E“'“ mt#ﬂfw

‘,.‘)L—-.‘J
ElRZElT UNlVERSlT"‘I’

Inheritance and
Polymorphism

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

https://students-hub.com

Motivations

* Suppose you will define classes to
model circles, rectangles, and triangles.

*** These classes have many common
features.

*** What is the best way to design these
classes so to avoid redundancy?

The answer is to use inheritance.

STUiEE!EBAcom

https://students-hub.com

Superclasses and Subclasses

STUDE

B.com

GeometricObject

-color: String
-filled: boolean
-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,
filled: boolean)

+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date

+toString(): String

The color of the object (default: white).
Indicates whether the object is filled with a color (default: false).
The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled
values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

Circle

-radius: double

+Circle()
+Circle(radius: double)

+Circle(radius: double, color: String,
filled: boolean)

+getRadius(): double
+setRadius(radius: double): void
+getArea(): double
+getPerimeter(): double
+getDiameter(): double
+printCircle(): void

I
Rectangle

-width: double
-height: double

+Rectangle()
+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double
color: String, filled: boolean)

+getWidth(): double
+setWidth(width: double): void
+getHeight(): double
+setHeight(height: double): void
+getArea(): double
+getPerimeter(): double 3

https://students-hub.com

Are Superclass’s Constructor Inherited?

** No. Unlike properties and methods, a superclass's
constructors are not inherited in the subclass.

¢ They are invoked explicitly or implicitly.

% Explicitly using the SU per keyword.
** They can only be invoked from the subclasses'

constructors, using the keyword SUper.

If the keyword super is not explicitly used,
the superclass's no-arg constructor is
automatically invoked.

4
STUDE -HUB.com

https://students-hub.com

Superclass’s Constructor is Always Invoked

** A constructor may invoke an overloaded constructor or

its superclass’s constructor.

** If none of them is invoked explicitly, the compiler puts
super() as the first statement in the constructor.

** For example:

STUDENTS-

B.col

public A() {
}

is equivalent to

public Aldoukle d)

}

{

/S zome statements

is equivalent to

>

public A() {
super();

g

public Aldouble d)
super () ;

S/ some statements

{

https://students-hub.com

Using the Keyword SUper

¢+ The keyword super refers to the
superclass of the class in which super
appears.

“* super keyword can be used in two ways:

" To call a superclass constructor.

" To call a superclass method.

6
STUiEﬁ!EBcom

https://students-hub.com

Caution

“* You must use the keyword super to
call the superclass constructor.

" [nvoking a superclass constructor’s name
in a subclass causes a syntax error.

»* Java requires that the statement that

uses the keyword super appear first in
the constructor.

STUiEﬁ!EBcom

https://students-hub.com

Constructor Chaining

Constructing an instance of a class invokes all the superclasses’ constructors
along the inheritance chain. This is called constructor chaining.

public class Faculty extends Employee {
public static void main (String[] args) {
Faculty f = new Faculty():;
}
public Faculty() {
System.out.println (" (4) Faculty's no-arg constructor is invoked");
}
}

Super(); =2

class Employee extends Person {
public Employee () {
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println (" (3) Employee's no-arg constructor is invoked");
}
public Employee (String s) {
Super () ; =2 System.out.println(s);
}
}

class Person {
public Person () {

Super () ; > System.out.println (" (1) Person's no-arg constructor is invoked");

}
STUDE -HUB.com }

https://students-hub.com

Example on the Impact of a Superclass
without no-arg Constructor

¢ Find out the errors in the following program:

public class Apple extends Fruit {
}

public class Fruit {
public Fruit(String name) {
System.out.printIn("Fruit's constructor is invoked");

}
}

STUiEﬁ!EBcom

https://students-hub.com

Defining a Subclass

¢* A subclass inherits from a superclass.
You can also:

= Add new properties.

= Add new methods.

= Qverride the methods of the
superclass.

