
Virtual Memory

STUDENTS-HUB.com

https://students-hub.com

Virtual Memory Concepts
What is Virtual Memory?

Uses disk as an extension to memory system

Main memory acts like a cache to hard disk

Each process has its own virtual address space

 Page: a virtual memory block

 Page fault: a memory miss

Page is not in main memory  transfer page from disk to memory

 Address translation:

CPU and OS translate virtual addresses to physical addresses

 Page Size:

Size of a page in memory and on disk

 Typical page size = 4KB – 16KB

STUDENTS-HUB.com

https://students-hub.com

Virtual Memory Concepts
 A program’s address space is divided into pages

 All pages have the same fixed size (simplifies their allocation)

Program 1

virtual address space

main memory

Program 2

virtual address space

Pages are either in main

memory or on in secondary

storage (hard disk)

STUDENTS-HUB.com

https://students-hub.com

Issues in Virtual Memory
 Page Size

Small page sizes ranging from 4KB to 16KB are typical today

 Large page size can be 1MB to 4MB (reduces page table size)

Recent processors support multiple page sizes

 Placement Policy and Locating Pages

 Fully associative placement is typical to reduce page faults

Pages are located using a structure called a page table

Page table maps virtual pages onto physical page frames

 Handling Page Faults and Replacement Policy

Page faults are handled in software by the operating system

Replacement algorithm chooses which page to replace in memory

Write Policy

Write-through will not work, since writes take too long

 Instead, virtual memory systems use write-back

STUDENTS-HUB.com

https://students-hub.com

Three Advantages of Virtual Memory
 Memory Management:

Programs are given contiguous view of memory

Pages have the same size  simplifies memory allocation

Physical page frames need not be contiguous

Only the “Working Set” of program must be in physical memory

Stacks and Heaps can grow

 Use only as much physical memory as necessary

 Protection:

Different processes are protected from each other

Different pages can be given special behavior (read only, etc)

Kernel data protected from User programs

Protection against malicious programs

 Sharing:

Can map same physical page to multiple users “Shared memory”

STUDENTS-HUB.com

https://students-hub.com

Page Table and Address Mapping

Page Table Register

contains the address

of the page table

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not

present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Page Table maps

virtual page numbers

to physical frames

Virtual page number

is used as an index

into the page table

Page Table Entry

(PTE): describes the

page and its usage

STUDENTS-HUB.com

https://students-hub.com

Page Table – cont’d
 Each process has a page table

 The page table defines the address space of a process

Address space: set of page frames that can be accessed

Page table is stored in main memory

Can be modified only by the Operating System

 Page table register

Contains the physical address of the page table in memory

Processor uses this register to locate page table

 Page table entry

Contains information about a single page

Valid bit specifies whether page is in physical memory

Physical page number specifies the physical page address

Additional bits are used to specify protection and page use
STUDENTS-HUB.com

https://students-hub.com

Size of the Page Table

 One-level table is simplest to implement

 Each page table entry is typically 4 bytes

With 4K pages and 32-bit virtual address space, we need:

 232/212 = 220 entries × 4 bytes = 4 MB

With 4K pages and 48-bit virtual address space, we need:

 248/212 = 236 entries × 4 bytes = 238 bytes = 256 GB !

 Cannot keep whole page table in memory!

 Most of the virtual address space is unused

Virtual Page Number 20 Page Offset 12

STUDENTS-HUB.com

https://students-hub.com

Reducing the Page Table Size
 Use a limit register to restrict the size of the page table

 If virtual page number > limit register, then page is not allocated

Requires that the address space expand in only one direction

 Divide the page table into two tables with two limits

One table grows from lowest address up and used for the heap

One table grows from highest address down and used for stack

Does not work well when the address space is sparse

 Use a Multiple-Level (Hierarchical) Page Table

Allows the address space to be used in a sparse fashion

Sparse allocation without the need to allocate the entire page table

Primary disadvantage is multiple level address translation

STUDENTS-HUB.com

https://students-hub.com

Multi-Level Page Table

Level 1
Page Table

Level 2

Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset

0 11 12 21 22 31

10-bit
L1 index

10-bit
L2 index

STUDENTS-HUB.com

https://students-hub.com

Variable-Sized Page Support

Level 1
Page Table

Level 2

Page Tables
page in primary memory
large page in primary memory
page in secondary memory
PTE of a nonexistent page

