Inductance

» For Calculating Inductance we need to go to four steps?

Magnetic Field Intensity H, from Ampere's Law Magnetic Flux Density B, (B = u H)

Flux Linkages, (X)

Inductance From Flux Linkages per ampere. (L=X/I)

B Solid Cylindrical Conductor

A Internal Flux Linkage B External Flux Linkage

>> The magnetic field intensity Hx, around a circle of radius X, is constant and tangent to the circle. The Ampere's Law relating Hx to the current Ix is given by?

9 Handl = Ienclosed

$$(50) |_{V_1} = 2\pi \times$$

$$\int_{V_1} H_{V_1} dL = I_{V_1}$$

$$\int_{V_1} H_{V_2} dL = I_{V_3}$$

$$\int_{V_4} H_{V_4} = \frac{I_{V_4}}{2\pi \times 10^{-10}}$$

$$(1)$$

radius X.

A Internal Inductance

A simple expression can be obtained for the internal flux linkage by neglecting the skin effect and assuming uniform current density throughout the conductor cross section, i.e.

$$\frac{I}{\pi r^2} = \frac{I_x}{\pi x^2} \Rightarrow I_x = \left(\frac{x}{r}\right)^2 I$$
from (1) $H_x = \frac{I_x}{2\pi x}$ density

$$H_{x} = \frac{1}{2\pi r^{2}} x$$

» For a nonmagnetic Conductor with Constant permeability Mo, the magnetic flux density is given by:

$$B_{x} = M_{o} H_{x}$$
 $M_{o} = permeability$ free space $B_{x} = M_{o} \left[\frac{I}{2\pi r^{2}}x\right] = 4\pi * 10^{7} H/_{1}$

» The differential flux do for a small region of thickness dx and one meter length of the Conductor is

The flux do Links only the fraction of the conductor from the center to radius x.

Thus, on the assumption of uniform current density only the fraction Tx of the total current is linked by the flux, i.e.,

STUDENTS-HUB.com
$$d\lambda_{x} = \left(\frac{x^{2}}{-1}\right) d\phi_{y}$$
 Uploaded By: Mohammad Awawdeh

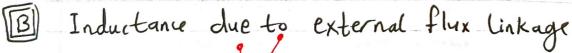
$$d\lambda_{x} = \left(\frac{x^{2}}{r^{2}}\right) d\phi_{x}$$

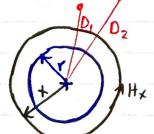
$$= \left(\frac{x^{2}}{r^{2}}\right) \left[\beta_{x} dx\right]$$

$$= \frac{x^{2}}{r^{2}} \left[\frac{\mu_{0} I \times x}{2\pi r^{2}}\right] dx$$

$$d\lambda_{x} = \frac{\mu_{0} I \times x^{3}}{2\pi r^{4}} dx$$

, >> The total flux linkage


$$\lambda_{int} = \int d\lambda = \frac{\mu_0 I}{2\pi \mu_0} \int x^3 dx$$


$$= \frac{\mu_0 I}{2\pi} \quad w_b/m$$

By def, for nonmagnetic material, the inductance L is the ratio of its total magnetic flux linkage to the current I, given by $L = \lambda/I$.

The Inductance due to the internal flux linkage is

Note that Lint is independent at the conductor radius r.

· B = M ZTr

 $d\phi = B_x dx$

» Hx (2Tx) = I

$$H_x = \frac{I}{2\pi x} A/m \times r$$

STUDENTS-HUB.com

Uploaded By: Mohammad Awawdeh

$$\gg B_{x} = M_{0} H_{x} = 4 \pi * 10^{7} \left[\frac{I}{2\pi x} \right]$$

= $2 * 10^{7} \frac{I}{x}$

$$d\phi = B_x \cdot dx \cdot 1 = 2 \times 10^7 \frac{1}{x} dx$$

» Total Flux Linkages between any two points
$$\lambda_{12} = \int_{0}^{D_{2}} d\lambda = 2 * i \bar{0}^{7} I \int_{0}^{D_{2}} \frac{1}{x} dx.$$

$$\lambda_{12} = \lambda_{\text{ext}} = 2 * 10^7 \text{ I ln } \frac{D^2}{D_1}$$

$$L_{ext} = 2 + 10^{1} \ln \frac{D_2}{D_1} + 1/m$$

$$\lambda_{p} = \frac{1}{2} * 10^{7} I + 2 * 10^{7} I \ln \frac{D}{r}$$
internal F.L. external F.L.

