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Lists

• A list is a finite, ordered sequence of data items known as elements 
("ordered" means that each element has a position in the list)

We say that 𝑎!"# follows 𝑎!
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Lists

• A List as an Abstract Data Type (ADT)
list is a sequence of items that supports at least the following 
functionality:
• accessing an item at an arbitrary position in the sequence
• adding an item at an arbitrary position
• removing an item at an arbitrary position
• determining the number of items in the list (the list’s length)
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Lists

• Abstract Data Type (ADT)
specifies what a list will do, without specifying the implementation.

Operation

• Print List
• Find element 
• Add element
• Insert element 
• Delete element 
• Make null 
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Lists
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public interface Listable<T> {
    void add(T element);

    void insert(int index, T element);

    T delete(int index);

    T get(int index);

    int find(T element);

    void clear();

    void print();
}

We did this in lab0
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Lists

6

public interface Listable<T> {
    void add(T element);

    void insert(int index, T element);

    T delete(int index);

    int find(T element);

    void clear();

    void print();
}

This is a new method
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Lists
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public interface Listable<T> {
    void add(T element);

    void insert(int index, T element);

    T delete(int index);

    int find(T element);

    void clear();

    void print();
}

5 10 20 13 1

0 1 2 3 4 5

𝒊𝒏𝒔𝒆𝒓𝒕(𝟐, 𝟏𝟎𝟎)
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Lists

8

public interface Listable<T> {
    void add(T element);

    void insert(int index, T element);

    T delete(int index);

    int find(T element);

    void clear();

    void print();
}

5 10 20 13 1

0 1 2 3 4 5

𝒊𝒏𝒔𝒆𝒓𝒕(𝟐, 𝟏𝟎𝟎)

𝑺𝒉𝒊𝒇𝒕	𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔	𝒕𝒐	𝒕𝒉𝒆	𝒓𝒊𝒈𝒉𝒕
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Lists
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public interface Listable<T> {
    void add(T element);

    void insert(int index, T element);

    T delete(int index);

    int find(T element);

    void clear();

    void print();
}

5 10 20 20 13 1

0 1 2 3 4 5

𝒊𝒏𝒔𝒆𝒓𝒕(𝟐, 𝟏𝟎𝟎)

𝑺𝒉𝒊𝒇𝒕	𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔	𝒕𝒐	𝒕𝒉𝒆	𝒓𝒊𝒈𝒉𝒕
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Lists
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public interface Listable<T> {
    void add(T element);

    void insert(int index, T element);

    T delete(int index);

    int find(T element);

    void clear();

    void print();
}

5 10 100 20 13 1

0 1 2 3 4 5

𝒊𝒏𝒔𝒆𝒓𝒕(𝟐, 𝟏𝟎𝟎)

𝒂 𝟐 = 𝟏𝟎𝟎
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Lists
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public interface Listable<T> {
    void add(T element);

    void insert(int index, T element);

    T delete(int index);

    int find(T element);

    void clear();

    void print();
}

public void insert(int index, T element) {
    if (count >= data.length) {
        reSize();
    }

    if (index >= count) {
        index = count - 1;
    }

    if (index < 0) {
        index = 0;
    }

    for (int i = this.count; i > index; i--) { // shift
        data[i] = data[i - 1];
    }

    data[index] = element;
    this.count++;
}
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Linked List
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A linked list is a collection of nodes that together form a linear.

node: A compound object that stores the contents of the 
node (Element) and a pointer or reference to the next node in 
the list (next).

data

Pointer to 
next node

node
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Linked List

13

A linked list is a collection of nodes that together form a linear.

node: A compound object that stores the contents of the 
node (Element) and a pointer or reference to the next node in 
the list (next).

data

Pointer to 
next node

Linked List

data

Pointer to 
next node

data

Pointer to 
next node

next
null

next
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Linked List

14

A linked list is a collection of nodes that together form a linear.

node: A compound object that stores the contents of the 
node (Element) and a pointer or reference to the next node in 
the list (next).