Root of the Current
Page Table

p1

p2

Virtual Address

(Processor
Register)

p1 p2 offset

0 11 12 21 22 31

10-bit
L1 index

10-bit
L2 index

4 MB

page

Data Pages

STUDENTS-HUB.com

https://students-hub.com

Hashed Page Table

hash
index

Base of Table

+
PA of PTE

Hashed Page Table
VPN offset

Virtual Address

PID VPN PID PPN link

VPN PID PPN

 One table for all processes

 Table is only small fraction of memory

Number of entries is 2 to 3 times number of

page frames to reduce collision probability

 Hash function for address translation

Search through a chain of page table entries

STUDENTS-HUB.com

https://students-hub.com

Handling a Page Fault

 Page fault: requested page is not in memory

 The missing page is located on disk or created

 Page is brought from disk and Page table is updated

 Another process may be run on the CPU while the first process

waits for the requested page to be read from disk

If no free pages are left, a page is swapped out

 Pseudo-LRU replacement policy

 Reference bit for each page each page table entry

 Each time a page is accessed, set reference bit =1

 OS periodically clears the reference bits

Page faults are handled completely in software by the OS

 It takes milliseconds to transfer a page from disk to memory

STUDENTS-HUB.com

https://students-hub.com

Write Policy
Write through does not work

 Takes millions of processor cycles to write disk

Write back

 Individual writes are accumulated into a page

 The page is copied back to disk only when the page is replaced

 Dirty bit

 1 if the page has been written

 0 if the page never changed

STUDENTS-HUB.com

https://students-hub.com

CPU

Core
TLB Cache

Main

Memory

VA PA miss

hit

data

TLB = Translation Lookaside Buffer
 Address translation is very expensive

Must translate virtual memory address on every memory access

Multilevel page table, each translation is several memory accesses

 Solution: TLB for address translation

Keep track of most common translations in the TLB

 TLB = Cache for address translation

STUDENTS-HUB.com

https://students-hub.com

Translation Lookaside Buffer

VPN offset

V R W D VPN PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

TLB hit: Fast single cycle translation

TLB miss: Slow page table translation

Must update TLB on a TLB miss

STUDENTS-HUB.com

https://students-hub.com

Address Translation & Protection

Every instruction and data access needs address translation and
protection checks

Check whether page is read only, writable, or executable

Check whether it can be accessed by the user or kernel only

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

 Protection
Check

Exception?

Kernel/User Mode

Read/Write

STUDENTS-HUB.com

https://students-hub.com

Handling TLB Misses and Page Faults
 TLB miss: No entry in the TLB matches a virtual address

 TLB miss can be handled in software or in hardware

 Lookup page table entry in memory to bring into the TLB

 If page table entry is valid then retrieve entry into the TLB

 If page table entry is invalid then page fault (page is not in memory)

 Handling a Page Fault

 Interrupt the active process that caused the page fault

 Program counter of instruction that caused page fault must be saved

 Instruction causing page fault must not modify registers or memory

 Transfer control to the operating system to transfer the page

Restart later the instruction that caused the page fault

STUDENTS-HUB.com

https://students-hub.com

Handling a TLB Miss

 Software (MIPS, Alpha)

 TLB miss causes an exception and the operating system

walks the page tables and reloads TLB

A privileged addressing mode is used to access page tables

 Hardware (SPARC v8, x86, PowerPC)

A memory management unit (MMU) walks the page tables

and reloads the TLB

 If a missing (data or PT) page is encountered during the

TLB reloading, MMU gives up and signals a Page-Fault

exception for the original instruction. The page fault is

handled by the OS software.

STUDENTS-HUB.com

https://students-hub.com

Address Translation Summary

TLB
Lookup

Page Table
Walk

Update TLB Page Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

 the page is
 memory  memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT

Restart instruction

STUDENTS-HUB.com

https://students-hub.com

TLB, Page Table, Cache Combinations

TLB Page Table Cache Possible? Under what circumstances?