note:

using $\frac{1}{2} = .2 \ln e^{\frac{1}{4}}$

where
$$r' = e^{\frac{\pi}{4}}r = 0.7788r = effective radius due to internal$$

STUDENTS-HUB com $2 \times 10^7 \ln \left(\frac{D}{r'} \right)$ H/m Uploaded By: Mobarting at Awawdeh

λκρ→ Flux linkages for the conductor k up to a point p due to the currents flowing in conductors 1,2,.... N.

$$\lambda_{kp} = \lambda_{kp_{1}} + \lambda_{kp_{2}} + \lambda_{kp_{N}}$$

$$= 2 * 10^{7} \sum_{j=1}^{N} I_{j} \ln \frac{1}{D_{kj}}, \text{ where } D_{kk} = r_{k}^{2}$$

$$= 2 * 10^{7} \sum_{j=1}^{N} I_{j} \ln \frac{1}{D_{kj}} + 2 * 10^{7} \sum_{j=1}^{N} I_{j} \ln D_{kj}$$

$$= 2 * 10^{7} \sum_{j=1}^{N} I_{j} \ln \frac{1}{D_{kj}} + \sum_{j=1}^{N-1} I_{j} \ln D_{p_{j}} + \sum_{j=1}^{N-1} I_{j} \ln D_{p_{N}}$$

$$= 2 * 10^{7} \sum_{j=1}^{N} I_{j} \ln \frac{1}{D_{kj}} + \sum_{j=1}^{N-1} I_{j} \ln D_{p_{N}}$$

$$= 2 * 10^{7} \sum_{j=1}^{N} I_{j} \ln \frac{1}{D_{kj}} + \sum_{j=1}^{N-1} I_{j} \ln D_{p_{N}}$$

$$= -\left(I_{1} + I_{2} + \cdots + I_{N-1}\right) = -\sum_{j=1}^{N-1} I_{j} + \sum_{j=1}^{N-1} I$$

$$\begin{array}{c} \lambda_{KP} = 2 * 10^7 \left[\begin{array}{c} \sum\limits_{j=1}^N I_j \ln \frac{1}{D_{Kj}} + \sum\limits_{j=1}^{N-1} I_j \ln D_{Pj} - \left(\sum\limits_{j=1}^{N-1} I_j \right) \ln D_{PN} \right] \\ = 2 * 10^7 \left[\begin{array}{c} \sum\limits_{j=1}^N I_j \ln \frac{1}{D_{Kj}} + \sum\limits_{j=1}^{N-1} I_j \ln D_{Pj} - \left(\sum\limits_{j=1}^{N-1} I_j \right) \ln D_{PN} \right] \\ As P \longrightarrow \infty \quad \text{Nery for away} \\ D_{Pj} \text{ and } B_{PN} \text{ almost the Same } \left(D_{Pj} = D_{PN} \right) \Longrightarrow \left[\ln \frac{D_{Pj}}{D_{PN}} = \ln 1 = 0 \right] \\ \lambda_{K} = 2 * 10^7 \sum_{j=1}^{N} I_j \ln \frac{1}{D_{Kj}} \\ \Longrightarrow Total Flux Linkages \\ \text{for the Conductor } K. \\ \hline A \text{ Inductance of Single Phase Lines} \\ \Longrightarrow Inductance of Single Phase Lines \\ \Longrightarrow Inductance of Single Phase Lin$$