5 10 1 null
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Linked List
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public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

data

Pointer to 
next node

next

Uploaded By: anonymousSTUDENTS-HUB.com



Linked List
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public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)
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Linked List

17

public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

How do we reach third element?
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Linked List
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public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

Node<Integer> n1 = new Node<>(5);
Node<Integer> n2 = new Node<>(10);
Node<Integer> n3 = new Node<>(1);

n1.next = n2;
n2.next = n3;

Node<Integer> head = n1;
Node<Integer> thirdElement = head.next.next;
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Linked List
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public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

How do we reach 100th element?
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Linked List

20

public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

How do we delete ”10” (second element)?
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Linked List
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public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

How do we delete ”10” (second element)?

ptr
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Linked List
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public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

How do we delete ”10” (second element)?

ptr Node<Integer> ptr = head;
ptr.next = ptr.next.next;
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Linked List

23

public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

How do we delete ”10” (second element)?

ptr Node<Integer> ptr = head;
ptr.next = ptr.next.next;

We didn’t need to shift anything!
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Linked List

24

public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

How do we delete ”10” (second element)?

ptr Node<Integer> ptr = head;
Node<Integer> temp = ptr.next;
ptr.next = temp.next;
temp.next = null;

temp

We didn’t need to shift anything!
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Linked List
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public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

5 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

ptr
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Linked List
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public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

head/front

In a Linked List we only need a reference to the first element (head/front)

ptr

How do we insert ”3” (after “5”)?

5 1
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Linked List

27

public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

head/front

In a Linked List we only need a reference to the first element (head/front)

ptr

How do we insert ”3” (after “5”)?

Node<Integer> temp = new Node<>(3);

5 1

3

temp
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Linked List

28

public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

head/front

In a Linked List we only need a reference to the first element (head/front)

ptr

How do we insert ”3” (after “5”)?

Node<Integer> temp = new Node<>(3);
temp.next = ptr.next;

5 1

3

temp
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Linked List
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public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

head/front

In a Linked List we only need a reference to the first element (head/front)

ptr

How do we insert ”3” (after “5”)?

Node<Integer> temp = new Node<>(3);
temp.next = ptr.next;
ptr.next = temp;

5 1

3

temp

We didn’t need to shift anything!
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Linked List
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public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

head/front

In a Linked List we only need a reference to the first element (head/front)

last

How do we insert ”10” (after “1”)?

5 1

3
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Linked List

31

public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

head/front

In a Linked List we only need a reference to the first element (head/front)

last

How do we insert ”10” (after “1”)?

5 1

3

Node<Integer> temp = new Node<>(10);

10
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Linked List
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public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

head/front

In a Linked List we only need a reference to the first element (head/front)

last

How do we insert ”10” (after “1”)?

5 1

3

Node<Integer> temp = new Node<>(10);
last.next = temp;

10

Uploaded By: anonymousSTUDENTS-HUB.com



Memory (Array)

33

Memory

10

15

100

14

101

Array

Memory

15 1400

10 1000

100 2000

1000

1200

1400

2000 14 1700

101 null1700

Head/Front
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Lists (Arrays vs Linked List)

34

Function Array Linked List

Insert at beginning O(n) O(1)

Insert at end O(1) O(n)

Insert at middle O(n) O(n)

Delete at beginning O(n) O(1)

Delete at end O(1) O(n)

Delete at middle O(n) O(n)

Find O(n) O(n)

Get Element at index O(1) O(n)

Print O(n) O(n)

Size O(1) O(n)
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Lists (Arrays vs Linked List)

35

Function Array Linked List

Insert at beginning O(n) O(1)

Insert at end O(1) O(n)

Insert at middle O(n) O(n)

Delete at beginning O(n) O(1)

Delete at end O(1) O(n)

Delete at middle O(n) O(n)

Find O(n) O(n)

Get Element at index O(1) O(n)

Print O(n) O(n)

Size O(1) O(n)

Can we improve time complexity for items bolded in red?
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Lists (Arrays vs Linked List)

36

5 10 1 null

Linked List

Size = 3

Add size field and update it every time an element is added/deleted
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Lists (Arrays vs Linked List)

37

5 10 1 null

Linked List

Size = 3

1. Add size field and update it every time an element is added/deleted.
2. Add last pointer that points to the last element!