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss Hit/Miss

Miss Miss Hit

Yes – what we want!

Yes – although the page table is not

checked if the TLB hits

Yes – TLB miss, PA in page table

Yes – TLB miss, PA in page table, but

data is not in cache

Yes – page fault (page is on disk)

Impossible – TLB translation is not

possible if page is not in memory

Impossible – data not allowed in cache if

page is not in memory

STUDENTS-HUB.com

https://students-hub.com

Address Translation in CPU Pipeline

Software handlers need restartable exception on page fault

Handling a TLB miss needs a hardware or software mechanism to refill TLB

Need mechanisms to cope with the additional latency of a TLB

 Slow down the clock

 Pipeline the TLB and cache access

 Virtual address caches

 Parallel TLB/cache access

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W +

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

STUDENTS-HUB.com

https://students-hub.com

Physical versus Virtual Caches
 Physical caches are addressed with physical addresses

Virtual addresses are generated by the CPU

Address translation is required, which may increase the hit time

 Virtual caches are addressed with virtual addresses

Address translation is not required for a hit (only for a miss)

CPU

Core
TLB

Cache

Main

Memory

VA PA (on miss)

hit
data

STUDENTS-HUB.com

https://students-hub.com

Physical versus Virtual Caches

 one-step process in case of a hit (+)

 cache needs to be flushed on a context switch unless
process identifiers (PIDs) included in tags (-)

 Aliasing problems due to the sharing of pages (-)

maintaining cache coherence (-)

CPU
Physical
Cache

TLB
Primary
Memory

VA
PA

Alternative: place the cache before the TLB

CPU

VA

Virtual
Cache

PA
TLB

Primary
Memory

STUDENTS-HUB.com

https://students-hub.com

Drawbacks of a Virtual Cache
 Protection bits must be associated with each cache block

Whether it is read-only or read-write

 Flushing the virtual cache on a context switch

 To avoid mixing between virtual addresses of different processes

Can be avoided or reduced using a process identifier tag (PID)

 Aliases

Different virtual addresses map to same physical address

Sharing code (shared libraries) and data between processes

Copies of same block in a virtual cache

 Updates makes duplicate blocks inconsistent

Can’t happen in a physical cache

STUDENTS-HUB.com

https://students-hub.com

Aliasing in Virtual-Address Caches

VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share
one physical page

Virtual cache can have two
copies of same physical data.
Writes to one copy not visible
to reads of other!

General Solution: Disallow aliases to coexist in cache

OS Software solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this

ensures all VAs accessing same PA will conflict in direct-

mapped cache

STUDENTS-HUB.com

https://students-hub.com

Address Translation during Indexing
 To lookup a cache, we can distinguish between two tasks

 Indexing the cache – Physical or virtual address can be used

Comparing tags – Physical or virtual address can be used

 Virtual caches eliminate address translation for a hit

However, cause many problems (protection, flushing, and aliasing)

 Best combination for an L1 cache

 Index the cache using virtual address

 Address translation can start concurrently with indexing

 The page offset is same in both virtual and physical address

 Part of page offset can be used for indexing  limits cache size

Compare tags using physical address

 Ensure that each cache block is given a unique physical address

STUDENTS-HUB.com

https://students-hub.com

Concurrent Access to TLB & Cache

Index L is available without consulting the TLB
 cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

Cases: L ≤ k-b, L > k-b (aliasing problem)

 VPN L b

TLB Direct-map Cache
2L

 blocks
2b-byte block

 PPN Page Offset

=
hit?

Data Physical Tag

Tag

VA

PA

Index

k

STUDENTS-HUB.com

https://students-hub.com

Problem with L1 Cache size > Page size

Virtual Index now uses the lower a bits of VPN

VA1 and VA2 can map to same PPN

Aliasing Problem: Index bits = L > k-b

Can the OS ensure that lower a bits of VPN are same in PPN?