Since only the fraction I at the total conductor current I is linked by this flux, the flux linkage (1x) of sub conductor k is $\lambda_{k} = \frac{\emptyset k}{N} = 2 \times 10^{7} I \left[\frac{1}{N^{2}} \sum_{m=1}^{N} \ln \frac{1}{0 \text{km}} - \frac{1}{NM} \sum_{m=1}^{M} \ln \frac{1}{0 \text{km}} \right]$ The total flux linkage of conductor x is: $\lambda_{x} = \sum_{k=1}^{N} \lambda_{k}$ $= 2 \times 10^{7} I \sum_{k=1}^{N} \left[\frac{1}{N^{2}} \sum_{m=1}^{N} \frac{1}{0_{km}} - \frac{1}{NM} \sum_{m=1}^{M} \frac{1}{0_{km}} \right]$ $= 2 \times 10^7 \text{ I ln} \frac{\text{M}}{\text{M}} \frac{\text{M}}{\text{M}} \frac{\text{D}_{\text{km}}}{\text{M}} \frac{\text{N}}{\text{N}}$ 0 1/2 (In 1/2 + In 1/2) - 1 (In 1/2 + In 1/2) = 1 [In abc] - I (In xyz) >>> Lx = 2 * 10 In Dxy H/m/Conductor = In (abc) N2 In (xyZ) NM >>> Ly = 2 * 107 In Dxy H/m/ conductor = [n (abc)this where: Geometric Mean Distance between x and y = 10 (xyz) NM Dxy = GMD = NN TT TT Dxm = J (D, D, D, D, -... (D, D, D) ola A = ~ la A Dxx = GMRx = NT TH TO DKm O ZInAx = In πAx = N (D, D, 2 D, (D, D, (D, D, DNN) note that 3-Geometric Mean Radius at Conductorx $O_{11} = O_{22} = O_{33} = \cdots = O_{NN} = C_{NN}$ Dyy = GMR = TT TT DKM Dir = 022' = 0 (D, D, D) --- (D, D, DM) STUDENTS-HUB com Radius of Conductuploaded By: Mahammad

» if we have Single-phase two-wire line L, = 2 x 10 In D H/m L2 = 2 x 10 In D H/m 7 = 0.77887 A stranded conductor consists of seven identical Example Strands each strand having a radius r as shown in Figure below, determine the GMR of the conductor interms of r. $D_{12} = D_{16} = D_{17} = 2r$ $D_{13} = D_{15} = \sqrt{D_{14}^2 - D_{15}^2}$ = 11622 -4 12 = $\int (r^{2} \cdot 2r \cdot 2\sqrt{3}r \cdot 4r \cdot 2\sqrt{3}r \cdot 2r \cdot 2r)^{6} (r^{2})(2r)^{6}$ $= \sqrt{12} r^2$ = $2\sqrt{3} r$ = 2.1767 r >> With large number of strands the calculation of GMR can become very tedious. (16, 00) >> Usually these are available in the manufacturer's data. (Tables) >> The design of a power line requires the value of resistance and reactance to find out the active and reactive power, and the voltage drop in the process of power transfer over the transmission line. >> Power losses should be limitted to around (5-10)% of STUBERITS-HOBPOOR transfered. Uploaded By: Mohammad Awawdeh TABLE A.4 Characteristics of aluminum cable, steel, reinforced (Aluminum Company of America)—ACSR

