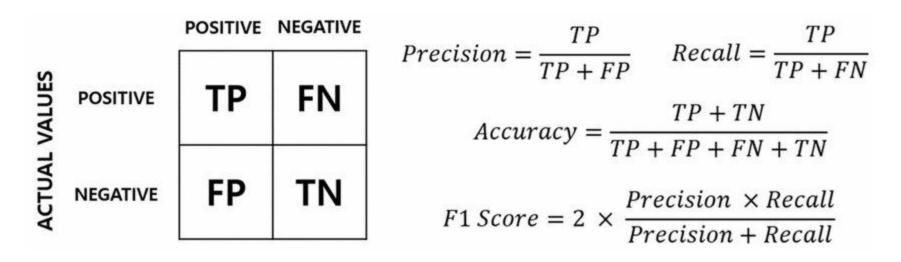
- Used in information retrieval and text classification.
- We use a confusion matrix to introduce them.

Where,

- → TP: true positive, the number of correct classifications of the positive examples
- → FN: false negative, the number of incorrect classifications of the positive examples
- → FP: false positive, the number of incorrect classifications of the negative examples
- → TN: true negative, the number of correct classifications of the negative examples STUDENTS-HUB.com



Evaluation: precision and recall measures (Cont.)

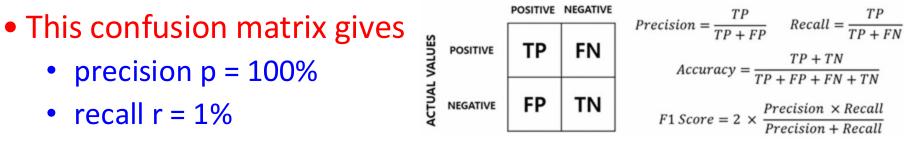


Precision *p* is the number of correctly classified positive examples divided by the total number of examples that are classified as positive.

Recall *r* is the number of correctly classified positive examples divided by the total number of actual positive examples in the test set.

Accuracy Acc is the number of correctly classified **positive and negative** examples divided by the total number of examples in the test set. STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

	Classified Positive	Classified Negative
Actual Positive	1	99
Actual Negative	0	1000



because we only classified one positive example correctly and no negative examples wrongly.

- Note: precision and recall only measure classification on the positive class.
- Accuracy= (TP+TN)/(TP+FP+TN+FN)=(1+1000)/1100=0.90

STUDENTS-HUB.com

Evaluation: An example (Cont.)

- Can have high accuracy and recall separately easily:
 - Declare all positive: 100% r, low p
 - Declare all negative: 0 recall, High p Need a composite measure:
 - F measure: 1/F=1/2(1/p+1/r) =1/2((p+r)/p*r) =(p+r)/2p*r? F=2*p*r/(p+r)

- F1-value (also called F1-score)
- It is hard to compare two classifiers using two measures. F1-score combines precision and recall into one measure $F1 Score = \frac{2 \times Precision \times Recall}{Precision \times Recall}$

Precision + Recall

F1-score is the harmonic mean of precision and recall

$$\mathbf{F1 \ Score} = \frac{2}{\left(\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}\right)}$$

- The harmonic mean of two numbers tend to be close to the smaller of the two
- For F1-value to be large, both p and r must be large