 VPN a k – b b

TLB

 PPN ? Page Offset

Tag

VA

PA

Virtual Index = L bits

L1 cache
Direct-map

= hit?

PPN Data

PPN Data

VA1

VA2

k

STUDENTS-HUB.com

https://students-hub.com

Anti-Aliasing with Higher Associativity
Set Associative Organization

 VPN a L = k-b b

TLB 2L
 blocks

 PPN Page Offset

=
hit?

Data

Tag

Physical Tag

VA

PA

Virtual
Index

k 2L
 blocks

2a

=

2a

Tag

Using higher associativity: cache size > page size

2a physical tags are compared in parallel

Cache size = 2a x 2L x 2b > page size (2k bytes)

STUDENTS-HUB.com

https://students-hub.com

Anti-Aliasing via Second Level Cache

Usually a common L2 cache backs up both
Instruction and Data L1 caches

L2 is typically “inclusive” of both Instruction and
Data caches

CPU

L1 Data
Cache

L1
Instruction
Cache

Unified L2
Cache

RF Memory

Memory

Memory

Memory

STUDENTS-HUB.com

https://students-hub.com

Anti-Aliasing Using L2: MIPS R10000

 VPN a k – b b

TLB

 PPN Page Offset
Tag

VA

PA

L-bit index L1 cache
Direct-map

= hit?

PPN Data

PPN Data

VA1

VA2

k

Direct-Mapped L2

 PPN Data

 Suppose VA1 and VA2 (VA1  VA2) both map to

same PPN and VA1 is already in L1, L2

 After VA2 is resolved to PA, a collision will be

detected in L2.

 VA1 will be purged from L1 and L2, and VA2 will

be loaded  no aliasing !

STUDENTS-HUB.com

https://students-hub.com

TLB Organization
 TLB keeps track of recently accessed pages

Virtual and Physical page numbers

Valid, Dirty, and Reference bits

Access bits: whether page is read-only or read-write

PID: process ID – which process is currently using TLB entry

 Some Typical Values for a TLB

 TLB size = 16 – 512 entries

Small TLBs are fully associative, while big ones are set-associative

Hit time = 0.5 – 1 clock cycle

 TLB Miss Penalty = 10 – 100s clock cycles

Miss Rate = 0.01% – 1%

STUDENTS-HUB.com

https://students-hub.com

Examples on TLB Parameters

Intel P4 AMD Opteron

1 TLB for instructions

1 TLB for data

Both TLBs are 4-way set associative

Both use ~LRU replacement

Both have 128 entries

TLB misses are handled in hardware

2 TLBs for instructions (L1 and L2)

2 TLBs for data (L1 and L2)

Both L1 TLBs are fully associative

Both L1 TLBs have 40 entries

Both L1 TLBs use ~LRU replacement

Both L2 TLBs are 4-way set associative

Both L2 TLBs have 512 entries

Both L2 LTBs use round-robin LRU

TBL misses are handled in hardware

STUDENTS-HUB.com

https://students-hub.com

Putting It All Together: AMD Opteron

VA = 48 bits

PA = 40 bits

L1: 64KB, 64-byte blocks

2-way set associative, LRU

Virtual index, Physical tag

L2: 1MB, 64-byte blocks

16-way set associative, PLRU

L1 TLB: 40 entries

Fully Associative

L2 TLB: 512 entries

4-way Set Associative

STUDENTS-HUB.com

https://students-hub.com

AMD Opteron Memory Hierarchy

 AMD Opteron has an exclusion policy between L1 and L2

Block can exist in L1 or L2 but not in both

Better use of cache resources

Both the D-cache and L2 use write-back with write-miss allocation

 L1 cache is pipelined, latency of hit is 2 clock cycles

 Miss in L1 goes to L2 and to memory controller

 Lower the miss penalty in case the L2 cache misses

 L1 cache is virtually indexed and physically tagged

 On a miss, cache controller must check for aliases in L1

 23 = 8 L1 cache tags per way are examined for aliases in parallel

during an L2 cache lookup.

 If it finds an alias, the offending block is invalidated.

 Victim Buffer: used when replacing modified blocks

 STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

https://students-hub.com