1. Now we can add a new node to the end in O(1)
2. We can delete an element from the end in O(1)

head/first last
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Linked List (Implementation)

38

public class LinkedList<T> {
    Node<T> first;
    Node<T> last;
    int size;

    public LinkedList() {
        first = last = null;
        size = 0;
    }
}

5 10 1 null

Size = 3

head/first last
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Linked List (addFirst)
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5 1

head/front last

null
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Linked List (addFirst)

40

5 1

head/front last

null

12
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Linked List (addFirst)

41

5 1

head/front last

null

12 node.next = first;
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Linked List (addFirst)

42

5 1

head/front last

null

12 node.next = first;
first = node;
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Linked List (addFirst)

43

What if it’s empty?

12

head/front
last

first = last = node;
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Linked List (addFirst)

44

public void addFirst(T object) {
    Node<T> node = new Node<>(object);
    if (size == 0) {
        first = last = node;
    } else {
        node.next = first;
        first = node;
    }

    size++;
}
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Linked List (getFirst)

45

public T getFirst() {
    if (size == 0) {
        return null;
    }

    return first.val;
}
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Linked List (addLast)

46

5 1

head/front last

null
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Linked List (addLast)

47

5 1

head/front last

null

12
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Linked List (addLast)

48

5 1

head/front last

12
last.next = node;
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Linked List (addLast)
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5 1

head/front

last

12
last.next = node;
last = last.next;
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Linked List (addLast)

50

What if it’s empty?

12

head/front
last
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Linked List (addLast)

51

public void addLast(T object) {
    Node<T> node = new Node<>(object);
    if (size == 0) {
        first = last = node;
    } else {
        last.next = node;
        last = last.next;
    }

    size++;
}
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Linked List (getLast)

52

public T getLast() {
    if (size == 0) {
        return null;
    }

    return last.val;
}
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Linked List (get)

53

5 10 1 null

head/first

0 1 2

T get(int index);

ptr

Uploaded By: anonymousSTUDENTS-HUB.com



Linked List (get)

54

public T get(int index) {
    if (size == 0) {
        return null;
    }

    if (index < 0 || index >= size) {
        return null;
    }

    Node<T> current = first;
    for (int i = 0; i < index; i++) {
        current = current.next;
    }

    return current.val;
}
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Linked List (add)
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5 10 1

head/first

0 1 2

void add(int index, T element);

current
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Linked List (add)

56

5 10 1

head/first

0 1 2

void add(int index, T element);

current

add(2, 15);

Uploaded By: anonymousSTUDENTS-HUB.com



Linked List (add)

57

5 10 1

head/first

0 1 2

void add(int index, T element);

current

add(2, 15);

1. We need to move ”current” to previous element
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Linked List (add)

58

5 10 1

head/first

0 1 2

void add(int index, T element);

current

add(2, 15);

1. We need to move ”current” to previous element
2. Create new element as “newNode”

15

newNode

Uploaded By: anonymousSTUDENTS-HUB.com



Linked List (add)

59

5 10 1

head/first

0 1 2

void add(int index, T element);

current

add(2, 15);

1. We need to move ”current” to previous element
2. Create new element as “newNode”
3. Link new element “newNode” with the next node.

node.next = current.next;

15

newNode
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Linked List (add)

60

5 10

1head/first

0 1

2

void add(int index, T element);

current

add(2, 15);

1. We need to move ”current” to previous element
2. Create new element as “newNode”
3. Link new element “newNode” with the next node.

node.next = current.next;
4. Link ”current” with “newNode”

current.next = newNode;

15

newNode
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Linked List (add)