STUDENTS-HUB.com

Examples

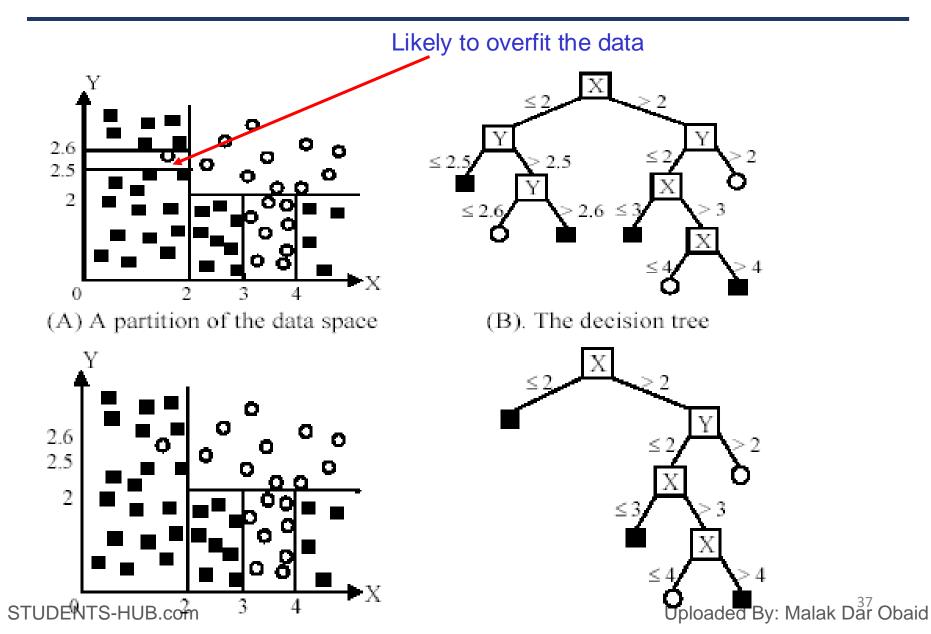
- p=1, r=0, F1=0/1=0
- p=0, r=1, F1=0/1=0
- p=1, r=1, F1=2/2=1
- p=1/2, r=1/2, F1=(1/2)/1=1/2
- p=0.8, r=0.8, F1=1.28/1.6=0.8
- p=0.2, r=0.8, F1=0.32/1=0.32
- p=0.2, r=0.1, F1=.04/0.3=0.13

STUDENTS-HUB.com

Avoid overfitting in classification

- Ideal goal of classification: Find the simplest decision tree that fits the data and **generalizes** to unseen data
- Overfitting: A tree may overfit the training data
 - Good accuracy on training data, poor on test data
 - Symptoms: tree too deep and too many branches, some may reflect anomalies due to noise or outliers
 - Overfitting results in decision trees that are more complex than necessary
 - Trade-off: full consistency for compactness
 - Larger decision trees can be more consistent
 - Smaller decision trees generalize better

An example



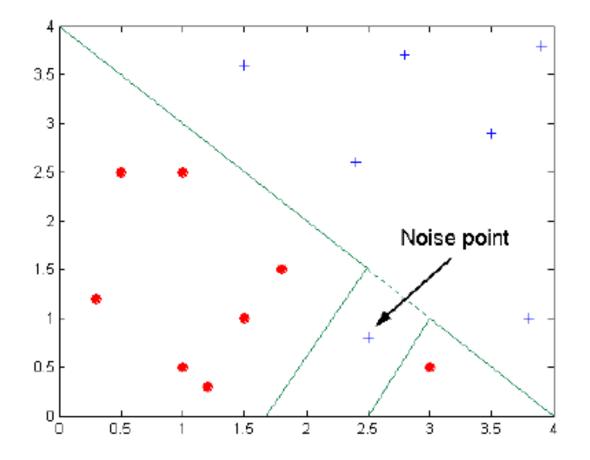
Simple Boolean Example

#	Α	В	С	D	F
1	0	0	1	0	т
2	0	0	0	1	т
3	0	0	1	1	т
4	0	0	0	0	TD F
5	1	1	1	1	F
6	1	1	0	1	F
7	1	1	1	0	F T

- The function=F=A'
- Change 4 to F: F= A' and B'
- Change 7 to T: F= ??

