Chapter 12: The Cell Cycle

I. Cell division in prokaryotes

- A. typically, a prokaryotic cell divides by **binary fission**, **splitting** into two nearly equal halves
 - 1. the main circular DNA molecule of the cell is replicated (replication begins at a replication origin)
- B. prokaryotic cells can have a generation time (the period from start of one cell division to start of next cell division; 20min.)

II. Eukaryotic DNA molecules are organized in **chromosomes**

A. each chromosome is made of chromatin, a long DNA molecule with associated proteins

- 1. chromatin is packaged into dense chromosomes during cell division
- 2. the chromosomes are unpacked ("decondensed") when cells are not dividing
- B. each chromosome contains hundreds to thousands of genes
 - 1. the complete DNA sequence for an organism is the **genome**; it contains the complete set of instructions for that organism
 - 2. humans apparently have ~40,000 genes in the now-sequenced human genome
 - 3. each species has a characteristic number of chromosomes (number varies between species)
 - 4. chromosome number does not reflect the complexity of the organism
 - 5. the assortment of chromosomes for an individual is the **karyotype** (humans have 46 chromosomes)
- C. chromosomes carry the genetic information: from one cell generation to the next, and from one organism to its offspring

III. The eukaryotic cell cycle

- A. the **cell cycle** describes the status of cells in relationship to growth and division
 - 1. when cells reach a certain size, growth either stops or the cell must divide
 - 2. most, <u>but not all</u>, eukaryotic cells are capable of dividing
 - 3. cell division is generally *a highly regulated process (OTHERWISE CANCER)*
 - 4. the generation time for eukaryotic cells varies widely, but is usually 8-20 hours
- B. cell cycle has two main phases **interphase** and **cell division** (mitosis + cytokinesis)
- C. **interphase** is divided into *three parts*, defined <u>with respect to DNA replication</u>
 - 1. the DNA is completely replicated (genetic information duplicated) during the synthesis phase or S phase
 - the period before the S phase is a "gap" phase, G₁ phase (most cellular growth occurs in this phase)
 - this phase is usually the most variable with respect to time, and is **typically longest**
 - cells that do not divide become arrested in this phase, then called G₀
 - 2. the period between the S phase and cell division is the G_2 phase
 - the G₂ phase is usually short; cells in this phase are committed to and preparing for cell division
- D. **cell division** has two main parts **mitosis** and **cytokinesis**
 - 1. mitosis is the process that distributes a complete copy of the duplicated genetic information to each daughter cell
 - 2. **cytokinesis** is the process of **dividing the cytoplasm** into two separate cells
 - 3. some cells can have <u>mitosis without cytokinesis</u> (most common in fungi)= **Dikaryotic**
- E. the current model of **cell cycle regulation** involves a <u>highly conserved</u>, <u>genetically-controlled program</u> that can be influenced by external signals
 - 1. there are three major **checkpoints**, found in G_1 , G_2 and **mitosis**
 - 2. key regulatory components for checkpoints are cyclins and cyclin-dependent protein kinases
 - hormones such as cytokinins in plants and various protein growth factors in animals can stimulate progression through checkpoints in the right cells under the right conditions
 - 4. other factors can serve as **suppressors** of cell division
 - 5. **cancer cells** generally grow without needing stimulation by external growth factors and fail to respond to normal suppressors of cell division

IV. **mitosis** is generally be divided into 4 stages: **prophase**, **metaphase**, **anaphase**, and **telophase** (**PMAT**)

- A. be aware that mitosis is a continuous process,
 - the stages are defined only for our convenience
- B. **prophase** chromatin condenses to form chromosomes
 - each chromosome (duplicated during S phase) forms a pair of sister chromatids
 - sister chromatids are joined at a **centromere** by protein tethers
 - centromeres contain a kinetochore where microtubules will bind
 - each sister chromatid has its own kinetochore
 - 2. a system of microtubules, called the **mitotic spindle**, organizes between the two poles (opposite ends) of the cell
 - each pole has a microtubule organizing center (MTOC)
 - in animals and some other eukaryotes, centrioles are found in the MTOC; their exact role, if any, is unclear

