
Data Structures
COMP242

Ala’ Hasheesh
ahashesh@birzeit.edu

Lists

1Uploaded By: anonymousSTUDENTS-HUB.com

Lists

• A list is a finite, ordered sequence of data items known as elements
("ordered" means that each element has a position in the list)

We say that 𝑎!"# follows 𝑎!

2Uploaded By: anonymousSTUDENTS-HUB.com

Lists

• A List as an Abstract Data Type (ADT)
list is a sequence of items that supports at least the following
functionality:
• accessing an item at an arbitrary position in the sequence
• adding an item at an arbitrary position
• removing an item at an arbitrary position
• determining the number of items in the list (the list’s length)

3Uploaded By: anonymousSTUDENTS-HUB.com

Lists

• Abstract Data Type (ADT)
specifies what a list will do, without specifying the implementation.

Operation

• Print List
• Find element
• Add element
• Insert element
• Delete element
• Make null

4Uploaded By: anonymousSTUDENTS-HUB.com

Lists

5

public interface Listable<T> {
 void add(T element);

 void insert(int index, T element);

 T delete(int index);

 T get(int index);

 int find(T element);

 void clear();

 void print();
}

We did this in lab0

Uploaded By: anonymousSTUDENTS-HUB.com

Lists

6

public interface Listable<T> {
 void add(T element);

 void insert(int index, T element);

 T delete(int index);

 int find(T element);

 void clear();

 void print();
}

This is a new method

Uploaded By: anonymousSTUDENTS-HUB.com

Lists

7

public interface Listable<T> {
 void add(T element);

 void insert(int index, T element);

 T delete(int index);

 int find(T element);

 void clear();

 void print();
}

5 10 20 13 1

0 1 2 3 4 5

𝒊𝒏𝒔𝒆𝒓𝒕(𝟐, 𝟏𝟎𝟎)

Uploaded By: anonymousSTUDENTS-HUB.com

Lists

8

public interface Listable<T> {
 void add(T element);

 void insert(int index, T element);

 T delete(int index);

 int find(T element);

 void clear();

 void print();
}

5 10 20 13 1

0 1 2 3 4 5

𝒊𝒏𝒔𝒆𝒓𝒕(𝟐, 𝟏𝟎𝟎)

𝑺𝒉𝒊𝒇𝒕	𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔	𝒕𝒐	𝒕𝒉𝒆	𝒓𝒊𝒈𝒉𝒕

Uploaded By: anonymousSTUDENTS-HUB.com

Lists

9

public interface Listable<T> {
 void add(T element);

 void insert(int index, T element);

 T delete(int index);

 int find(T element);

 void clear();

 void print();
}

5 10 20 20 13 1

0 1 2 3 4 5

𝒊𝒏𝒔𝒆𝒓𝒕(𝟐, 𝟏𝟎𝟎)

𝑺𝒉𝒊𝒇𝒕	𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔	𝒕𝒐	𝒕𝒉𝒆	𝒓𝒊𝒈𝒉𝒕

Uploaded By: anonymousSTUDENTS-HUB.com

Lists

10

public interface Listable<T> {
 void add(T element);

 void insert(int index, T element);

 T delete(int index);

 int find(T element);

 void clear();

 void print();
}

5 10 100 20 13 1

0 1 2 3 4 5

𝒊𝒏𝒔𝒆𝒓𝒕(𝟐, 𝟏𝟎𝟎)

𝒂 𝟐 = 𝟏𝟎𝟎

Uploaded By: anonymousSTUDENTS-HUB.com

Lists

11

public interface Listable<T> {
 void add(T element);

 void insert(int index, T element);

 T delete(int index);

 int find(T element);

 void clear();

 void print();
}

public void insert(int index, T element) {
 if (count >= data.length) {
 reSize();
 }

 if (index >= count) {
 index = count - 1;
 }

 if (index < 0) {
 index = 0;
 }

 for (int i = this.count; i > index; i--) { // shift
 data[i] = data[i - 1];
 }

 data[index] = element;
 this.count++;
}

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

12

A linked list is a collection of nodes that together form a linear.

node: A compound object that stores the contents of the
node (Element) and a pointer or reference to the next node in
the list (next).

data

Pointer to
next node

node

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

13

A linked list is a collection of nodes that together form a linear.

node: A compound object that stores the contents of the
node (Element) and a pointer or reference to the next node in
the list (next).

data

Pointer to
next node

Linked List

data

Pointer to
next node

data

Pointer to
next node

next
null

next

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

14

A linked list is a collection of nodes that together form a linear.

node: A compound object that stores the contents of the
node (Element) and a pointer or reference to the next node in
the list (next).