STUDENTS-HUB.com

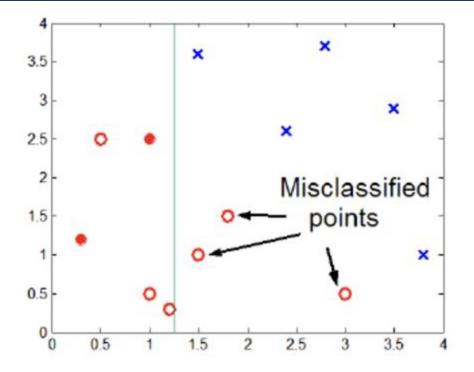
Overfitting due to Noise



Decision boundary is distorted by noise point

STUDENTS-HUB.com

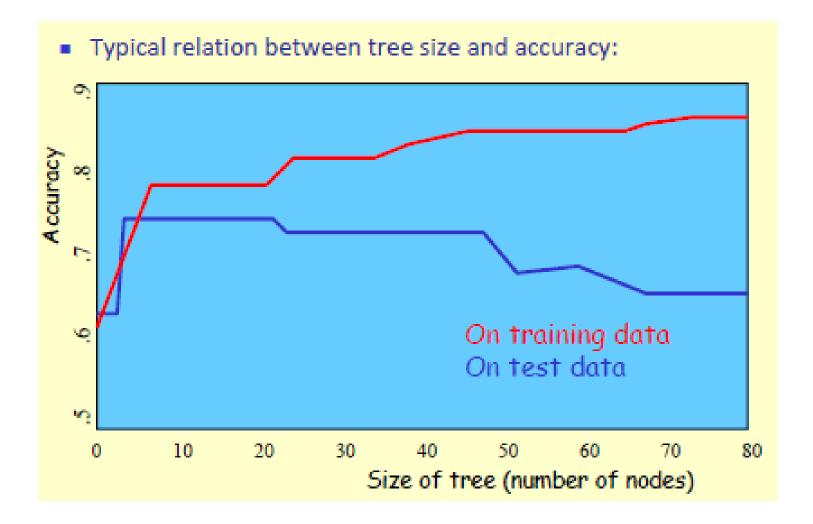
Overfitting due to Insufficient Examples



Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

 Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

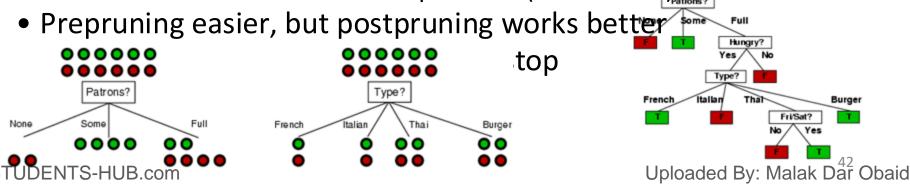
Overfitting and accuracy



STUDENTS-HUB.com

Pruning to avoid overfitting

- Prepruning: Stop growing the tree when there is not enough data to make reliable decisions or when the examples are acceptably homogenous (ID3)
 - Do not split a node if this would result in the goodness measure falling below a threshold (e.g. InfoGain)
 - Difficult to choose an appropriate threshold
 - Since we use a hill-climbing search, looking only one step ahead, prepruning might stop too early.
- **Postpruning**: Grow the full tree, then remove nodes for which there is not sufficient evidence (C4.5)
 - Replace a split (subtree) with a leaf if the *predicted validation error is* no worse than the more complex tree (use dataset)



- Advantages:
 - Easy to understand (Doctors love them!)
 - Easy to generate rules
- Disadvantages:
 - May suffer from overfitting.
 - Classifies by rectangular partitioning (so does not handle correlated features very well).
 - Can be quite large pruning is necessary.
 - Does not handle streaming data easily

Supervised Learning

Thomas Bayes 1702 - 1761 STUDENTS-HUB.com 3 - Naïve Bayes Classifier

Kolmogorov showed that three simple axioms lead to the rules of probability theory

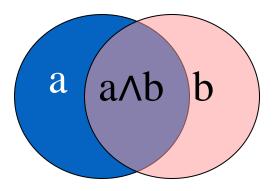
1.All probabilities are between 0 and 1:

 $0 \leq P(a) \leq 1$

1.Valid propositions (tautologies) have probability 1, and unsatisfiable propositions have probability 0:

P(true) = 1; P(false) = 0

1. The probability of a disjunction is given by: $P(a \lor b) = P(a) + P(b) - P(a \land b)$



- Random variables
 - Domain
- Atomic event: complete specification of state
- Prior probability: degree of belief without evidence
- Joint probability: matrix of combined probabilities of a set of variables

- Alarm, Burglary, Earthquake
- Boolean, discrete, continuous
- Alarm=T∧Burglary=T∧Earthquake=F alarm ∧ burglary ∧ ¬earthquake
 - P(Burglary) = 0.1
 P(Alarm) = 0.19
 P(earthquake) = 0.000003
 - P(Alarm, Burglary) =

	alarm	¬alarm
burglary	.09	.01
¬burglary	.1	.8

				alarm	¬alarm		
Probability Cont.			burglary	.09	.01		
			¬burglary	.1	.8		
 Conditional probability: prob. of effect given causes 			glary alar m burgla	-	7		
 Computing conditional probs: a given b (evidence) P(a b) = P(a ∧ b) / P(b) P(b): normalizing constant- 		■ P(burg P(burg	rglary alarm) = urglary / alarm) / P(alarm) 09/.19 = .47				
known		P(burgla	iry ∧ alarm) =			
• Product rule:		P(burglary alarm) * P(a					
 P(a ∧ b) = P(a b) * P(b) 	= .47 * .19 = .09						
 P(a ∧ b) = P(b a) * P(a) 							
	•	P(alarm)) = P(alarm	∧ burgl	ary) +		
		P(alarm) = P(alarm	A burgl	ary) +		