Metaphase

Chromosomes line up at equator mitotic spindle

Sister chromatids pulled apart

Cell pinches in the middle

Two identical daughter cells

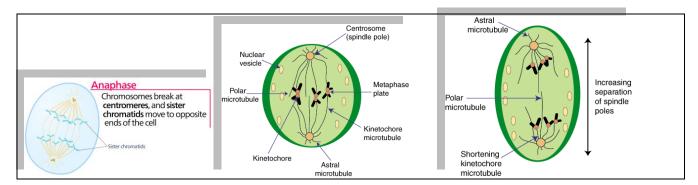
2n - diploid

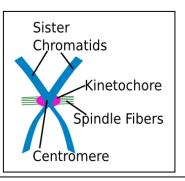
Interphase

Prophase

1 of 2

3. by the end of prophase:


C.


1.

- the <u>nuclear membrane has disappeared</u> (actually divided into many small vesicles)
 - nucleoli have disintegrated
 - the sister chromatids are attached by their **kinetochores** to microtubules from opposite poles
 - 4. some call the later part of prophase **prometaphase**, usually defined to include vesicularization of the nuclear membrane and attachment of kinetochores to microtubules

metaphase – chromosomes line up along the <u>midplane</u> of the cell (**metaphase plate**) chromosomes are most condensed, most visible, and most distinguishable

- 2. the **mitotic spindle**, now complete, has two types of microtubules
 - **kinetochore microtubules** extend from a pole to a kinetochore
 - **polar microtubules** extend from a pole to the midplane area, often overlapping with polar microtubules from the other pole
- 3. the mitosis **checkpoint** appears to be here; *progress past metaphase is typically prevented until the kinetochores are all attached to microtubules*
- D. **anaphase** sister chromatids *separate* and are moved toward opposite poles
 - 1. protein tethers حبال at the centromere between the chromatids are **broken**
 - 2. <u>each former sister chromatid can now be called a chromosome</u>
 - 3. model for the mechanism that moves chromosomes to the poles
 - **motor proteins** move the chromosomes towards the poles **along the kinetochores microtubules**
 - kinetochore microtubules <u>shorten</u> as behind the moving chromosomes
 - polar microtubules <u>lengthen</u> the entire spindle
 - motor proteins on the polar microtubules slide them past each other, **<u>pushing them apart</u>** (the microtubules may grow a bit, too)
 - this pushes the MTOCs (microtubule organizing centers) away from each other, and thus has the effect of pushing kinetochore microtubules from opposite poles away from each other
 - 4. this process assures that each daughter cell will receive one of the duplicate sets of genetic material.
- E. telophase the processes of prophase are reversed
 - 1. the mitotic spindle is disintegrated
 - 2. the chromosomes **decondense**
 - 3. nuclear membranes <u>reform</u> around the genetic material to form two nuclei
 - 4. nucleoli <u>reappear</u>, and interphase cellular functions resume
- V. **cytokinesis** divides the cell into two daughter cells
 - A. **cytokinesis** usually *begins in telophase* and ends shortly thereafter
 - 1. in animals, a **cleavage furrow** develops usually close to where the metaphase plate was
 - a microfilament (actin) ring contracts due to interactions with myosin molecules, forming a deepening furrow
 - eventually, the ring closes enough for spontaneous separation of the plasma membrane
 - 2. in plants, a **cell plate** develops usually close to where the metaphase plate was
 - vesicles that originate from the Golgi line up in the equatorial region
 - vesicles fuse and add more vesicles, growing outward until reaching the plasma membrane ~ separating the cells
 - the vesicles contain materials for making the primary cell wall and a middle lamella
 - B. cytoplasm (and with it most organelles) is usually distributed randomly but roughly equally between daughter cells

<u>Centromere</u>: the primary constriction تَضَيَّق of a chromosome.

<u>Kinetochores</u>: two discs of proteins located at the centromere, on opposite sides of the chromosome.

Microtubules attach to the chromosomes actually attach to the kinetochores (called kientochore microtubules).