STUiEﬁ!EBcom

https://students-hub.com

Calling Superclass Methods

** You could rewrite the printCircle() method
in the Circle class as follows:

public void printCircle() {
System.out.printIn("The circle is created " +

SUPEIr .getDateCreated() +
"and the radius is " + radius);

J

STUiEﬁ!EBcom

https://students-hub.com

Superclasses and Subclasses

STUDE

B.com

GeometricObject

-color: String
-filled: boolean
-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,
filled: boolean)

+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date

+toString(): String

The color of the object (default: white).
Indicates whether the object is filled with a color (default: false).
The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled
values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

Circle

-radius: double

+Circle()
+Circle(radius: double)

+Circle(radius: double, color: String,
filled: boolean)

+getRadius(): double
+setRadius(radius: double): void
+getArea(): double
+getPerimeter(): double
+getDiameter(): double
+printCircle(): void

I
Rectangle

-width: double
-height: double

+Rectangle()
+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double
color: String, filled: boolean)

+getWidth(): double
+setWidth(width: double): void
+getHeight(): double
+setHeight(height: double): void
+getArea(): double
+getPerimeter(): double 12

https://students-hub.com

Overriding Methods in the Superclass

** Sometimes it is necessary for the subclass to
modify the implementation of a method defined in

the superclass.
% This is referred to as method overriding.

public class Circle extends GeometricObject {

// Other methods are omitted
/** Override the toString method defined in GeometricObject */
public String toString() {

return SU per.tOString() +"\n radius is " + radius;
}

STUiEﬁ!EBcom

https://students-hub.com

Note

*** An instance method can be
overridden only if it is accessible.

" Thus a private method cannot be
overridden, because it is not accessible
outside its own class.

" [f a method defined in a subclass is
private in its superclass, the two methods
are completely unrelated.

STUiEﬁ!EBcom

https://students-hub.com

Note cont.

** Like an instance method, a static method
can be inherited.

= However, a static method cannot be
overridden.

= |f 3 static method defined in the
superclass is redefined in a subclass, the

method defined in the superclass is
hidden.

% -
STUDE -HUB.com

https://students-hub.com

Overriding VS. Overloading

STUEEE!EBCO”‘

public class Test {
public static void main(String[] args) {
A a = new A();
a.p(10);
a.p(10.0);

class B {
public void p (double 1) ({
System.out.println(i * 2);
}

class A extends B {
// This method overrides the method in B
public void p (double i) ({
System.out.println (i) ;

}

16

https://students-hub.com

Overriding VS. Overloading

STUEEE!EBCO”‘

public class Test {
public static void main(String[] args) {
A a = new A();
a.p(10);
a.p(10.0);

class B {
public void p (double 1) ({
System.out.println(i * 2);
}

class A extends B {
// This method overloads the method in B
public void p(int i) {
System.out.println (i) ;
}

17

https://students-hub.com

The Object Class

¢ Every class in Java is descended from the
java.lang.Object class.

** If no inheritance is specified when a class
is defined, the superclass of the class is

Object.

public class Circle |

}

Equivalent

STUiEE!EBAcom

rublic class Circle extends Objecti

I

18

https://students-hub.com

The toString() method in Object

< The toString() method returns a

string representation of the object.
*** The default implementation returns a
string consisting of:

= A class name of which the object is an

Instance.
" The at sign (@).
= A number representing this object.

% .
STUDE -HUB.com

https://students-hub.com

The toString() method in Object

Circle c = new Circle();

System.out.printin(c.toString());

< The code displays something like:

Circle@15037e5

< This message is not very helpful or informative.

< Usually you should override the toString method
so that it returns an informative string representing
the object.

% .
STUDE -HUB.com

https://students-hub.com

class GraduateStudent extends Student {

J

class Student extends Person {
public String toString() {
return "Student”;

J
J

class Person extends Object {
public String toString() {
return "Person”;

J

STUiEﬁ!EBcom

https://students-hub.com

Polymorphism

public class Demo {

public static void main(String[] a) { MethOd m takes a

m(new Object());
m(new Person()); par.ameter Of the
m(new Student()); Ob] ect type

m(new GraduateStud

public static void m(Object X){ YOU can InVOke It Wlth

System.out.printIn(x.toString()); any O bJ ecCt.
}
}

*» An object of a subtype can be used wherever its
supertype value Is required.

% This feature is known as polymorphism.

STUiEE!EBcom

https://students-hub.com

Dynamic Binding

public class Demo {
public static void main(String[] a) {
m(new GraduateStudent());
m(new Student());

m(new Person()); This Capablllty is known as
m(new Object());

| dynamic binding.
public static void m(Object x) {
System.out.printIn(x.toString());

}
}

*** When the method m(Object x) is executed, the argument
X’s toString method is invoked. x may be an instance of
GraduateStudent, Student, Person, or Object.