- P(a | b) * P(b)=P(b | a) * P(a)
- P(a | b) = P(b | a) * P(a)/* P(b)

P(alarm) = P(alarm \land burglary) + P(alarm $\land \neg$ burglary) = .09+.1 = .19

P(burglary) = P(alarm ∧ burglary) + P(¬ alarm ∧burglary) = .09+.01 = .1

Probability Basics

- **Prior**, **conditional** and **joint** probability for random variables
 - Prior probability: P(X)
 - Conditional probability: $P(X_1|X_2), P(X_2|X_1)$
 - Joint probability: $\mathbf{X} = (X_1, X_2), P(\mathbf{X}) = P(X_1, X_2)$
 - Relationship: $P(X_1, X_2) = P(X_2 | X_1)P(X_1) = P(X_1 | X_2)P(X_2)$
 - Independence: $P(X_2 | X_1) = P(X_2), P(X_1 | X_2) = P(X_1), P(X_1, X_2) = P(X_1)P(X_2)$ Bayesian Rule: *Recall*: $P(a \land b) = P(a | b) * P(b), P(a \land b) = P(b | a) * P(a)$
- P(a | b) * P(b) = P(b | a) * P(a); P(a | b) = P(b | a) * P(a)/ * P(b); a=C, b=X,

$$P(C \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid C)P(C)}{P(\mathbf{X})} \quad Posterior = \frac{Likelihood \land Prior}{Evidence}$$

P(Swede | Blonde) = P(Blonde | Swede) * P(Swede) / P(Blonde)

Hi (relatively) 70% swedes blonde .008 swedes 10% Blonde =0.7*0.008/0.1=0.7*0.08=0.056

STUDENTS-HUB.com

 $P(C \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid C)P(C)}{P(\mathbf{X})}$ $P(a \land b) = P(a \mid b) * P(b) = P(b \mid a) * P(a)$ P(a|b)=P(b|a)P(a)/p(b) Let C-Class (country), X-Observation-Blonde You saw a Blonde : what is the nationality? Choices: SW, SA, US 10% of world population are Blonde P(Blonde)=0.1 70% Swedes: Blonde; .008 world population are Swedes: P(Swede)=.008 P(Swede| Blonde)=P(Blonde |Swede)*P(Swede)/P(Blonde) =0.7*0.008 /0_1= 0.056 Relatively Hi! 10% SA : Blonde, 0.016 world population are SA P(SA|Blonde)=P(Blonde|SA)*P(SA)/P(Blonde) 0.1 *0.016/0.1=0.1*0.16 **Contemporal Relatively** low 50% USA: Blonde, 0.03 world population are USA P(USA|Blonde)=P(Blonde|USA)*P(USA)/P(Blonde) =0.5*0.03/0.1=0.5*0.3=0.15 Real Hi What if Blonde, Height, Language,...? Do we need to divide by 0.1 Uploaded By: Malak Dar Obaid STUDENTS-HUB.com