61

private void add(int index, T element) {
    if (index <= 0) {
        addFirst(element);
    } else if (index >= size) {
        addLast(element);
    } else {
        Node<T> current = first;
        for (int i = 0; i < index - 1; i++) {
            current = current.next;
        }

        Node<T> newNode = new Node<>(element);
        newNode.next = current.next;
        current.next = newNode;
        size++;
    }
}
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Linked List (removeFirst)
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5 10 1

head/first

0 1 2

boolean removeFirst();

13

3

last
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Linked List (removeFirst)
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5 10 1

head/first

0 1 2

boolean removeFirst();

13

3

We just need to move the head/first one step!

last
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Linked List (removeFirst)
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5 10 1

head/first

0 1 2

boolean removeFirst();

13

3

We just need to move the head/first one step!

last
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Linked List (removeFirst)

65

5

head/first

0

boolean removeFirst();

last
What happens if we have one element?
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Linked List (removeFirst)

66

5

head/first

0

boolean removeFirst();

last
What happens if we have one element?

“first“ now points to “null” but last didn’t move!!!
This is a special case that we need to take care of
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Linked List (removeFirst)

67

private boolean removeFirst() {
    if (first == null) {
        return false;
    }

    // Check if we have one element only
    if (first == last) {
        first = last = null;
        return true;
    }

    first = first.next;
    size-;

    return true;
}

Uploaded By: anonymousSTUDENTS-HUB.com



Linked List (removeLast)
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5 10 1

head/first

0 1 2

boolean removeLast();

current

13

3

last
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Linked List (removeLast)

69

5 10 1

head/first

0 1 2

boolean removeLast();

current

13

3

1. We need to move ”current” to previous element

last
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Linked List (removeLast)

70

5 10 1

head/first

0 1 2

boolean removeLast();

current

13

3

1. We need to move ”current” to previous element.
2. Set “current.next” to null

last
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Linked List (removeLast)

71

5 10 1

head/first

0 1 2

boolean removeLast();

current

13

3

1. We need to move ”current” to previous element.
2. Set “current.next” to null
3. Set “last“ to ”current”

last
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Linked List (removeLast)

72

public boolean removeLast() {
    if (first == null) {
        return false;
    }

    // Check if we have one element only
    if (first == last) {
        first = last = null;
        return true;
    }

    Node<T> current = first;
    for (int i = 0; i < size - 2; i++) {
        current = current.next;
    }

    current.next = null;
    last = current;
    size-;

    return true;
} Uploaded By: anonymousSTUDENTS-HUB.com



Linked List (remove)

73

5 10 1

head/first

0 1 2

boolean remove(int index);

current

13

3
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Linked List (remove)
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5 10 1

head/first

0 1 2

boolean remove(int index);

current

remove(2);

13

3
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Linked List (remove)

75

5 10 1

head/first

0 1 2

boolean remove(int index);

current

remove(2);

1. We need to move ”current” to previous element
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Linked List (remove)
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head/first
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boolean remove(int index);

current

remove(2);

1. We need to move ”current” to previous element
2. Set a pointer “temp” to the element

temp = current.next;

temp
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Linked List (remove)
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head/first

0 1 2

boolean remove(int index);

current

remove(2);

1. We need to move ”current” to previous element
2. Set a pointer “temp” to the element

temp = current.next;
3. Set “current” next element to be the element after

the temp element “3”
4. current.next = temp.next;

temp
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3
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Linked List (remove)
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head/first
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boolean remove(int index);

current

remove(2);

1. We need to move ”current” to previous element
2. Set a pointer “temp” to the element

temp = current.next;
3. Set “current” next element to be the element after

the temp element “3”
4. current.next = temp.next;

temp
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Linked List (remove)
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private boolean remove(int index) {
    if (index <= 0) {
        return removeFirst();
    } else if (index >= size) {
        return removeLast();
    } else {
        Node<T> current = first;
        for (int i = 0; i < index - 1; i++) {
            current = current.next;
        }

        Node<T> temp = current.next;
        current.next = temp.next;
        size-;

        return false;
    }
}
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Linked List (Returning removed element!)
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T removeLast();