	•	Aluminum		Sieel						Caralla	Approx. Current Carrying	r, Resistance (Ohms per Conductor per Mile)						x _a Inductive Reactance (ohms per conductor per mile at 1 ft	x'a Shunt Capacitive Reactance (megohms per conductor			
	Circular	Strand		Strand		Outside	Copper Copper	Ultimate	Weight (pounds	Geometric Mean Radius		25°C (77°F) Small Currents			50°C (122°F) Current Approx. 75% Capacity‡			spacing all currents)	per mile at 1 ft spacing)			
Code	Mils Aluminum			(inches)		(inches)	(inches)	Mils or A W.G	(pounds)	mile)	at 60 Hz (feet)	(amps)	dc	25 Hz	50 Hz	60 Hz	dc	25 Hz	50 Hz	60 Hz	60 Hz	60 Hz
Joree Thrasher Kiwi Bluebird	2 515 000 2 312 000 2 167 000 2 156 000 1 781 000	76 76 72 84 84	4 4	0.1819 0.1744 0.1735 0.1602 0.1456	19 19 7 19	0 0849 0 0814 0 1157 0 0961 0 0874	1 880 1 802 1 735 1 762 1 602		61 700 57 300 49 800 60 300 51 000		0.0621 0.0595 0.0570 0.0588 0.0534									0.0450 0.0482 0.0511 0.0505 0.0598	0.337 0.342 0.348 0.344 0.355	0.0755 0.0767 0.0778 0.0774 0.0802
Chukar Falcon Parrot Piover Martin Pheasant Grackle	1 590 000 1 510 500 1 431 000 1 351 000 1 272 000 1 192 500	54 54 54 54 54 54	333333	0.1716 0.1673 0.1628 0.1582 0.1535 0.1486	19 19 19 19 19	0.1030 0.1034 0.0977 0.0949 0.0921 0.0892	1.545 1.506 1.465 1.424 1.382 1.338	1 000 000 950 000 900 000 850 000 800 000 750 000	56 000 53 200 50 400 47 600 44 800 43 100	10 777 10 237 9 699 9 160 8 621 8 082	0.0520 0.0507 0.0493 0.0479 0.0465 0.0450	1 380 1 340 1 300 1 250 1 200 1 160	0.0587 0.0618 0.0652 0.0691 0.0734 0.0783	0.0588 0.0619 0.0653 0.0692 0.0735 0.0784	0.0590 0.0621 0.0655 0.0694 0.0737 0.0786	0.0591 0.0622 0.0656 0.0695 0.0738 0.0788		0.0656 0.0690 0.0729 0.0771 0.0819 0.0872	0.0675 0.0710 0.0749 0.0792 0.0840 0.0894	0.0720 0.0760 0.0803 0.0851	0.359 0.362 0.365 0.369 0.372 0.376	0.0814 0.0821 0.0830 0.0838 0.0847 0.0857
Finch Curlew Cardinal Canary Crane Condor	1 113 000 1 033 500 954 000 900 000 874 500 795 000	54 54 54 54 54	3 3 3 3 3	0.1436 0.1384 0.1329 0.1291 0.1273 0.1214	19 7 7 7 7	0.0862 0.1384 0.1329 0.1291 0.1273 0.1214	1 293 1 246 1 196 1 162 1 146 1 093	700 000 650 000 600 000 566 000 550 000	40 200 37 100 34 200 32 300 31 400 28 500	7 544 7 019 6 479 6 112 5 940 5 399	0.0435 0.0420 0.0403 0.0391 0.0386 0.0368	1 110 1 060 1 010 970 950 900	0.0839 0.0903 0.0979 0.104 0.107 0.117	0.0840 0.0905 0.0980 0.104 0.107 0.118	0.0842 0.0907 0.0981 0.104 0.107 0.118	0.0844 0.0909 0.0982 0.104 0.108 0.119	0.0924 0.0994 0.1078 0.1145 0.1178 0.1288	0.0935 0.1005 0.1088 0.1155 0.1188 0.1308	0.0957 0.1025 0.1118 0.1175 0.1218 0.1358	0.1128 0.1185 0.1228	0.380 0.385 0.390 0.393 0.395 0.401	0.0867 0.0878 0.0890 0.0898 0.0903 0.0917
