
Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 06
Pointers and Modular
Programming

Loading…

Chapter Objectives:

1. Learn about pointers and indirect addressing.

2. Read from input files and write to output files using file pointers.

3. Understand the differences between call-by-value and call-by-reference.’

4. How to write functions that can return multiple outputs.

5. Modularize a program system

6. Document the flow of information using structure charts

And more….

➢ The declaration:

Identifies x as a variable of type float.

➢ The declaration:

Identifies p as a pointer variable of type “pointer to float .”

➢ This means that we can store the memory address of a type float variable in p. (1).

6.1 POINTERS AND THE INDIRECTION OPERATOR

float *p;

float x;

float* p;OR

Loading…

➢ Example:

o Allocate storage for an int variable m and a pointer variable itemp.
o Stores the memory address of m in pointer itemp, It applies the unary address of

operator & to variable m to get its address which is then stored in itemp . (1)

 Figure 6.1

int m = 25;

int *itemp; /* a pointer to an integer */

itemp = &m; /* Store address of m in pointer itemp */

➢ When the unary indirection operator * is applied to a pointer variable, it has the
effect of following the pointer referenced by its operand.

➢ This provides an indirect reference (also called dereferencing) to the cell that is
selected by the pointer variable.

 *itemp is equal to m

INDIRECT
REFERENCE

Loading…

➢ EXAMPLE 6.2:

int m = 20; => stores 20 in the variable m.

*itemp = 35; => stores 35 in the variable m that is pointed to by itemp

printf("%d", *itemp); => displays the new value of m (35).

*itemp = 2 * (*itemp); => doubles the value currently stored in m (1)

➢ To use files in this way, we must declare pointer variables of type FILE *.

o FILE *inp; /* pointer to input file */
o FILE *outp; /* pointer to output file */ (1)

➢ The operating system must prepare a file for input or output before permitting access.

(2)

o inp = fopen("distance.txt", "r"); (3)
o outp = fopen("distout.txt", "w");

● “r” => read (scan) data from the file opened.
● “w” => write to distout.txt.
● outp is initialized as an output file pointer(4)

POINTERS TO FILES

o fscanf(inp, "%lf", &item);
o fprintf(outp, "%.2f\n", item);

➢ Function fscanf must first be given an input file pointer like inp (1)

➢ fprintf differs from function printf only in its requirement of an output file pointer like
outp as its first argument.

➢ Like scanf , function fscanf returns either the number of items read or a negative value

(EOF) if the end of file character is detected.

o fclose(inp); => closes input file (2)
o fclose(outp); => closes output file

o Figure 6.2

POINTERS TO FILES

➢ Types of functions with parameters

void welcomeMsg(){

 printf(“Welcome”);

}

void sum(int x, int y){

 int sum = x + y;

 printf(“%d”, sum);

}

int sum(int x, int y){

 int sum = x + y;

 return sum;

}

Functions without parameters and return
values

Functions with parameters and no return values

Functions with parameters and return values

➢ When a function call executes, the computer allocates memory space in the function
data area for each formal parameter.

➢ The value of each actual parameter is stored in the memory cell allocated to its

corresponding formal parameter

➢ Or, we can use the address of operator (&) to store the actual parameter’s

address instead of its value.

➢ Next, we discuss how a function uses pointers and the indirection operator (*) to

return results to the function that calls it.

6.2 FUNCTIONS WITH OUTPUT
PARAMETERS

int result = Sum(x,y); //function call (actual parameters)

int Sum(int num1, int num2); //function definition (formal parameters)

➢ Figure 6.5
● In our previous examples, all the formal parameters of a function represent inputs to the

function from the calling function.

● In function separate, only the first formal parameter, num , is an input.

● the other three formal parameters— signp , wholep , and fracp — are output

parameters (1)

● Output parameters are declared as pointers.

Figure 6.4

Figure 6.6

Call-by-value vs Call-by reference

Call-by-value

Call-by reference

➢ The values of the actual output arguments in the call to separate are useless.