Probabilistic Classification

- Establishing a probabilistic model for classification
 - Discriminative model

$$P(C|\mathbf{X}) \quad C = c_1, \dots, c_L, \mathbf{X} = (X_1, \dots, X_n)$$

$$P(c_1 | \mathbf{x}) \quad P(c_2 | \mathbf{x}) \quad P(c_L | \mathbf{x})$$

$$\mathbf{Discriminative}$$

$$Probabilistic$$

$$Classifier$$

$$\mathbf{X}_1 \quad \mathbf{X}_2 \quad \mathbf{X}_n$$

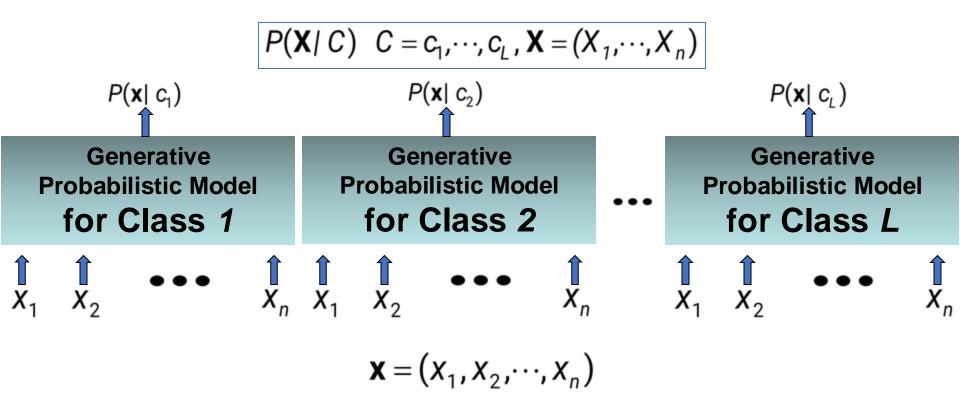
$$\mathbf{x} = (X_1, X_2, \dots, X_n)$$

Uploaded By: Malak Dar Obaid

STUDENTS-HUB.com

Probabilistic Classification

- Establishing a probabilistic model for classification (cont.)
 - Generative model



STUDENTS-HUB.com

- MAP classification rule
 - MAP: Maximum A Posteriori
 - Assign example x to class (category, concept) c* if

$$P(C = c^* | \mathbf{X} = \mathbf{x}) > P(C = c | \mathbf{X} = \mathbf{x}) \quad c \neq c^*, \ c = c_1, \dots, c_L$$

- Generative classification with the MAP rule
 - Apply Bayesian rule to convert them into posterior probabilities

$$P(C = c_i | \mathbf{X} = \mathbf{x}) = \frac{P(\mathbf{X} = \mathbf{x} | C = c_i)P(C = c_i)}{P(\mathbf{X} = \mathbf{x})}$$
$$\propto P(\mathbf{X} = \mathbf{x} | C = c_i)P(C = c_i)$$
for $i = 1, 2, \dots, L$

Uploaded By: Malak Dar Obaid

• Then apply the MAP rule

STUDENTS-HUB.com

• Bayes classification $P(C \mid \mathbf{X}) \propto P(\mathbf{X} \mid C)P(C) = P(X_1, \dots, X_n \mid C)P(C)$

Difficulty: learning the joint probability

 $P(X_1, \dots, X_n | C)$

- Naïve Bayes classification
 - Assumption that all input features are conditionally independent!
 - Recall: $P(X_1, X_2) = P(X_2 | X_1)P(X_1) = P(X_1 | X_2)P(X_2)$

$$P(X_1, X_2, \dots, X_n | C) = \overline{P(X_1 | X_2, \dots, X_n, C)P(X_2, \dots, X_n | C)}$$

=
$$P(X_1 | C)\overline{P(X_2, \dots, X_n | C)}$$

=
$$P(X_1 | C)\overline{P(X_2 | C) \dots P(X_n | C)}$$

 $[P(x_1 | c^*) \cdots P(x_n | c^*)]P(c^*) > [P(x_1 | c) \cdots P(x_n | c)]P(c), \quad c \neq c^*, c = c_1, \cdots, c_L$

STUDENTS-HUB.com

- Algorithm: Discrete-Valued Features
 - Learning Phase: Given a training set S of F features and L classes,

For each target value of $c_i (c_i = c_1, \dots, c_L)$

 $\hat{P}(C = c_i) \leftarrow \text{estimate } P(C = c_i) \text{ with examples in } \mathbf{S};$

For every feature value x_{jk} of each feature X_j $(j = 1, \dots, F; k = 1, \dots, N_j)$

 $\hat{P}(X_j = x_{jk} | C = c_i) \leftarrow \text{estimate } P(X_j = x_{jk} | C = c_i) \text{ with examples in } \mathbf{S};$

Output: F * L conditional probabilistic (generative) models

- Test Phase: Given an unknown instance $\mathbf{X}' = (a'_1, \dots, a'_n)$ "Look up tables" to assign the label c^* to \mathbf{X}' if $[\hat{P}(a'_1 \mid c^*) \cdots \hat{P}(a'_n \mid c^*)]\hat{P}(c^*) > [\hat{P}(a'_1 \mid c) \cdots \hat{P}(a'_n \mid c)]\hat{P}(c), \ c \neq c^*, c = c_1, \dots, c_n$