5 10 1 null

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

15

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

data

Pointer to
next node

next

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

16

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

17

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

How do we reach third element?

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

18

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

Node<Integer> n1 = new Node<>(5);
Node<Integer> n2 = new Node<>(10);
Node<Integer> n3 = new Node<>(1);

n1.next = n2;
n2.next = n3;

Node<Integer> head = n1;
Node<Integer> thirdElement = head.next.next;

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

19

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

How do we reach 100th element?

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

20

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

How do we delete ”10” (second element)?

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

21

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

How do we delete ”10” (second element)?

ptr

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

22

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

How do we delete ”10” (second element)?

ptr Node<Integer> ptr = head;
ptr.next = ptr.next.next;

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

23

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

How do we delete ”10” (second element)?

ptr Node<Integer> ptr = head;
ptr.next = ptr.next.next;

We didn’t need to shift anything!

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

24

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

5 10 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

How do we delete ”10” (second element)?

ptr Node<Integer> ptr = head;
Node<Integer> temp = ptr.next;
ptr.next = temp.next;
temp.next = null;

temp

We didn’t need to shift anything!

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

25

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

5 1 null

head/front

In a Linked List we only need a reference to the first element (head/front)

ptr

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

26

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

head/front

In a Linked List we only need a reference to the first element (head/front)

ptr

How do we insert ”3” (after “5”)?

5 1

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

27

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

head/front

In a Linked List we only need a reference to the first element (head/front)

ptr

How do we insert ”3” (after “5”)?

Node<Integer> temp = new Node<>(3);

5 1

3

temp

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

28

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

head/front

In a Linked List we only need a reference to the first element (head/front)

ptr

How do we insert ”3” (after “5”)?

Node<Integer> temp = new Node<>(3);
temp.next = ptr.next;

5 1

3

temp

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

29

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

head/front

In a Linked List we only need a reference to the first element (head/front)

ptr

How do we insert ”3” (after “5”)?

Node<Integer> temp = new Node<>(3);
temp.next = ptr.next;
ptr.next = temp;

5 1

3

temp

We didn’t need to shift anything!

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

30

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

head/front

In a Linked List we only need a reference to the first element (head/front)

last

How do we insert ”10” (after “1”)?

5 1

3

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

31

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

head/front

In a Linked List we only need a reference to the first element (head/front)

last

How do we insert ”10” (after “1”)?

5 1

3

Node<Integer> temp = new Node<>(10);

10

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List

32

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

head/front

In a Linked List we only need a reference to the first element (head/front)

last

How do we insert ”10” (after “1”)?

5 1

3

Node<Integer> temp = new Node<>(10);
last.next = temp;

10

Uploaded By: anonymousSTUDENTS-HUB.com

Memory (Array)

33

Memory

10

15

100

14

101

Array

Memory

15 1400

10 1000

100 2000

1000

1200

1400

2000 14 1700

101 null1700

Head/Front

Uploaded By: anonymousSTUDENTS-HUB.com

Lists (Arrays vs Linked List)

34

Function Array Linked List

Insert at beginning O(n) O(1)

Insert at end O(1) O(n)

Insert at middle O(n) O(n)

Delete at beginning O(n) O(1)

Delete at end O(1) O(n)

Delete at middle O(n) O(n)

Find O(n) O(n)

Get Element at index O(1) O(n)

Print O(n) O(n)

Size O(1) O(n)

Uploaded By: anonymousSTUDENTS-HUB.com

Lists (Arrays vs Linked List)

35

Function Array Linked List

Insert at beginning O(n) O(1)

Insert at end O(1) O(n)

Insert at middle O(n) O(n)

Delete at beginning O(n) O(1)

Delete at end O(1) O(n)

Delete at middle O(n) O(n)

Find O(n) O(n)

Get Element at index O(1) O(n)

Print O(n) O(n)

Size O(1) O(n)

Can we improve time complexity for items bolded in red?

