th *1'_{::1-'

M
BIRZEIT UNlUERSlT"I’

Thinking
in Objects

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc_ All

https://students-hub.com

Class Abstraction and Encapsulation

¢ Class abstraction means to separate class
implementation from the use of the class.

** The creator of the class provides a description of the
class and let the user know how the class can be used.

¢ The user of the class does not need to know how the
class is implemented.

¢ The detail of implementation is encapsulated and
hidden from the user.

Class implementation
is like a black box Class Contract Clients use the

hidde? from the (Signatures of public class through
clients

methods and public the contract of

% constants) the class
STU -HUB.com

https://students-hub.com

Case Study: The BMI Class

STUDE 3

B.col

BMI

-name: String
-age: int
-weight: double
-height: double

+BMI(name: String, age: int, weight:

double, height: double)

+BMI(name: String, weight: double,
height: double)

+getBMI(): double
+getStatus(): String

¢ get methods for these data fields are
provided in the class, but omitted in the
UML diagram for brevity.

The name of the person.

The age of the person.

The weight of the person in pounds.
The height of the person in inches.

Creates a BMI object with the specified
name, age, weight, and height.
Creates a BMI object with the specified

name, weight, height, and a default age
20,

Returns the BMI

Returns the BMI status (e.g., normal,
overweight, efc.)

https://students-hub.com

Object Composition

% Aggregation models has-a relationships and represents

an ownership relationship between two objects.

T
its
0T

its

ass an aggregating class.

ass an aggregated class.

he owner object is called an aggregating object and

ne subject object is called an aggregated object and

** Composition is actually a special case of the aggregation
relationship.

STUiEﬁ!EBAcom

Composition

Name

N/

Aggregation

1..3

q Student |O

Address

https://students-hub.com

Class Representation

** An aggregation relationship is usually
represented as a data field in the aggregating class.

** For example, the relationship in the previous

Figure can be represented as follows:

public class Name |

t

STUiEﬁ!EBcom

public class Student |
private lame nane;
private Address address;

public class Address |

t

https://students-hub.com

Aggregation Between Same Class

*»» Aggregation may exist between objects of the

same class.

¢ For example, a person may have a supervisor:

1

Person [

. Supervisor

public class Person {

// The type for the data is the class itself

private Person supervisor;

STUiEE!EBcom

https://students-hub.com

Aggregation Between Same Class

*** What happens if a person has several

supervisors?

Person <>

- Supervisor

1

public class Person {

private Person[]| supervisors;

STUiEE!EBcom

https://students-hub.com

Example: The Course Class

Course

—courseName: String

-students:
-mmmber0fStudents:

Stringl]

int

+Coursef{courselName: String)

+getCourseNane () @ String

+addStudent (student: String):
+dropStudent{student: String) :

tgetStudents() @ Stringl]

tgetNumbe rOfStudents () ¢ 1nt

vold

vold

STUDE -HUB.com

Thename of th € course.
An array to store the students for the course.
The number of students {(default: 0).

Creates acoursewith the specified name.
Returns the coursename.

Adds anew student to the course.

Drops a student from the course.

Returns the students in the course.

Returns the number of students m the course

https://students-hub.com

Designing a Class

< (Coherence) A class should describe a
single entity, and all the class operations

should logica
coherent pur

ly fit together to support a
00oSe.

¢ You can use a class for students, for

example, but

yvou should not combine

students and staff in the same class, because

students and

STUiEﬁ!EBcom

staff have different entities.

https://students-hub.com

Designing a Class cont.

< (Separating responsibilities) A single entity

with too many responsibilities can be broken into

severa

 Examp

classes to separate responsibilities.

e: the classes String, StringBuilder, and

StringBuffer all deal with strings, for example, but have
different responsibilities:

= String class deals with immutable strings.

= StringBuilder class is for creating mutable strings.

= StringBuffer class is similar to StringBuilder except that
StringBuffer contains synchronized methods for updating strings.

STUiEE!EBAcom

10

https://students-hub.com

Designing a Class cont.

»* Classes are designed for reuse.

¢ Users can incorporate classes in many different
combinations, orders, and environments. Therefore,

you should design a class that imposes no
restrictions on what or when the user can do with it:

= Design the properties to ensure that the user can set
properties in any order, with any combination of

values.

= Design methods to function independently of their
order of occurrence.

% .
STUDE -HUB.com

https://students-hub.com

Designing a Class cont.

“ Follow standard Java programming style
and naming conventions:

= Choose informative names for classes, data
fields, and methods.

= Always place the data declaration before the
constructor, and place constructors before
methods.

