
Birzeit University Mechanical & Mechatronics Engineering Department Thermal fluid engineering ENMC4411 Homework 3

Chapter 3 Dimensional Analysis

Instructors: Dr. Afif Akel First semester 2019-20120

- 1. In forced convection, the heat transfer coefficient h is a function of thermal conductivity k, density ρ , viscosity μ , specific heat c_p , body length L, and velocity V. Heat transfer coefficient has units of W/(m²-K) and dimensions {MT⁻³ Θ ⁻¹}. Rewrite this relation in dimensionless form, using (k, ρ, c_p, L) as repeating variables.
- 2. The torque M required to turn the cone-plate viscometer in Fig. P5.35 depends upon the radius R, rotation rate Ω , fluid viscosity μ , and cone angle θ . Rewrite this relation in dimensionless form. How does the relation simplify if it is known that M is proportional to θ ?

3. A prototype ship is 35 m long and designed to cruise at 11 m/s (about 21 kn). Its drag is to be simulated by a 1-m-long model pulled in a tow tank. For Froude scaling find (a) the tow speed, (b) the ratio of prototype to model drag, and (c) the ratio of prototype to model power.