Uploaded By: anonymousSTUDENTS-HUB.com

Lists (Arrays vs Linked List)

36

5 10 1 null

Linked List

Size = 3

Add size field and update it every time an element is added/deleted

Uploaded By: anonymousSTUDENTS-HUB.com

Lists (Arrays vs Linked List)

37

5 10 1 null

Linked List

Size = 3

1. Add size field and update it every time an element is added/deleted.
2. Add last pointer that points to the last element!

1. Now we can add a new node to the end in O(1)
2. We can delete an element from the end in O(1)

head/first last

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (Implementation)

38

public class LinkedList<T> {
 Node<T> first;
 Node<T> last;
 int size;

 public LinkedList() {
 first = last = null;
 size = 0;
 }
}

5 10 1 null

Size = 3

head/first last

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (addFirst)

39

5 1

head/front last

null

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (addFirst)

40

5 1

head/front last

null

12

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (addFirst)

41

5 1

head/front last

null

12 node.next = first;

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (addFirst)

42

5 1

head/front last

null

12 node.next = first;
first = node;

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (addFirst)

43

What if it’s empty?

12

head/front
last

first = last = node;

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (addFirst)

44

public void addFirst(T object) {
 Node<T> node = new Node<>(object);
 if (size == 0) {
 first = last = node;
 } else {
 node.next = first;
 first = node;
 }

 size++;
}

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (getFirst)

45

public T getFirst() {
 if (size == 0) {
 return null;
 }

 return first.val;
}

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (addLast)

46

5 1

head/front last

null

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (addLast)

47

5 1

head/front last

null

12

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (addLast)

48

5 1

head/front last

12
last.next = node;

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (addLast)

49

5 1

head/front

last

12
last.next = node;
last = last.next;

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (addLast)

50

What if it’s empty?

12

head/front
last

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (addLast)

51

public void addLast(T object) {
 Node<T> node = new Node<>(object);
 if (size == 0) {
 first = last = node;
 } else {
 last.next = node;
 last = last.next;
 }

 size++;
}

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (getLast)

52

public T getLast() {
 if (size == 0) {
 return null;
 }

 return last.val;
}

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (get)

53

5 10 1 null

head/first

0 1 2

T get(int index);

ptr

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (get)

54

public T get(int index) {
 if (size == 0) {
 return null;
 }

 if (index < 0 || index >= size) {
 return null;
 }

 Node<T> current = first;
 for (int i = 0; i < index; i++) {
 current = current.next;
 }

 return current.val;
}

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (add)

55

5 10 1

head/first

0 1 2

void add(int index, T element);

current

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (add)

56

5 10 1

head/first

0 1 2

void add(int index, T element);

current

add(2, 15);

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (add)

57

5 10 1

head/first

0 1 2

void add(int index, T element);

current

add(2, 15);

1. We need to move ”current” to previous element

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (add)

58

5 10 1

head/first

0 1 2

void add(int index, T element);

current

add(2, 15);

1. We need to move ”current” to previous element
2. Create new element as “newNode”

15

newNode

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (add)

59

5 10 1

head/first

0 1 2

void add(int index, T element);

current

add(2, 15);

1. We need to move ”current” to previous element
2. Create new element as “newNode”
3. Link new element “newNode” with the next node.

node.next = current.next;

15

newNode

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (add)

60

5 10

1head/first

0 1

2

void add(int index, T element);

current

add(2, 15);

1. We need to move ”current” to previous element
2. Create new element as “newNode”
3. Link new element “newNode” with the next node.

node.next = current.next;
4. Link ”current” with “newNode”

current.next = newNode;

15

newNode

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (add)

61

private void add(int index, T element) {
 if (index <= 0) {
 addFirst(element);
 } else if (index >= size) {
 addLast(element);
 } else {
 Node<T> current = first;
 for (int i = 0; i < index - 1; i++) {
 current = current.next;
 }

 Node<T> newNode = new Node<>(element);
 newNode.next = current.next;
 current.next = newNode;
 size++;
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (removeFirst)

62

5 10 1

head/first

0 1 2

boolean removeFirst();

13

3

last

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (removeFirst)

63

5 10 1

head/first

0 1 2

boolean removeFirst();

13

3

We just need to move the head/first one step!

last

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (removeFirst)

64

5 10 1

head/first

0 1 2

boolean removeFirst();

13

3

We just need to move the head/first one step!

last

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (removeFirst)

65

5

head/first

0

boolean removeFirst();

last
What happens if we have one element?