STUDENTS-HUB.com

Naïve Bayes	PlayTennis: training examp				
	Day	Outlook	Temperature	Humidity	Wind
	D1	Sunny	Hot	High	Weak
	D2	Sunny	Hot	High	Strong
	D3	Overcast	Hot	High	Weak
We want to find the class (Class) given		Rain	Mild	High	Weak
the features (feature)	D5	Rain	Cool	Normal	Weak
	D6	Rain	Cool	Normal	Strong
	D7	Overcast	Cool	Normal	Strong
	D8	Sunny	Mild	High	Weak
$D(Class \mid footuno)$	D9	Sunny	Cool	Normal	Weak
P(Class feature)	D10	Rain	Mild	Normal	Weak
	D11	Sunny	Mild	Normal	Strong
	D12	Overcast	Mild	High	Strong
Using Bayes rule	D13	Overcast	Hot	Normal	Weak
	D14	Rain	Mild	High	Strong

PlayTennis

No

No Yes

Yes

Yes

No

Yes

No

Yes Yes

Yes

Yes

Yes No

$$P(Class \mid feature) = \frac{P(feature \mid Class) \times P(Class)}{P(feature)}$$

From the table, we will count the number of events for the **class** and each **attribute/class** combination

Feature is a vector!!! Not only **blonde** as earlier, instead:

outlook, humidity, temperature, wind

Note: When selecting examples: we have control over class, not care about in dividual attribute values!!! Uploaded By: Malak Dar Obaid

Example

- Example: Play Tennis:
- Our class:
- C1:Play= yes
- C2:Play= No

- P(*Play=yes*)= 9/14
- P(*Play=No*)= 5/14

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

STUDENTS-HUB.com

Outlook	Tem	oerature	Humidity	Wind	PlayTennis
Sunny*	Hot		High	Weak	No
Sunny*					No
Overcast**	Hot	Outlook	Play=Yes	Play=No	Yes
Rain***	Mild		High	Weak	Yes
Rain***	Cool	Sunny	Nom2/9	Wea3/5	Yes
Rain**	Cool		Normal	Strong	No
Overcast**	Cool	Overcast	Nom 4/9	Stroi0/5	Yes
Sunny*	Mild	Rain	High	Weak	No
Sunny*	Cool	Kuin	3/9	2/5	Yes
Rain***	Mild		Normal	Weak	Yes
Sunny*	Mild		Normal	Strong	Yes
Overcast**					Yes
Overcast**	Hot		Normal	Weak	Yes
Rain** DENTS-HUB.com	Mild		High	Strong	No Jploaded By: Malak

Outlook	Temperati	ure Humi	dity	Wind		PlayTennis
	Hot	High		Weak		No
	Hot					No
	Hot	High		Weak		Yes
	Mild	Temperatur	Play=Y	esNeaPl	ay=No	Yes
	Cool	e Norm	al	Weak		Yes
	Cool	Hot	2/9	Strong	2/5	No
	Cool	Mild _{iorm}	4/9	Strong	2/5	Yes
	Mild	Coolligh	3/9	Weak	1/5	No
	Cool	Norm	al	Weak		Yes
	Mild					Yes
	Mild					Yes
	Mild					Yes
	Hot	Norm		Weak		Yes
UDENTS-HUB	Mild .com				Uploade	No d By: Malak Dar O

Outlook	Temperatu	re	Humidity	Wind	PlayTennis
Sunny			High	Weak	No
Sunny			High		No
Overcast			High	Weak	Yes
Rain	Mild		High	Weak	Yes
Humidity	Play=Yes	Play=No	Normal	Weak	Yes
Rain _{High}	3/9	4/5	Normal		No
Normal			Normal	Strong	Yes
Sunny	6/9	1/5] _{High}		No
Sunny			Normal	Weak	Yes
			Normal		Yes
Sunny			Normal	Strong	Yes
			High		Yes
Overcast			Normal	Weak	Yes
ITS-HUB.com			High	Strong Up	No Noaded By: Malał

Outlook	Temperature	Humidity	Wind	PlayTennis
Sunny	Hot	High	Weak	No
			Strong	No
Overcast	Hot	High	Weak	Yes
			Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain Wind	l _{Co} Play=Yes	Play=No	Strong	No
Ch en Strong	3 Cipol 3/9	3/5ma	Strong	Yes
SunnyWeak	M Id 6/9	2/5	Weak	No
Sunny	Cool	Normal	Weak	Yes
			Weak	Yes
Sunny	Mild	Normal	Strong	Yes
			Strong	Yes
Overcast	Hot	Normal	Weak	Yes
NTS-HUB.com			Strong	Uploaded By: Malal