Drake Mallard Crow Starling Redwing Flamingo	795 000 795 000 715 500 715 500 715 500 666 600	26 30 54 26 30 54	2 2 3 2 2 2	0 1749 0 1628 0 1151 0 1659 0 1544 0 1111	7 19 7 7 19 7	0 1360 0.0977 0 1151 0 1290 0.0926 0 1111	1.108 1.140 1.036 1.051 1.081 1.000	500 000 500 000 450 000 450 000 450 000	31 200 38 400 26 300 28 100 34 600 24 500	5 770 6 517 4 859 5 193 5 865 4 527	0.0375 0 0393 0 0349 0.0355 0 0372 0 0337	900 910 830 840 840 800	0.117 0.117 0.131 0.131 0.131 0.140	0.117 0.117 0.131 0.131 0.131 0.140	0.117 0.117 0.131 0.131 0.131 0.141	0.117 0.117 0.132 0.131 0.131 0.141	0.1442	0.1288 0.1288 0.1452 0.1442 0.1442 0.1571	0.1288 0.1288 0.1472 0.1442 0.1442 0.1591	0.1288 0.1482 0.1442 0.1442	0.399 0.393 0.407 0.405 0.399 0.412	0.0912 0.0904 0.0932 0.0928 0.0920 0.0943
Rook Grosbeak Egrei Peacock Squab Dove	636 000 636 000 636 000 605 000 605 000 556 500		3 2 2 3 2 2	0 1085 0 1564 0 1456 0 1059 0 1525 0 1463	7 7 19 7 7	0.1085 0.1216 0.0874 0.1059 0.1186 0.1138	0.977 0.990 1.019 0.953 0.966 0.927	400 000 400 000 400 000 380 500 380 500 350 000	23 600 25 000 31 500 22 500 24 100 22 400	4 319 4 616 5 213 4 109 4 391 4 039	0.0329 0.0335 0.0351 0.0321 0.0327 0.0313	770 780 780 750 760 730	0.147 0.147 0.147 0.154 0.154 0.168	0.147 0.147 0.147 0.155 0.154 0.168	0.148 0.147 0.147 0.155 0.154 0.168	0.148 0.147 0.147 0.155 0.154 0.168	0.1618 0.1618 0.1618 0.1695 0.1700 0.1849	0.1618 0.1715	0.1678 0.1618 0.1618 0.1755 0.1720 0.1859	0.1618 0.1618 0.1775 0.1720	0.414 0.412 0.406 0.417 0.415 0.420	0.0950 0.0946 0.0937 0.0957 0.0953 0.0965
Eagle Hawk Hen Ibrs Lark	556 500 477 000 477 000 397 500 397 500	30 26 30 26 30	2 2 2 2 2	0 1362 0 1355 0 1261 0 1236 0 1151	7 7 7 7	0.1362 0.1054 0.1261 0.0961 0.1151	0.953 0.858 0.883 0.783 0.806	350 000 300 000 300 000 250 000 250 000	27 200 19 430 23 300 16 190 19 980	4 588 3 462 3 933 2 885 3 277	0.0328 0.0290 0.0304 0.0265 0.0278	730 670 670 590 600	0.168 0.196 0.196 0.235 0.235	0.168 0.196 0.196	0.168 0.196 0.196 Same as o	0.168 0.196 0.196	0.1849 0.216 0.216 0.259 0.259	0.1859	0.1859 Same as o	0.1859	0.415 0.430 0.424 0.441 0.435	0.0957 0.0988 0.0980 0.1015 0.1006
Linnei Onole Ostrich Piper Partridge	336 400 336 400 300 000 300 000 266 800	26 30 26 30 26	2 2 2 2 2 2	0.1138 0.1059 0.1074 0.1000 0.1013	7 7 7 7	0.0855 0.1059 0.0835 0.1000 0.0788	0.721 0.741 0.680 0.700 0.642	4/0 4/0 188 700 188 700 3/0	14 050 17 040 12 650 15 430 11 250	2 442 2 774 2 178 2 473 1 936	0.0244 0.0255 0.0230 0.0241 0.0217	530 530 490 500 460	0,278 0,278 0,311 0,311 0,350				0.306 0.306 0.342 0.342 0.385				0.451 0.445 0.458 0.462 0.465	0.1039 0.1032 0.1057 0.1049 0.1074