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (removeFirst)

66

5

head/first

0

boolean removeFirst();

last
What happens if we have one element?

“first“ now points to “null” but last didn’t move!!!
This is a special case that we need to take care of

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (removeFirst)

67

private boolean removeFirst() {
 if (first == null) {
 return false;
 }

 // Check if we have one element only
 if (first == last) {
 first = last = null;
 return true;
 }

 first = first.next;
 size-;

 return true;
}

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (removeLast)

68

5 10 1

head/first

0 1 2

boolean removeLast();

current

13

3

last

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (removeLast)

69

5 10 1

head/first

0 1 2

boolean removeLast();

current

13

3

1. We need to move ”current” to previous element

last

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (removeLast)

70

5 10 1

head/first

0 1 2

boolean removeLast();

current

13

3

1. We need to move ”current” to previous element.
2. Set “current.next” to null

last

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (removeLast)

71

5 10 1

head/first

0 1 2

boolean removeLast();

current

13

3

1. We need to move ”current” to previous element.
2. Set “current.next” to null
3. Set “last“ to ”current”

last

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (removeLast)

72

public boolean removeLast() {
 if (first == null) {
 return false;
 }

 // Check if we have one element only
 if (first == last) {
 first = last = null;
 return true;
 }

 Node<T> current = first;
 for (int i = 0; i < size - 2; i++) {
 current = current.next;
 }

 current.next = null;
 last = current;
 size-;

 return true;
} Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (remove)

73

5 10 1

head/first

0 1 2

boolean remove(int index);

current

13

3

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (remove)

74

5 10 1

head/first

0 1 2

boolean remove(int index);

current

remove(2);

13

3

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (remove)

75

5 10 1

head/first

0 1 2

boolean remove(int index);

current

remove(2);

1. We need to move ”current” to previous element

13

3

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (remove)

76

5 10 1

head/first

0 1 2

boolean remove(int index);

current

remove(2);

1. We need to move ”current” to previous element
2. Set a pointer “temp” to the element

temp = current.next;

temp

13

3

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (remove)

77

5 10 1

head/first

0 1 2

boolean remove(int index);

current

remove(2);

1. We need to move ”current” to previous element
2. Set a pointer “temp” to the element

temp = current.next;
3. Set “current” next element to be the element after

the temp element “3”
4. current.next = temp.next;

temp

13

3

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (remove)

78

5 10 1

head/first

0 1 2

boolean remove(int index);

current

remove(2);

1. We need to move ”current” to previous element
2. Set a pointer “temp” to the element

temp = current.next;
3. Set “current” next element to be the element after

the temp element “3”
4. current.next = temp.next;

temp

13

3

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (remove)

79

private boolean remove(int index) {
 if (index <= 0) {
 return removeFirst();
 } else if (index >= size) {
 return removeLast();
 } else {
 Node<T> current = first;
 for (int i = 0; i < index - 1; i++) {
 current = current.next;
 }

 Node<T> temp = current.next;
 current.next = temp.next;
 size-;

 return false;
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (Returning removed element!)

80

T removeLast();

T removeFirst();

T remove(int index);

int size();

void print();

void clear();

This is an exercise!

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (find)

81

5 10 1

head/first

0 1 2

T find(T element);

13

3

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (find)

82

5 10 1

head/first

0 1 2

T find(T element);

current

13

3

T find(1);

1. Set “current“ to “first”

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (find)

83

5 10 1

head/first

0 1 2

T find(T element);

current

13

3

T find(1);

1. Set “current“ to “first”
2. Keep moving “current” until element is found!

Uploaded By: anonymousSTUDENTS-HUB.com

Linked List (find)