Obaid

Example (Cont.) - Learning Phase

1						
	Outlook	P1	ay=Ye	Pla	ay=No	
		S			5	
	Sunny	2/9			3/5	
	Overcast	4/9			0/5	
	Rain	3/9			2/5	
	Humidit	у	Play=`	Y es	Play=	No
	High		3/9		4/5	
	Normal	6/9			1/5	

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

P(Play=Yes) = 9/14P(Play=No) = 5/14*P*(Wind=Strong/Play=*No*) = 2/93/5

P(Outlook=Sunny/Play=Yes) =

What if we have 4 classes: C0-C3? [play = yes/no/maybe/NoRec What if we had 10 attributes: A0-A9? [Add: sick, court_ready, fee,..] Uploaded By: Malak Dar Obaid STUDENTS-HUB.com

Example (Cont.) - Test Phase

 Given a new instance, predict its label: x'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong) We compute: (Remember: Naiveté: independence): P(Play=Yes|Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)= P(Play=Yes|Outlook=Sunny)*P(Play=Yes|Temperature=Cool)* P(Play=Yes|Humidity=High)*P(Play=Yes|Wind=Strong)

P(Play=No|Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)= P(Play=No|Outlook=Sunny)*P(Play=No|Temperature=Cool)* P(Play=No|Humidity=High)*P(Play=No|Wind=Strong)

 $P(C \mid \mathbf{X}) \propto P(\mathbf{X} \mid C) P(C) = P(X_1, \dots, X_n \mid C) P(C)$

 $P(Yes | \mathbf{x}') \approx [P(Outlook=Sunny | Play=Yes)*P(Temperature=Cool | Play=Yes)*$ P(Humidity=High | Play=Yes)*P(Wind=Strong | Play=Yes)]*P(Play=Yes) $P(No | \mathbf{x}') \approx [P(Sunny | Play=No) *P(Cool | Play=No)*P(High | Play=No)*$ P(Strong | Play=No)]*P(Play=No)]*P(Play=No) P(Strong | Play=No)]*P(Play=No)]*P(Play=No)

Example (Cont.) - Test Phase						Pla	ny=Yes Play		No
Humidity	Play=Yes	Play=No			Sunny		2/9	3/5	5
High	3/9	4/5			Overcast	4	4/9	0/5	5
Normal	6/9	1/5			Rain	3	3/9	2/5	5
 Given a new instance, predict its label 									
x'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)									
 Look up tables achieved in the learning phrase]	Гетрегаt ure	Play= Yes	Play=
$P(Outlook=Sunny Play=Yes) = 2/9 \qquad P(Outlook=Sunny Play=No) = 3/5$							Hot	2/9	2/5
P(Temperature=Cool Play=Yes) = P(Temperature=Cool Play==No)						1/5	Mild	4/9	2/5
3/9 P(Huminity= <i>High</i> Play= <i>No</i>) = 4							Cool	3/9	1/5
P(Huminity=High Play=Yes) = 3/9 $P(Wind=Strong Play=No) = 3/5$									
$P(Wind=Strong Play=Yes) = 3/9 \qquad P(Play=No) = 5/14$					•	Wind	nd Play= Yes		Play=No
P(Play=Yes) = 9/14						Strong	3/9		3/5
					F	Weak	6/	9	2/5

$$\begin{split} & P(Yes \mid \mathbf{x}') \approx [P(Sunny \mid Yes)P(Cool \mid Yes)P(High \mid Yes)P(Strong \mid Yes)]P(Play=Yes) = 0.0053 \\ & P(No \mid \mathbf{x}') \approx [P(Sunny \mid No) \ P(Cool \mid No)P(High \mid No)P(Strong \mid No)]P(Play=No) = 0.0206 \end{split}$$

Given the fact $P(Yes | \mathbf{x}') < P(No | \mathbf{x}')$, we label \mathbf{x}' to be "No". STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Advantages/Disadvantages of Naïve Bayes

- Advantages:
 - Fast to train (single scan). Fast to classify
 - Not sensitive to irrelevant features
 - Handles real and discrete data
 - Handles streaming data well
- Disadvantages:
 - Assumes independence of features