
JSON

JavaScript Object Notation

JSON

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Introduction

 This Lecture Covers

 What is JSON?

 Basic types

 Arrays

 Objects

 Nesting

 Indentation

 Conversion between JSON and other structures

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

JSON

 JavaScript Object Notation

 JavaScript is a programming language

 JSON was originally created to hold structured data to be used

in JavaScript

 JSON became so popular…

 It is used for data for all kinds of applications

 It is the most popular way of sending data for Web APIs

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

JSON and JavaScript

Key differences:

•In JavaScript, keys do not need quotes unless they contain special characters or spaces.

•In JSON, all keys must be enclosed in double quotes(“)

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Basic Data Types

 Strings
 Enclosed in single or double quotation marks

 Numbers
 Integer or decimal, positive or negative

 Booleans
 true or false

 No quotation marks

 null
 Means “nothing”.

 No quotation marks

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Arrays

 Arrays are lists

 In square brackets []

 Comma-separated

 Can mix data types

 Examples:

 [4, 6, 23.1, -4, 0, 56]

 ["red", "green", "blue"]

 [65, "toast", true, 21, null, 100]

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Objects

 Objects are JSON’s dictionaries

 They are enclosed in curly brackets { }

 Keys and values are separated by a colon :

 Pairs are separated by commas.

 Keys and values can be any data type.

 Example:

 {"red":205, "green":123, "blue":53}

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Nesting

 Nesting involves putting arrays and objects inside each

other:

 You can put arrays inside objects, objects inside arrays,

arrays inside arrays, etc.

 Often a JSON file is one big object with lots of objects

and arrays inside.

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Example JSON: Describing a song
{

"song":

{

"title": "Hey Jude",

"artist": "The Beatles",

"musicians":

["John Lennon", "Paul McCartney",

"George Harrison", "Ringo Starr"]

}

}

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Example JSON: Describing a menu
{

"menu": [

{ "header": "File",

"items": [

{"id": "Open", "label": "Open"},

{"id": "New", "label": "New"},

{"id": "Close", "label": "Close"}

] },

{ "header": "View",

"items": [

{"id": "ZoomIn", "label": "Zoom In"},

{"id": "ZoomOut", "label": "Zoom Out"},

{"id": "OriginalView", "label": "Original View"}

]}

]}

ViewFile

Open

New

Close

Zoom In

Zoom Out

Original View

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

White Space and Indentation

 “White space” means spaces, new lines, etc.

 White space doesn’t matter

 Unless it’s inside quotation marks

 Good JSON formatting

 In general, add an indent for every new level of brackets

 End lines with commas

 Lots of exceptions to this!

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Validate JSON docs

against JSON Schema

JSON Schema

JSON
(instance)

JSON Schema
Validator JSON instance is

valid/invalid

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Example “book”

{
"Book":

{

"Title": "Echoes of Algorithms: Decoding the Future of AI",

"Authors": ["Sarah Al-Mansouri", "Liam Nguyen"],

"Date": "2023",
"Publisher": "Nexus AP"

}

}

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Equivalent JSON
Schema

{
"$schema": “http://json-schema.org/draft-04/schema",
"type": "object",
"properties": {

"Book": {
"type": "object",
"properties": {

"Title": {"type": "string"},
"Authors": {"type": "array", "minItems": 1, "maxItems": 5, "items": { "type": "string"

}},
"Date": {"type": "string", "pattern": "^[0-9]{4}$"},
"Publisher": {"type": "string", "enum": ["Springer", "MIT Press", "Nexus AP"]}

},
"required": ["Title", "Authors", "Date"],
"additionalProperties": false

}
},
"required": ["Book"],

}

The properties (key-value pairs) on an object are defined using the properties keyword.
The value of properties is an object, where each key is the name of a property and each
value is a schema used to validate that property. Any property that doesn't match any of
the property names in the properties keyword is ignored by this keyword.

The additionalProperties keyword is used to control the handling of extra stuff, that is,
properties whose names are not listed in the properties keyword. By default any additional
properties are allowed.

The value of the additionalProperties keyword is a schema that will be used to validate any
properties in the instance that are not matched by properties. Setting the
additionalProperties schema to false means no additional properties will be allowed.