84

public T find(T val) {
 Node<T> current = first;
 while (current != null && current.val.equals(val)) {
 current = current.next;
 }

 if (current == null) {
 return null;
 }

 return current.val;
}

Uploaded By: anonymousSTUDENTS-HUB.com

Double-Linked List

85

Same as Linked List but now we have an extra pointer pointing towards the previous element “prev”

data

Pointers

Linked List

data

Pointers

data

Pointers

next
null

next

prev
prev

prev

next

Uploaded By: anonymousSTUDENTS-HUB.com

Double-Linked List

86

Same as Linked List but now we have an extra pointer pointing towards the previous element “prev”

1. When adding a new node when to fix both “next” and “prev”
2. Having “prev” reduces time complexity of removeLast to O(1)!
3. Removing a node becomes easier (we don’t need to find previous element)

data

Pointers

Linked List

data

Pointers

data

Pointers

next
null

next

prev
prev

prev

next

1. Extra Space!
2. Complex programing

Uploaded By: anonymousSTUDENTS-HUB.com

Double-Linked List

87

public class Node<T> {
 public T val;
 public Node<T> next;
 public Node<T> prev;

 public Node(T val) {
 this(val, null, null);
 }

 public Node(T val, Node<T> next) {
 this(val, next, null);
 }

 public Node(T val, Node<T> next, Node<T> prev) {
 this.val = val;
 this.next = next;
 this.prev = prev;
 }
}

data

Pointers

next

prev

Uploaded By: anonymousSTUDENTS-HUB.com

Double-Linked List

88

public class DoubleLinkedList<T> {
 Node<T> first;
 Node<T> last;
 int size;

 public DoubleLinkedList() {
 first = last = null;
 size = 0;
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

Double-Linked List

89

public void addFirst(T element) {
 Node<T> node = new Node<>(element);
 if (size == 0) {
 first = last = node;
 } else {
 node.next = first;
 first.prev = node;
 first = node;
 }
 size++;
}

5

head/first

Uploaded By: anonymousSTUDENTS-HUB.com

Double-Linked List

90

public void addFirst(T element) {
 Node<T> node = new Node<>(element);
 if (size == 0) {
 first = last = node;
 } else {
 node.next = first;
 first.prev = node;
 first = node;
 }
 size++;
}

5

10

head/first

Uploaded By: anonymousSTUDENTS-HUB.com

Double-Linked List

91

public void addFirst(T element) {
 Node<T> node = new Node<>(element);
 if (size == 0) {
 first = last = node;
 } else {
 node.next = first;
 first.prev = node;
 first = node;
 }
 size++;
}

5

10

head/first

Uploaded By: anonymousSTUDENTS-HUB.com

Double-Linked List

92

public void addFirst(T element) {
 Node<T> node = new Node<>(element);
 if (size == 0) {
 first = last = node;
 } else {
 node.next = first;
 first.prev = node;
 first = node;
 }
 size++;
}

5

10

head/first

Uploaded By: anonymousSTUDENTS-HUB.com

Double-Linked List

93

public void addFirst(T element) {
 Node<T> node = new Node<>(element);
 if (size == 0) {
 first = last = node;
 } else {
 node.next = first;
 first.prev = node;
 first = node;
 }
 size++;
}

5head/first

10

Uploaded By: anonymousSTUDENTS-HUB.com

Double-Linked List

94

void addLast(T element);

void add(int index, T element);

boolean removeLast();

boolean removeFirst();

boolean remove(int index);

int find(T element);

int size();

void print();

void clear();

This is an exercise!

Uploaded By: anonymousSTUDENTS-HUB.com

Circular Linked List

95

5 10 1 13

Uploaded By: anonymousSTUDENTS-HUB.com

Double Circular Linked List

96

5 10 1 13

Uploaded By: anonymousSTUDENTS-HUB.com

Exercises

97

For LinkedList and DoubleLinkedList

boolean contains(T element); // Returns true if list contains “element”. False otherwise

int indexOf(T element); // Returns index of first occurrence of “element”. -1 otherwise

int lastIndexOf(); // Returns index of last occurrence of “element”. -1 otherwise

void printReverse(); // Print list in reverse order

Uploaded By: anonymousSTUDENTS-HUB.com

Exercises

98

Write node class and List class for Circular Linked List and Double Circular LinkedList

5 10 1 13

5 10 1 13

Uploaded By: anonymousSTUDENTS-HUB.com