+** Classes GraduateStudent, Student, Person, and Object
have their own implementation of the toString method.
Which implementation is used will be determined

dynamically by the JVM at runtime.

STUDE -HUB.com

23

https://students-hub.com

Dynamic Binding

¢ Dynamic binding works as follows:

" Suppose an object o is an instance of
classesC,, C,, ...,C_,,and C , where C, is a
subclass of C,, C, is a subclass of C,, ..., and
C ,isasubclass of C .

" That is, C_is the most general class, and
C, is the most specific class.

Co K| Cum . =l =

Since o is an instance of C4, 0 is also an
Object instance of C; Cs, ..., Cni, and C,

SSSSSSSSSSSSSSSS

https://students-hub.com

Dynamic Binding cont.

¢ Dynamic binding works as follows:

" |f o invokes a method p, the JVM searches the
implementation for the method pinC,, C,, ...,
C.,and C, in this order, until it is found.

" Once an implementation is found, the search
stops and the first-found implementation is
invoked.

Co K| Cum . =l =

Since o is an instance of C4, 0 is also an
Object instance of C; Cs, ..., Cni, and C,

SSSSSSSSSSSSSSSS

https://students-hub.com

Generic Programming

public class Demo {

public static void main(String[] a) { P0|ym0rph|5m allows methods

m(new GraduateStudent()); . .

{newe Student(l} to be used generlcally for a wide

m(new Person(); range of object arguments.

m(new Object()); o

} This is known as:

public static void m(Object x){ . .
System.out.printIn(x.toString()); genenc programm|ng

}
}

s If a method’s parameter type is a superclass (e.g., Object), you
may pass an object to this method of any of the parameter’s
subclasses (e.g., Student).

** When an object (e.g., a Student object) is used in the method,
the particular implementation of the method of the object that is
invoked (e.g., toString) is determined dynamically.

26

STUDE -HUB.com

https://students-hub.com

Casting Objects

¢ Casting can also be used to convert an object of one
class type to another within an inheritance hierarchy.

m(new Student());

assigns the object new Student() to a parameter of the
Object type. This statement is equivalent to:

Object o = new Student(); // Implicit casting
m(o);

The statement Object o = new Student(), known as
Implicit casting, is legal because an instance of

Ei Student is automatically an instance of Object.

27

https://students-hub.com

W

hy Casting is Necessary?

** Su

ppose you want to assign the object reference 0 to a

variable of the Student type using the following statement:

0:0 W
and t

Student b = o; // A compile error would occur.

ny does the statement Object o = new Student() work
ne statement Student b = o doesn’t?

"his is because a Student object is always an

instance of Object, but an Object is not
necessarily an instance of Student.

" Even though you can see that o is really a
Student object, the compiler is not so clever to
know it.

STUiEE!EBcom

28

https://students-hub.com

Why Casting Is Necessary?

¢ To tell the compiler that o is a Student
object, use an explicit casting.

*** The syntax is similar to the one used for
casting among primitive data types.

*** Enclose the target object type in
parentheses and place it before the object to
be cast, as follows:

Student b = (Student) o ; // Explicit casting

% .
STUDE -HUB.com

https://students-hub.com

Casting from Superclass to Subclass

¢ Explicit casting must be used when casting an
object from a superclass to a subclass.

Fruit fruit = new Apple();
Apple a = (Apple) fruit;
Orange o = (Orange) fruit;

¢ This type of casting may not a

Fruit

il

ways succeed.

gg Apple Orange

Mango

30

https://students-hub.com

The instanceof Operator

¢ Use the instanceof operator to test
whether an object is an instance of a class

Object myObject = new Circle();

// Perform casting if myObject is an instance of Circle

if (myObject INnstanceof circle) {

System.out.printIn("The circle diameteris " +

((Circle)myObject).getDiameter());

STUiEﬁ!EBcom

31

https://students-hub.com

The equals Method

** The equals() method compares the contents of two

objects.
** The default implementation of the equals method in

the Object class is as follows:

public boolean equals (Object obj) {
\ return (this == obj);

public boolean equals(Object o) {

% For example, the equals | if (o instanceof Circle){

method is overridden in return radius == ((Circle)o).radius;
. }

the Circle class. else

return false;
% }

https://students-hub.com

Note

*** The == comparison operator is used for
comparing two primitive data type values
or for determining whether two objects
have the same references.