[&]quot;Based on copper 97%, aluminum 61% conductivity

1For conductor at 75°C, air at 25°C, wind 1.4 miles per nour (21t/sec), frequency = 60 Hz

1Current Approx. 75% Capacity" is 75% of the "Approx. Current Carrying Capacity" is 75% of the "Approx."

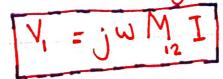
example Power is transmitted over the live stranded conductor with seven strands; each strand 2 mm in diameter.
The dielection The distance between the live and neutral wires is 6mm as shown below. Calculate the inductance and reactions of the reactance at the line in mH per km. GMR = 201767Y GMD = (Qa D D D D D D D D) (Qa Q D Q D D) (Qa Q D D D) = 5.99999971 m = 6 m $GMR_{\chi} = GMR_{y} = 2.1767 r = (2.1767)(0.001)$ = 0.0021767 $L_{x} = 2 * 10^{7} \ln \frac{Dxy}{Dxx} = 2 * 10^{7} \ln \frac{6}{0.002177} H/m$ = 1.584 x 106 H/m per conductor L = Lx +Ly = 3.168 * 106 H/m XL = WL = 2TT f L = Reactance per meter length

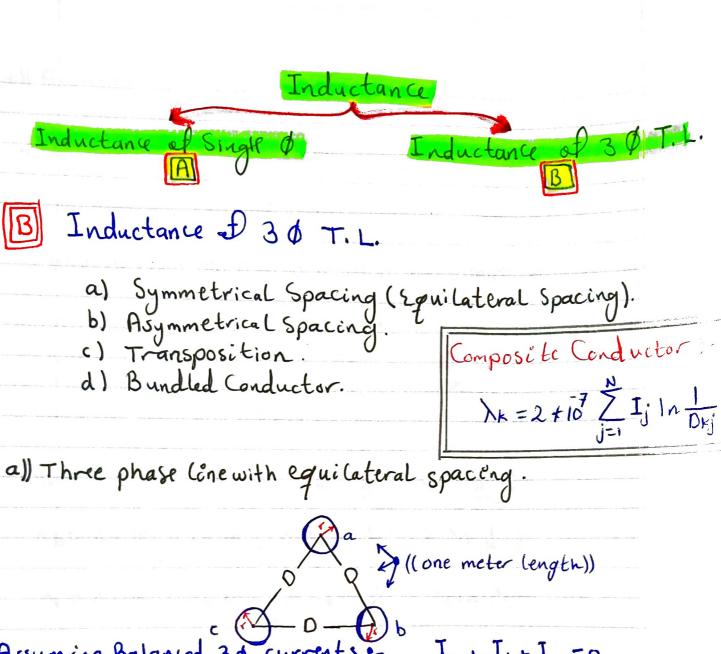
= 2TT (50) (L)

= 2TT (50) (L) = 2TT (50) (L) = 9.954 * 10 s/m

STUDENTS-HUB, and 54 Jo/Km Uploaded By: Mohammad Awawdeh

- >> The flux Linkage \ = L. I
- >> The voltage drop due to this Plux Linkage is


- When two conductors are placed close to each other, current in one conductor generates the magnetic flux. These flux lines crossing the second conductor due to which a voltage is induced in the second conductor. This process at current en one conductor affecting the other conductor is the mutual inductance.
- >> If we defene the two conductors as I and 2, then


$$M_{12} = \frac{\lambda_{12}}{T_2}$$

where o M12 is the mutual inductance between conductor.

- λ₁₂ is the flux Cinkage between Conductors 1
 and 2.
- O Iz is the current in conductor 2.

Thes en turn introduces the voltage drop in the first conductor which is defened by is

Assuming Balanced 30 currents:- Ia+ Ib+ Ic=0

The total flux linkage of phase a conductor is:-

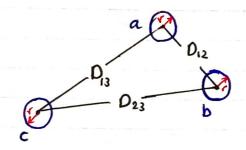
$$\lambda_{a} = 2 * i \vec{o} \left(I_{a} \ln \frac{1}{r} + I_{b} \ln \frac{1}{D} + I_{c} \ln \frac{1}{D} \right)$$

$$= 2 * i \vec{o} \left(I_{a} \ln \frac{1}{r} + \left(I_{b} + I_{c} \right) \ln \frac{1}{D} \right)$$

$$= 2 * i \vec{o} \left(I_{a} \ln \frac{1}{r} - I_{a} \ln \frac{1}{D} \right) = 2 * i \vec{o} I_{a} \ln \frac{D}{r}$$

 $L_a = \frac{\lambda_a}{T_a} = 2 \times 10^7 \ln \frac{D}{r} + 1/m = 0.2 \ln \frac{D}{D_s} + 1/km$

λα = λb = λc ⇒ La=Lb=Lc


This means that the inductance per phase for 30 circuit

STUDEALISTADE com

Uploaded By: Mohammad Avvaludeh

phase Circuit.