T removeFirst();

T remove(int index);

int size();

void print();

void clear();

This is an exercise!
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Linked List (find)
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Linked List (find)
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head/first

0 1 2

T find(T element);

current
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T find(1);

1. Set “current“ to “first”
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Linked List (find)
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head/first

0 1 2

T find(T element);

current

13

3

T find(1);

1. Set “current“ to “first”
2. Keep moving “current” until element is found!
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Linked List (find)
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public T find(T val) {
    Node<T> current = first;
    while (current != null && current.val.equals(val)) {
        current = current.next;
    }

    if (current == null) {
        return null;
    }

    return current.val;
}
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Double-Linked List
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Same as Linked List but now we have an extra pointer pointing towards the previous element “prev”

data

Pointers

Linked List

data

Pointers

data

Pointers

next
null

next

prev
prev

prev

next
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Double-Linked List
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Same as Linked List but now we have an extra pointer pointing towards the previous element “prev”

1. When adding a new node when to fix both “next” and “prev”
2. Having “prev” reduces time complexity of removeLast to O(1)!
3. Removing a node becomes easier (we don’t need to find previous element)

data

Pointers

Linked List

data

Pointers

data

Pointers

next
null

next

prev
prev

prev

next

1. Extra Space!
2. Complex programing
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Double-Linked List
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public class Node<T> {
    public T val;
    public Node<T> next;
    public Node<T> prev;

    public Node(T val) {
        this(val, null, null);
    }

    public Node(T val, Node<T> next) {
        this(val, next, null);
    }

    public Node(T val, Node<T> next, Node<T> prev) {
        this.val = val;
        this.next = next;
        this.prev = prev;
    }
}

data

Pointers

next

prev
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Double-Linked List
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public class DoubleLinkedList<T> {
    Node<T> first;
    Node<T> last;
    int size;

    public DoubleLinkedList() {
        first = last = null;
        size = 0;
    }
}
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Double-Linked List
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public void addFirst(T element) {
    Node<T> node = new Node<>(element);
    if (size == 0) {
        first = last = node;
    } else {
        node.next = first;
        first.prev = node;
        first = node;
    }
    size++;
}

5

head/first
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Double-Linked List
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public void addFirst(T element) {
    Node<T> node = new Node<>(element);
    if (size == 0) {
        first = last = node;
    } else {
        node.next = first;
        first.prev = node;
        first = node;
    }
    size++;
}

5

10

head/first
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Double-Linked List
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public void addFirst(T element) {
    Node<T> node = new Node<>(element);
    if (size == 0) {
        first = last = node;
    } else {
        node.next = first;
        first.prev = node;
        first = node;
    }
    size++;
}

5

10

head/first
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Double-Linked List
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public void addFirst(T element) {
    Node<T> node = new Node<>(element);
    if (size == 0) {
        first = last = node;
    } else {
        node.next = first;
        first.prev = node;
        first = node;
    }
    size++;
}

5

10

head/first
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Double-Linked List
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public void addFirst(T element) {
    Node<T> node = new Node<>(element);
    if (size == 0) {
        first = last = node;
    } else {
        node.next = first;
        first.prev = node;
        first = node;
    }
    size++;
}

5head/first

10
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Double-Linked List

94

void addLast(T element);

void add(int index, T element);

boolean removeLast();

boolean removeFirst();

boolean remove(int index);

int find(T element);

int size();

void print();

void clear();

This is an exercise!
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Circular Linked List
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Double Circular Linked List
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Exercises
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For LinkedList and DoubleLinkedList

boolean contains(T element); // Returns true if list contains “element”. False otherwise

int indexOf(T element);  // Returns index of first occurrence of “element”. -1 otherwise

int lastIndexOf();    // Returns index of last occurrence of “element”. -1 otherwise

void printReverse();   // Print list in reverse order
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Exercises
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Write node class and List class for Circular Linked List and Double Circular LinkedList

5 10 1 13

5 10 1 13
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