*** The equals method is intended to test
whether two objects have the same
contents, provided that the method is
modified in the defining class of the objects.

STUiEﬁ!EBcom

https://students-hub.com

STU

public class Test {
public static void main(String[] args) {
new Person().printPerson();
new Student().printPerson();

}
}

class Student extends Person {
@verride
public String getInfo() {
return "Student™;

}
}

class Person {
public String getInfo() {
return "Person”;

}

public void printPerson() {
System.out.printin(getInfo());

}
}

https://students-hub.com

STU

public class Test {
public static void main(String[] args) {
new Person().printPerson();
new Student().printPerson();

}
}

class Student extends Person {
private String getlnfo() {
return "Student”;
}
}

class Person {
private String getlInfo() {
return "Person’;

}

public void printPerson() {
System.out.printin(getInfo());

}

https://students-hub.com

The ArraylList Class

¢ You can create an array to store
objects.

¢ But the array’s size is fixed once the
array is created.

% Java provides the ArrayList class
that can be used to store an unlimited
number of objects.

% .
STUDE -HUB.com

https://students-hub.com

o

The ArraylList Class

java.utiL ArrayList<E>

+arrayList()

+add{o: E) : woid

+add{ index: 1int, o: E) wvold
+clear(): vold

+contains{o: Object): boolean
+get{index: int) : E
+inde x0f {o: Object) int
+1sEmpty () : boolean
+lastIndex0Ofio: Object) int

+remove (o: Object): boolean

+size (V2 1int
+remove (index: int) hoolean
+zet{index: int, o: E)}) : E

STUBENESFiUB com

Creates an empty list
Appends a new element o at the end of this list.

Addza new element o at the specifiedindex n this list.

Removesalltheelements fr om thislist.

Retimstrue if thiz list contains the element o.
Retimstheelementfrom this list at the specified index
Retimsthe index of the first matching element in this list.
Retums true if this I8t contains no elements.

Retimsthe ndex of the b & matching element in this list.
Removesthe element o from this list.

Retimsthe mumber of elem ents in this list.

Removesthe element atthe specified index.

Sets the element at the specified index.

https://students-hub.com

Generic Type <E>

¢ Arraylist is known as a generic class with a
generic type E.

*** You can specify a concrete type to replace E
when creating an ArraylList.

*** For example, the following statement creates an
ArraylList and assigns its reference to variable cities.
This ArrayList object can be used to store strings:

ArrayList<String> cities = new ArrayList<String>();

ArrayList<String> cities = new ArrayList<>();

https://students-hub.com

Differences and Similarities

between Arrays and ArrayList

Operation

Array

ArrayList

Creating an array/ArrayList
Accessing an element
Updating an element
Returning size

Adding a new element
Inserting a new element
Removing an element
Removing an element

Removing all elements

STUiEﬁ!EBcom

String[] a = new String[10]

alindex]
a[index] = "London";

a.length

ArrayList<String> list = new

list.get({index);
list set(index, "London");
ligt . gizel)
list.add("London") ;
ligt.add(index, "London"}:
ligt remove(index) ;
list remove(Cbject];

ligt . clear():

39

https://students-hub.com

3 public class TestArraylList {

4 public static void main(String[] args) {

5 // Create a list to store cities

6 ArrayList<String> cityList = new ArraylList<>();

7

8 // Add some cities in the list

9 cityList.add("London");
10 // citylList now contains [London]
11 cityList.add("Denver");
12 // citylList now contains [London, Denver]
13 cityList.add("Paris");
14 // cityList now contains [London, Denver, Paris]
15 cityList.add("Miami");
16 // cityList now contains [London, Denver, Paris, Miami]
17 cityList.add("Seoul");
18 // Contains [London, Denver, Paris, Miami, Seoul]
19 cityList.add("Tokyo");
20 // Contains [London, Denver, Paris, Miami, Seoul, Tokyo]
21
22 System.out.printin("List size? " + cityList.size());
23 System.out.printin("Is Miami in the list? " +
24 cityList.contains("Miami™));
25 System.out.printin("The location of Denver in the 1ist? "
26 + citylList.indexOf("Denver"));
27 System.out.printin('Is the list empty? " +
28 cityList.isEmpty(Q); // Print false
29