- b)) Asymmetrical Spacing 8-
 - »Practical transmission lines cannot maintain symmetrical spacing at conductors because at construction considerations.
 - >> With asymmetrical spacing, even with balanced currents, the voltage drop due to line inductance will be unbalanced.

Or in matrix form $\lambda = LI$

where the symmetrical inductionse matrix L is given by:

$$L = 2 \times 10^{7} \left[\ln \frac{1}{r_{1}} \ln \frac{1}{Q_{12}} \ln \frac{1}{Q_{13}} \ln \frac{1}{r_{1}} \ln \frac{1}{Q_{23}} \ln \frac{1}{r_{1}} \ln \frac{1}{r_{1}} \ln \frac{1}{r_{23}} \ln \frac{1}{r_{1}} \ln \frac{1}$$

⇒ The phase inductances are not equal

c)) Three phase transposed Line: » One way to regain symmetry and obtain per-phase model is Consider transposition. >> The transposition consists of interchanging the phase configuration every one-third the length. Position 1 a

Dia

Dougle

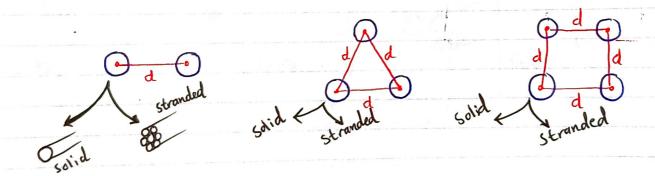
Dou Position 3 - 1 - k - 1 - 3 - > $\lambda_{a_{1}} = 2 \times 10^{7} \left[\frac{1}{2} \ln \frac{1}{0} + \frac{1}{10} \ln \frac{1}{10} + \frac{1}{10} \ln \frac{1}{0} \right]$ $\lambda_{a_{2}} = 2 \times 10^{7} \left[I_{a} \ln \frac{1}{D_{s}} + I_{b} \ln \frac{1}{D_{23}} + I_{c} \ln \frac{1}{D_{n}} \right]$ $\lambda_{a_{3}} = 2 * i \delta^{7} \left[I_{a} \ln \frac{1}{p_{s}} + I_{b} \ln \frac{1}{Q_{1}} + I_{c} \ln \frac{1}{p_{23}} \right]$ $\lambda_a = \frac{\lambda_{a_1}(\frac{1}{3}) + \lambda_{a_2}(\frac{1}{3}) + \lambda_{a_3}(\frac{1}{3})}{3} = \frac{\lambda_{a_1} + \lambda_{a_2} + \lambda_{a_3}}{3}$ $= \frac{2 * 10^{7}}{3} \left[3 \left[\frac{1}{3} \ln \frac{1}{0_{5}} + \frac{1}{1} \ln \frac{1}{0_{2}} + \frac{1}{23} \ln \frac{1}{0_{12}} \right] + \frac{1}{12} \ln \frac{1}{0_{23}} \right]$ $= 2 + 10^{7} \left[3 \, \text{Ia ln} \, \frac{1}{D_s} - \text{Ia ln} \, \frac{1}{D_s} \, \text{D}_{3} \, \text{D}_{3}$

$$\lambda_a = 2 \pm 10^7 I_a \ln \frac{3 D_{12} D_{23} D_{31}}{D_s}$$

$$L_{a} = \frac{\lambda \alpha}{I_{a}} = 2 \times 10^{7} \ln \frac{\sqrt[3]{O_{12} O_{23} O_{31}}}{O_{5}}$$

H/m per phase

La =
$$2 \pm i \vec{0}$$
 In $\frac{\text{Deg}}{D_s}$
= $2 \pm i \vec{0}$ In $\frac{\text{GMD}}{D_s}$
Where $\text{Deg} = \sqrt[3]{D_{12} D_{23} D_{31}}$