You can use non-boolean schemas to put more complex constraints on the additional
properties of an instance. For example, one can allow additional properties, but only if
their values are each a string:
"additionalProperties": { "type": "string" }

https://json-schema.org/understanding-json-schema/reference/objectUploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

http://json-schema.org/draft-04/schema

JSON - Additional Properties

{
"type": "object",
"properties": {

"name": { "type": "string" },
"age": { "type": "integer" }

},
"additionalProperties": {

"type": "string"
}

}
Any additional properties must be of
type string. Properties "name" and
"age" can be present, along with any
other string properties.

{
"type": "object",
"properties": {

"name": { "type": "string" },
"age": { "type": "integer" }

},
"additionalProperties": false

}
Only "name" and "age" properties are
allowed. Any additional properties will
cause validation to fail.

{
"type": "object",
"properties": {

"name": { "type": "string" },
"age": { "type": "integer" }

},
"additionalProperties": true

}
The object can have any additional
properties beyond "name" and "age".

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

JSON - Additional

Properties

{
"$schema": "http://json-schema.org/draft-04/schema",
"properties": {

"Book": {
"properties": { "Authors": {

"type": "object", "properties": {
"name": {

"type": "string"
}

},
"required": ["name"]

},
"Date": {

"pattern": "^[0-9]{4}$",
"type": "string"

},
"Publisher": {

"enum": ["Springer", "MIT ress",
"Harvard Press"

],
"type": "string"

},
"Title": {

"type": "string"
}

},
"required": [

"Title", "Authors", "Date"
],
"type": "object", "additionalProperties": {

"type": "integer"
}

}
},
"required": ["Book"],
"type": "object",

}

{
"Book": {

"Title": "Example Book",
"Authors": [

{"name": “Ali Yasser"},
{"name": “Abdullah Mohammed"}

],
"Date": "2022",
"Publisher": "Springer“,

“Key": "Springer"
}

}

Use the following validator to test it out:

https://www.jsonschemavalidator.net/

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

http://json-schema.org/draft-04/schema
https://www.jsonschemavalidator.net/

Authors list

{
"$schema": "http://json-schema.org/draft-04/schema",
"type": "object",

"properties": {
"Book": {

"type": "object",
"properties": {

"Title": {"type": "string"},
"Authors": {"type": "array", "minItems": 1, "maxItems": 5, "items": { "type": "string" }},
"Date": {"type": "string", "pattern": "^[0-9]{4}$"},
"Publisher": {"type": "string", "enum": ["Springer", "MIT Press", "Harvard Press"]}

},
"required": ["Title", "Authors", "Date"],
"additionalProperties": false

}
},
"required": ["Book"],
"additionalProperties": false

}

<xs:element name="Authors">

<xs:complexType>

<xs:sequence>

<xs:element name="Author" type="xs:string" maxOccurs="5"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

http://json-schema.org/draft-04/schema

Date with year type

{
"$schema": "http://json-schema.org/draft-04/schema",
"type": "object",
"properties": {

"Book": {
"type": "object",
"properties": {

"Title": {"type": "string"},
"Authors": {"type": "array", "minItems": 1, "maxItems": 5, "items": { "type": "string" }},
"Date": {"type": "string", "pattern": "^[0-9]{4}$"},
"Publisher": {"type": "string", "enum": ["Springer", "MIT Press", "Harvard Press"]}

},
"required": ["Title", "Authors", "Date"],
"additionalProperties": false

}
},
"required": ["Book"],
"additionalProperties": false

}

<xs:element name="Date" type="xs:gYear"

/>

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

http://json-schema.org/draft-04/schema

Publisher with enumeration

{
"$schema": "http://json-schema.org/draft-04/schema",

"type": "object",
"properties": {

"Book": {
"type": "object",
"properties": {

"Title": {"type": "string"},
"Authors": {"type": "array", "minItems": 1, "maxItems": 5, "items": { "type": "string" }},
"Date": {"type": "string", "pattern": "^[0-9]{4}$"},
"Publisher": {"type": "string", "enum": ["Springer", "MIT Press", "Harvard Press"]}

},
"required": ["Title", "Authors", "Date"],
"additionalProperties": false

}
},
"required": ["Book"],
"additionalProperties": false

}

<xs:element name="Publisher" minOccurs="0">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Springer" />