30 // Insert a new city at index 2

31 cityList.add(2, "Xian");

32 // Contains [London, Denver, Xian, Paris, Miami, Seoul, Tokyo]

STU B.com

https://students-hub.com

// Remove a city from the list
cityList.remove('Miami");
// Contains [London, Denver, Xian, Paris, Seoul, Tokj

// Remove a city at index 1
cityList.remove(l);
// Contains [London, Xian, Paris, Seoul, Tokyo]

J/ Display the contents in the 1ist
System.out.printin(cityList.toString());

// Display the contents in the 1ist in reverse order
for (int 1 = citylList.s1ze(Q - 1; 1 >= 0; 1—)

System.out.print(citylList.get(3) + " ");
System.out.printin();

// Create a 1ist to store two circles
ArrayList<CircleFromSimpleGeometricObject> 1list
= new ArraylList<>();

// Add two circles
Tist.add(new CircleFromSimpleGeometricObject(2));
Tist.add(new CircleFromSimpleGeometricObject(3));

// Display the area of the first circle in the 1list
System.out.printin("The area of the circle? " +
Tist.get(0).getArea());

STU B.com

https://students-hub.com

Arraylists from/to Arrays

¢ Creating an ArrayList from an array of objects:

String[] array = {"red", "green", "blue"};
ArrayList<String> list = new

ArrayList<>(Arrays.asList(array));

< Creating an array of objects from an ArraylList:
String[] arrayl = new String|[list.size()];
list. toArray(arrayl);

'* 42
STUDE -HUB.com

https://students-hub.com

max and min in an ArrayList

java.util.Collections.max(list)
java.util.Collections.min(list)

Shuffling an ArrayList

Integer|[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};

Arraylist<integer> list = new
ArrayList<>(Arrays.asList(array));

java.utiI.CoIIections.ShufﬂE(Iist);

% System.out.printin(list);

https://students-hub.com

The protected Modifier

< The protected modifier can be applied on
data and methods in a class.

** A protected data/method in a public class can be
accessed by any class in the same package OF its

subclasses, even If the subclasses are in a
different package.

Visibility 1increases

—
private, none (1f no modifier 1s used), protected, public

% ;
STUDE -HUB.com

https://students-hub.com

Accessibility Summary

Moditier Accessed Accessed Accessed Accessed
on members from the from the from a from a different
in a class same class same package subclass package

public V4 v/ V/ o/

protected V4 / / -
default V4 / - -
private V4 - - -

STUiEﬁ!EBcom

https://students-hub.com

Visibility Modifiers

package pl;

public class C1 |
public int ;
protected int vy
int z;
private int u;

protected void m{)

}

{

]
v

public class
Cl o = new
Ccan access
Ccan access
can access o
cannot access o0.U;

]
[

o0
[LR

gy M Mg e ——
T

can invoke o.m{);

N

package p2;

public class C3
extends C1
can access x;
can access V;
can access z;
cannot access u;

can invoke mi{);

{

public class C4
extends C1

can access x;

can access y;
cannot access z;
cannot access u;

can invoke mi{);

public class C5 |
Cl o = new C1();
can access o.x;
cannct access 0.V;
cannot access 0.z;
cannct access o.U;

cannot invoke o.mi{);

STUDE -HUB.com

https://students-hub.com

A Subclass Cannot Weaken the Accessibility

*» A subclass may override a protected
method Iin its superclass and change Iits
visibility to public.

s However, a subclass cannot weaken the
accessibility of a method defined in the
superclass.

** For example, if a method is defined as
public in the superclass, it must be defined as
public in the subclass.

STUiEﬁ!EBcom

https://students-hub.com

The final Modifier

% The final class cannot be extended
final class Math {

}

+ The final variable is a constant:
final static double Pl = 3.14159;

“* The final method cannot be
overridden by its subclasses.

STUiEﬁ!EBcom

48

https://students-hub.com

Note

** The modifiers are used on classes
and class members (data and
methods), except that the final modifier
can also be used on local variables in a
method.

s A final local variable Is a constant
INnside a method.

STUiEﬁ!EBcom

https://students-hub.com