This again is of the

HIM Same form as the

expression for the induce
one phase of a single

phase Line.

d)) Bundled Conductor Line &

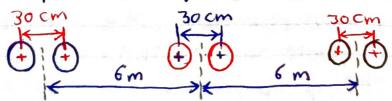
>> Extra-high voltage transmission lines are usually constructed with bundled conductors. Bundling reduces the line reactance, which improves the line performance and increase the power capability at the line. Bundling also reduces the voltage surface gradient, which in turn reduces Corona loss, radio interference, and surge impedance. (\frac{1}{5})

Hlm

>> Typically, bundled conductors Consists of two, three, or four subconductors symmetrically arranged in Configuration as shown in Figure above.

>> The sub Conductors within abundle are separated at frequent intervals by spacer-dampers. spacer-dampers prevent clashing, provide damping, and connect the subconductors in parallel. Bundling Reduces Electric Field Increaces Effective Strength on Conductor Radius (GMR) Surface Reduces Corona Reduces Inductance GMR = Db GMR = P GMR = D = \ (r'. d)2 = J(r.d.d.d.d)4 $=\int (r'.d.d)^3$ = 1.091 yrd3 La = 2 * 10 In

>>	Three-phase	Lines - Parallel	Circuits,
*	Thre-phase	Lines - Parallel Double-Circuit	Lines.


A three-phase double-Circuit line consists of two identical 3\$ circuits. The circuits are operated with abc, chase on parallel. Because of geometrical differences between Conductors, voltage drop due to line inductance will be unbalanced. To achieve balance, each phase conductor must be transposed within its group and with respect to parallel 3\$ line.

 $b_1 \odot$ $c_1 \odot$ $c_2 \odot$ $c_2 \odot$ $c_2 \odot$ $c_3 \odot$ $c_4 \odot$ $c_4 \odot$ $c_4 \odot$

example

The conductor configuration of a completely transposed 3-\$\ph\$ overhead transmission line with bundled conductor is shown below. All the conductors have a radius of 0.74 cm with a 30 cm bundle spacing.

- a)) Determine the inductance per-phase in mH/km and in mH/m.
- b)) Find the inductive line reactance per phase in solm at f=50Hz.

$$\begin{array}{c} D_{ab} = \sqrt[4]{d_{13}} \ d_{14} \ d_{23} \ d_{24} \\ &= (6 * 6.3 * 6.7 * 6)^{1/4} = 5.9962 \ m \\ D_{bc} = 5.9962 \ m \\ D_{ca} = \sqrt[4]{d_{15}} \ d_{16} \ d_{25} \ d_{26} \\ &= (12 * 12.3 * 11.7 * 12)^{1/4} = 11.9981 \ m \\ \end{array}$$

$$\begin{array}{c} \text{The equivalent equilateral spacing between the phases} \\ \text{2 s given by Deg defined as $$^{\circ}$} \\ D_{eg} = \left(D_{ab}, D_{bc}, D_{ca}\right)^{1/3} \\ &= \left(5.9962 * 5.9962 * 11.9981\right)^{1/3} \\ &= 7.5559 \ m \\ D_{s}^{b} = \sqrt[2]{r'} \ d \\ D_{s}^{b} = \sqrt[2]{r'} \ d \\ D_{s}^{b} = \sqrt[4]{1580} \ Cm \\ \end{array}$$

$$a)) \text{ Inductance per phase for the given system is $$^{\circ}$} \\ L = 2 * 10^{7} \ln \frac{D_{eq}}{D_{s}^{b}} \ H |m| \text{ phase} \\ \end{array}$$

= 1.04049 + 10 mH/m/phase = 1.04049

b)) The inductive line reactance per phase mH/km/phase

X_ = 2 T f L = 2 T (56) (1.04049) + 10 6 1/m/ Rhangleh

STUDENTS-HUB.com = 3.270 + Hotogleh Byp Mahammad Rwangleh

= 1.04049 * 106 H/m/phase