<xs:enumeration value="MIT Press" />

<xs:enumeration value="Harvard Press" />

</xs:restriction>

</xs:simpleType>

</xs:element>

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

http://json-schema.org/draft-04/schema

Online JSON Schema validator

Paste your JSON Schema in here

Paste your JSON in here

Results of validation is

shown here

https://www.jsonschemavalidator.net/

https://jsonformatter.org/#

1

2

Click on the validate button 3

4

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

https://www.jsonschemavalidator.net/
https://jsonformatter.org/

A contract
for data
exchanges

Both XML Schema and JSON Schema may be
used as a contract for data exchanges:

data

Contract
(schema)

conforms to

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Python and JSON

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Working with JSON in Python

 Reading JSON

 Writing JSON

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Comparison of Data Types

From: https://docs.python.org/3/library/json.html#encoders-and-decoders

JSON Python

object dict

array list

string str

number (int) int

number (real) float

true True

false False

null None

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

JSON Read
import json

f = open('data.json')

data = json.load(f)

f.close()

print(data)

print(data["features"])

print(data["features"][0]["geometry"])

for i in data["features"]:

print(i["geometry"]["coordinates"][0])

{

"type": "FeatureCollection",

"features": [{

"type": "Feature",

"geometry": {

"type": "Point",

"coordinates": [42.0, 21.0]

},

"properties": {

"prop0": "value0"

}

}]

}

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

JSON write

import json

f = open('data.json')

data = json.load(f)

f.close()

f = open('out.json', 'w')

json.dump(data, f)

f.close()

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Serialisation

Serialisation is the converting of code objects to a storage format; usually
some kind of file.

Deserialization (~unmarshalling): the conversion of storage-format objects
back into working code.

The json code essentially does this for simple and container Python variables.

For more complicated objects, see pickle:

https://docs.python.org/3/library/pickle.html

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

https://docs.python.org/3/library/pickle.html

Formatted printing
json.loads and json.dumps convert Python objects to JSON strings.

Dumps has a nice print formatting option:

print(json.dumps(data["features"], sort_keys=True, indent=4))

[

{

"geometry": {

"coordinates": [

42.0,

21.0

],

"type": "Point"

},

"properties": {

"prop0": "value0"

},

"type": "Feature"

}

]
More on the JSON library at:

https://docs.python.org/3/library/json.html
Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

https://docs.python.org/3/library/json.html

JSON Conversions in Python

 JSON→ Python Dictionary

 JSON→ XML

 JSON→ BSON

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

JSON vs. Python Dictionary

Aspect JSON Python Dictionary

Type Text-based format (string) In-memory Python object

Keys Strings only
Any hashable type (str, int,

etc.)

Values Basic types (str, num, etc.) Any Python type

Usage Data exchange, storage
In-program data

manipulation

Mutability Immutable (as string) Mutable

Syntax "key": "value", true, null 'key': 'value', True, None

Serialization Native (it’s a string) Requires json.dumps()

JSON: {"name": "John", "age": 30, "active": true}

Python Dictionary: {"name": "John", "age": 30, "active": True}

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

JSON and Python Dictionary conversion

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

JSON vs XML

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Convert XML to JSON in Python

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Convert JSON to XML in Python

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

JSON vs. BSON

Aspect JSON BSON MongoDB Firebase

Format
Text-based, human-

readable

Binary-encoded,

machine-readable

Uses BSON

internally
Uses JSON

Data Types
Basic (string, number,

etc.)

Extended (Date,

ObjectId, etc.)
Full BSON support JSON types only

Readability Easy to read/edit Not human-readable BSON (binary) JSON (readable)

Performance Slower, less compact
Faster, more

compact

Optimized with

BSON

JSON-based, real-

time optimized

Primary Use
Data exchange (APIs,

configs)

Storage/processing

(databases)

Document storage

(BSON)

Realtime & Firestore

(JSON)

Database Use Widely supported
MongoDB, EJDB,

TokuMX
Native BSON

No BSON, JSON

only
Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Converting JSON to BSON in Python

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Converting BSON to JSON in Python

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

Review

 JSON represents structured data

 Basic types: string, number, Boolean, null

 Arrays (lists) use square brackets []

 Objects (dictionaries) use curly brackets { }

 Collections can contain collections

 White space doesn’t matter

 Indent for every level of collection

Uploaded By: Haneen Abu al hawaSTUDENTS-HUB.com

