
Thinking
in Objects

STUDENTS-HUB.com

https://students-hub.com

Class Abstraction and Encapsulation

 Class abstraction means to separate class
implementation from the use of the class.

 The creator of the class provides a description of the
class and let the user know how the class can be used.

 The user of the class does not need to know how the
class is implemented.

 The detail of implementation is encapsulated and
hidden from the user.

Class implementation
is like a black box
hidden from the

clients Class
Class Contract
(Signatures of public
methods and public
constants)

Clients use the
class through

the contract of
the class

STUDENTS-HUB.com

https://students-hub.com

3

Case Study: The BMI Class

STUDENTS-HUB.com

https://students-hub.com

Object Composition
 Aggregation models has-a relationships and represents
an ownership relationship between two objects.

 The owner object is called an aggregating object and
its class an aggregating class.

 The subject object is called an aggregated object and
its class an aggregated class.

 Composition is actually a special case of the aggregation
relationship.

STUDENTS-HUB.com

https://students-hub.com

5

Class Representation

 An aggregation relationship is usually
represented as a data field in the aggregating class.

 For example, the relationship in the previous
Figure can be represented as follows:

STUDENTS-HUB.com

https://students-hub.com

6

Aggregation Between Same Class

 Aggregation may exist between objects of the

same class.

 For example, a person may have a supervisor:

public class Person {

 // The type for the data is the class itself

 private Person supervisor;
 ...

}
STUDENTS-HUB.com

https://students-hub.com

7

Aggregation Between Same Class

 What happens if a person has several

supervisors?

public class Person {

 private Person[] supervisors;
 ...

}
STUDENTS-HUB.com

https://students-hub.com

8

Example: The Course Class

STUDENTS-HUB.com

https://students-hub.com

9

Designing a Class

 (Coherence) A class should describe a

single entity, and all the class operations
should logically fit together to support a
coherent purpose.

 You can use a class for students, for
example, but you should not combine
students and staff in the same class, because
students and staff have different entities.

STUDENTS-HUB.com

https://students-hub.com

10

Designing a Class cont.

 (Separating responsibilities) A single entity

with too many responsibilities can be broken into
several classes to separate responsibilities.

 Example: the classes String, StringBuilder, and
StringBuffer all deal with strings, for example, but have
different responsibilities:

 String class deals with immutable strings.

 StringBuilder class is for creating mutable strings.

 StringBuffer class is similar to StringBuilder except that
StringBuffer contains synchronized methods for updating strings.

STUDENTS-HUB.com

https://students-hub.com

11

Designing a Class cont.

 Classes are designed for reuse.

 Users can incorporate classes in many different
combinations, orders, and environments. Therefore,
you should design a class that imposes no
restrictions on what or when the user can do with it:

 Design the properties to ensure that the user can set
properties in any order, with any combination of
values.

 Design methods to function independently of their
order of occurrence.

STUDENTS-HUB.com

https://students-hub.com

12

Designing a Class cont.

 Follow standard Java programming style
and naming conventions:

 Choose informative names for classes, data
fields, and methods.

 Always place the data declaration before the
constructor, and place constructors before
methods.

 Always provide a constructor and initialize
variables to avoid programming errors.

STUDENTS-HUB.com

https://students-hub.com

13

Wrapper Classes

 Boolean
 Character
 Short
 Byte
 Integer
 Long
 Float
Double

NOTE:

(1) The wrapper classes do not
have no-arg constructors.

(2) The instances of all wrapper

classes are immutable, i.e.,

their internal values cannot be
changed once the objects are
created.

STUDENTS-HUB.com

https://students-hub.com

14

The Integer and Double Classes

STUDENTS-HUB.com

https://students-hub.com

15

Numeric Wrapper Class Constructors
 You can construct a wrapper object either from
a primitive data type value or from a string
representing the numeric value.

 The constructors for Integer and Double are:

public Integer(int value)

public Integer(String s)

public Double(double value)

public Double(String s)

STUDENTS-HUB.com

https://students-hub.com

16

Numeric Wrapper Class Constants

 Each numerical wrapper class has the constants
MAX_VALUE and MIN_VALUE.

 MAX_VALUE represents the maximum value of
the corresponding primitive data type.

 For Byte, Short, Integer, and Long, MIN_VALUE
represents the minimum byte, short, int, and long
values.

 For Float and Double, MIN_VALUE represents
the minimum positive float and double values.

STUDENTS-HUB.com

https://students-hub.com

17

Conversion Methods
 Each numeric wrapper class implements
the abstract methods doubleValue,
floatValue, intValue, longValue, and
shortValue, which are defined in the Number
class.

 These methods “convert” objects into
primitive type values.

STUDENTS-HUB.com

https://students-hub.com

18

The Static valueOf Methods

 The numeric wrapper classes have a

useful class method, valueOf(String s).

 This method creates a new object
initialized to the value represented by the
specified string.

 For example:

 Double doubleObject = Double.valueOf("12.4");

Integer integerObject = Integer.valueOf("12");

STUDENTS-HUB.com

https://students-hub.com

19

The Methods for Parsing Strings into Numbers

 You have used the parseInt method in the
Integer class to parse a numeric string into
an int value and the parseDouble method in
the Double class to parse a numeric string
into a double value.

 Each numeric wrapper class has two
overloaded parsing methods to parse a
numeric string into an appropriate numeric
value.

STUDENTS-HUB.com

https://students-hub.com

Automatic Conversion Between Primitive
Types and Wrapper Class Types

 JDK 1.5 allows primitive type and wrapper classes
to be converted automatically. For example, the
following statement in (a) can be simplified as in (b):

Integer[] arr = {1, 2, 3};

System.out.println(arr[0] + arr[1] + arr[2]);

Unboxing STUDENTS-HUB.com

https://students-hub.com

21

BigInteger and BigDecimal

 If you need to compute with very
large integers or high precision floating-
point values, you can use the BigInteger
and BigDecimal classes in the java.math
package.

 Both are immutable.

STUDENTS-HUB.com

https://students-hub.com

22

BigInteger and BigDecimal

BigInteger a = new BigInteger("9223372036854775807");

BigInteger b = new BigInteger("2");

BigInteger c = a.multiply(b); // 9223372036854775807 * 2

System.out.println(c);

BigDecimal a = new BigDecimal(1.0);

BigDecimal b = new BigDecimal(3);

BigDecimal c = a.divide(b, 20, BigDecimal.ROUND_UP);

System.out.println(c);

STUDENTS-HUB.com

https://students-hub.com