" Always provide a constructor and initialize
variables to avoid programming errors.

% ’
STUDE -HUB.com

https://students-hub.com

Wrapper Classes

= Boolean
NOTE:
= Character
= Short (1) The wrapper classes dO not
have no-arg constructors.
= Byte
(2) The instances of all wrapper
" Integer . |
classes are immutable, i.e.,
- Long their internal values cannot be
= Float changed once the objects are
created.
=" Double

% -
STUDE -HUB.com

https://students-hub.com

The Integer and Double Classes

STU

-HUB.com

java.lang.Integer

java.lang.Double

-value: int
+MAX VALUE: int
+MIN VALUE: int

-value: double
+MAX VALUE: double
+MIN VALUE: double

+Integer(value: int)
+Integer(s: String)
+byteValue(): byte
+shortValue(): short
+intValue(): int
+longVlaue(): long
+floatValue(): float
+doubleValue():double
+compareTo{o: Integer): int
+toString(): String
+valueOf(s: String): Integer

+valueOf{s: String, radix: int): Integer

+parselnt(s: String): int

+parselnt(s: String, radix: int): int

+Double(value: double)
+Double(s: String)
+byteValue(): byte
+shortValue(): short
+intValue(): int
+longVlaue(): long
+floatValue(): float
+doubleValue():double
+compareTo(o: Double): int
+toString(): String
+valueOf(s: String): Double

+valueOf{s: String, radix: int): Double

+parseDouble(s: String): double

+parseDouble(s: String, radix: int): double

14

https://students-hub.com

Numeric Wrapper Class Constructors

+*¢* You can construct a wrapper object either from
a primitive data type value or from a string
representing the numeric value.

** The constructors for Integer and Double are:
public Integer(int value)
public Integer(String s)
public Double(double value)
public Double(String s)

% .
STUDE -HUB.com

https://students-hub.com

Numeric Wrapper Class Constants

¢ Each numerical wrapper class has the constants
MAX_VALUE and MIN_VALUE.

*** MAX_VALUE represents the maximum value of
the corresponding primitive data type.

¢ For Byte, Short, Integer, and Long, MIN_VALUE
represents the minimum byte, short, int, and long
values.

** For Float and Double, MIN_VALUE represents
the minimum positive float and double values.

16

https://students-hub.com

Conversion Methods

¢ Each numeric wrapper class implements
the abstract methods doubleValue,
floatValue, intValue, longValue, and

shortValue, which are defined in the Number
class.

** These methods “convert” objects into
primitive type values.

STUiEﬁ!EBcom

https://students-hub.com

The Static valueOf Methods

** The numeric wrapper classes have a
useful class method, valueOf(String s).

¢ This method creates a new object
initialized to the value represented by the
specified string.
*** For example:

Double doubleObject = Double.valueOf("12.4");

Integer integerObject = Integer.valueOf("12");

STUiEE!EBcom

18

https://students-hub.com

The Methods for Parsing Strings into Numbers

*** You have used the parselnt method in the
Integer class to parse a numeric string into
an int value and the parseDouble method in
the Double class to parse a numeric string

into a double value.

¢ Each numeric wrapper class has two

overloaded parsing met
numeric string into an a
value.

nods to parse a

opropriate numeric

19

https://students-hub.com

Automatic Conversion Between Primitive
Types and Wrapper Class Types

** JDK 1.5 allows primitive type and wrapper classes
to be converted automatically. For example, the
following statement in (a) can be simplified as in (b):

Integer[] intArray = {new Integer(Z), Equivalent Integer([] intArray =JZ, 4, 3};
new Integer(4), new Integeri{3)}:

(a) New JDK 1.5boxing (b)

Integer[] arr = {1, 2, 3};

System.out.printin(arr[0] + arr[1] + arr[2]);

e 4
o iped Unboxing

https://students-hub.com

Biginteger and BigDecimal

*** If you need to compute with very
large integers or high precision floating-
point values, you can use the Biglnteger
and BigDecimal classes in the java.math
package.

** Both are immutable.

STUiEE!EBAcom

https://students-hub.com

Biginteger and BigDecimal

Biginteger a = new Biglnteger("9223372036854775807");
Biginteger b = new Biginteger("2");

Biginteger c = a.multiply(b); // 9223372036854775807 * 2
System.out.printin(c);

BigDecimal a = new BigDecimal(1.0);

BigDecimal b = new BigDecimal(3);

BigDecimal ¢ = a.divide(b, 20, BigDecimal.ROUND UP);
System.out.printin(c);

https://students-hub.com