➢ These values are also of data types that do not match the types of the corresponding

formal parameters

➢ In general if a reference x is of type “ any-type ,” the reference &x is of type

“pointer to any-type ,” that is, “ any-type * .”

➢ *signp = '+'; => follows the pointer in signp to the cell that function main calls sn
and stores in it the character '+‘.

➢ *wholep = floor(magnitude); => follows the pointer in wholep to the cell called

whl by main and stores the integer 35 there.

➢ *fracp = magnitude - *wholep; => uses two indirect references:

1. One accesses the value in main ’s local variable whl through the pointer wholep.

2. The other accesses fr of main through the pointer fracp to give the final output
argument the value 0.817 .

1. We studied its use as the binary operator meaning multiplication.

2. The * ’s in the declarations of the function’s formal parameters are part of the names
of the parameters’ data types. These * ’s should be read as “pointer to.” char
*signp; (1)

3. The * has a completely different meaning when it is used as the unary indirection

operator in the function body. Here it means “follow the pointer.”

Thus, when used in a reference,

 *signp means follow the pointer in signp

MEANINGS OF *
SYMBOL

➢ Example 6.4, p.328

➢ Figure 6.7 (1)

➢ TABLE 6.3 p.330 Trace of Program to Sort Three Numbers

➢ Data Area after execution of:
 temp = *smp

 Figure 6.8

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ TABLE 6.4 p.332 Different Kinds of Function Subprograms (1).

➢ Although all the kinds of functions in Table 6.4 are useful in developing program

systems, we recommend that you use the first kind whenever it is possible to do so.
(2).

6.3 MULTIPLE CALLS TO A FUNCTION WITH INPUT/OUTPUT PARAMETERS

➢ The scope of a name: the region of a program where a particular meaning of a
name is visible or can be referenced.

➢ Constant macros: their scope begins at their definition and continues to the end of

the source file. This means that all functions can access them.

➢ Function subprogram: its scope begins with its prototype and continues to the end

of the source file.

➢ Formal parameters and local variables are visible only from their declaration to

the closing brace of the function in which they are declared
➢ Figure 6.9 => (See Table 6.5 p336)

6.4 SCOPE OF NAMES

➢ Sometimes a function needs to pass its own output parameter as an argument when
it calls another function.

➢ Figure 6.10 (1)

● In all other calls to scanf , we applied the address-of operator & to each variable to

be filled. However, because nump and denomp store addresses, we can use them
directly in the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

Figure 6.11: data areas for scan_fraction and the function calling it.

Table 6.6 p.339 gives you guidelines for function arguments of type int , double , and char

6.5 FORMAL OUTPUT PARAMETERS AS ACTUAL
ARGUMENTS

CASE STUDY (Homework)
P.347 - 355

Arithmetic with Common Fractions

6.6 PROBLEM SOLVING ILLUSTRATED

➢ If we keep each function to a manageable size, the likelihood of error increases
much more slowly. It is also easier to read and test each function.

➢ A unit test is a preliminary test of a single function, performed independently of the
complete program system, to locate and correct errors more easily. (1)

Testing Types:
● Top-down testing: testing a program by using stubs to trace the call sequence and

verify the correctness of the program's control flow.

● Bottom-up Testing: separately testing individual functions before inserting them in a
program system.

● System integration tests: Tests of the entire system

6.7 DEBUGGING AND TESTING A PROGRAM
SYSTEM

Loading…

1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

2. Create a trace of execution by displaying the function name as you enter it.
3. Trace or display the values of all input and input/output parameters upon entry

to a function.
4. Trace or display the values of all function outputs after returning from a

function. Verify that these values are correct by hand computation.
5. Make sure you declare all input/output and output parameters as pointer

types.
6. Make sure that a function stub assigns a value to the variable pointed to by each

output parameter.

DEBUGGING TIPS FOR PROGRAM
SYSTEMS

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Pointers Explained:
https://www.youtube.com/watch?v=2ybLD6_2gKM&list=WL&index=35&t=25s

Uploaded By: anonymousSTUDENTS-HUB.com

