Object-Oriented
Thinking

https://students-hub.com

Introduction to Object-Oriented
Thinking

» Moving beyond basic class definition to how to think in an object-oriented
way.

» Focuses on design principles and common OOP patterns.

» Key concepts: inheritance, polymorphism, abstract classes, interfaces.

ENTS-HUB.com

https://students-hub.com

Class Relationships: Association

» Association: A general binary relationship that describes an activity between
two classes."Has a" or "uses a" relationship.

» Example: A Student takes a Course. (Many-to-many)

» Represented by a plain line in UML.

ENTS-HUB.com

https://students-hub.com

Class Relationships: Aggregation

» Aggregation: A special form of association that represents a "has-a"
relationship where one object "owns" or contains another, but the contained
object can exist independently.

» "Part-of” relationship.

» Example: A Department has Professors. If the department is dissolved,
professors still exist.

» Represented by a hollow diamond on the "whole" side.

ENTS-HUB.com

https://students-hub.com

Class Relationships: Composition

» Composition: A stronger form of aggregation where the contained object
cannot exist independently of the containing object. "Part-of" with strong
ownership.

» Example: A House has Rooms. If the house is demolished, the rooms cease to
exist.

» Represented by a filled diamond on the "whole" side.

ENTS-HUB.com

https://students-hub.com

Class Relationships: Inheritance

» Inheritance: An "is-a" relationship where a new class (subclass/derived
class/child class) is created from an existing class (superclass/base
class/parent class).

» The subclass inherits all public and protected members of the superclass.

» Promotes code reuse and establishes a hierarchy.

ENTS-HUB.com

https://students-hub.com

Defining a Superclass and Subclass

» Use the extends keyword to indicate inheritance.
» Syntax: class Subclass extends Superclass { ... }

» Example:
class Circle extends GeometricObject { ... }

ENTS-HUB.com

https://students-hub.com

The Object Class

» All classes in Java implicitly or explicitly extend the java.lang.Object class.
» It is the root of the class hierarchy.

» Provides common methods like equals(), toString(), hashCode().

ENTS-HUB.com

https://students-hub.com

Constructor Chaining

» When a subclass object is created, its constructor implicitly or explicitly calls
a superclass constructor.

» The super() keyword is used to call a superclass constructor.

» If super() is not explicitly called, Java automatically inserts a call to the no-
arg superclass constructor.

ENTS-HUB.com

https://students-hub.com

Overriding Methods

» Asubclass can provide its own implementation of a method that is already
defined in its superclass.

» The method signature (name, parameter list) must be identical.

» Use @0verride annotation for clarity and compile-time checking.

ENTS-HUB.com

https://students-hub.com

Invoking Superclass Methods (super
keyword)

» The super keyword can be used to explicitly call a method from the superclass
that has been overridden in the subclass.

» Syntax:
super.methodName(arguments);

ENTS-HUB.com

https://students-hub.com

Polymorphism

» Polymorphism: "Many forms."” The ability of an object to take on many forms.

» Areference variable of a superclass type can refer to an object of any of its
subclasses.

» The actual method executed is determined at runtime based on the object's
actual type.

ENTS-HUB.com

https://students-hub.com

Dynamic Binding (Runtime
Polymorphism)

» The JVM determines which version of an overridden method to execute at
runtime, based on the actual type of the object pointed to by the reference
variable.

ENTS-HUB.com

https://students-hub.com

Casting Objects

» Upcasting: Assigning a subclass object to a superclass reference variable
(always safe, implicit).

» Downcasting: Assigning a superclass reference variable to a subclass reference
variable (requires explicit cast, potentially unsafe, compile-time check for
validity).

» Use instanceof operator to check object type before downcasting.

ENTS-HUB.com

https://students-hub.com

The instanceof Operator

» Used to test whether an object is an instance of a particular class or an
instance of a class that implements a particular interface.

» Syntax: object instanceof ClassOrinterface

» Returns true or false.

ENTS-HUB.com

https://students-hub.com

equals() Method in Object Class

» The default equals() method in Object compares memory addresses (object
identity).

» Often needs to be overridden in custom classes to compare object content
(values of data fields).

ENTS-HUB.com

https://students-hub.com

Guidelines for Overriding equals()

» Reflexive: x.equals(x) is true.
» Symmetric: x.equals(y) implies y.equals(x).

» Transitive: If x.equals(y) and y.equals(z), then x.equals(z).

» Consistent: Multiple invocations return the same result (if objects are unchanged).

» x.equals(null) is false.

Cast Object parameter to the correct type and handle null and instanceof.

ENTS-HUB.com

https://students-hub.com

The toString() Method

» Returns a string representation of the object.Default implementation in
Object provides class name and hash code.

» Usually overridden to provide a meaningful, human-readable description of
the object’s state.

ENTS-HUB.com

https://students-hub.com

Abstract Classes and Methods

» Abstract class: A class that cannot be instantiated directly. It serves as a
blueprint for other classes. May contain abstract methods.

» Abstract method: A method declared without an implementation (no method
body). Must be implemented by concrete (non-abstract) subclasses.

» Declared with the abstract keyword.
» The abstract keyword is a hon-access modifier, used for classes and methods

» An abstract class can have both abstract and regular methods

ENTS-HUB.com

https://students-hub.com

Example Of abstract class

// Abstract class

abstract class Animal {

public abstract void animalSound(); // Abstract method (does not have a body)
public void sleep() {// Regular method

System.out.println("Zzz");

3
3

» From the example above, it is not possible to create an object of the Animal cl
Animal myObj = new Animal(); // will generate an error

ENTS-HUB.com

https://students-hub.com

// Subclass (inherit from Animal)
class Cat extends Animal {
public void animalSound() {
// The body of animalSound() is provided here
System.out.println("The cat says: mew mew");

}
}

class Main {
public static void main(String[] args) {
Cat myCat = new Cat(); // Create a Cat object
myCat.animalSound();

myCat.sleep();

}
}

ENTS-HUB.com

https://students-hub.com

Purpose of Abstract Classes

» Define a common interface for a set of subclasses.

» Enforce that certain methods must be implemented by subclasses.

» Provide partial implementation (some concrete methods) while leaving others
abstract.

ENTS-HUB.com

https://students-hub.com

Interfaces

» An interface is a completely "abstract class” that is used to group related methods with
empty bodies

A class can implement one or more interfaces.
Interfaces establish a "can-do” or "has-a-capability” relationship.

Like abstract classes, interfaces cannot be used to create objects (in the example abov
is not possible to create an "Animal” object in the MyMainClass)

Interface methods do not have a body - the body is provided by the "implement” class
On implementation of an interface, you must override all of its methods
Interface methods are by default abstract and public

Interface attributes are by default public, static and final

vV v v v Vv

An interface cannot contain a constructor (as it cannot be used to create objects)

ENTS-HUB.com

https://students-hub.com

// interface
interface Animal {

public void animalSound();
// interface method (does not have a body)

public void run();
// interface method (does not have a body)

3
class Cat implements Animal {
public void animalSound() {
// The body of animalSound() is provided here
System.out.println("The cat says: mew mew");
3
public void sleep() {
// The body of sleep() is provided here

System.out.println("Zzz");

ENTS-HUB.com

class Main {
public static void main(String[] args)

}

}

Cat myCat = new Cat(); // Create a
myCat.animalSound();
myCat.sleep();

https://students-hub.com

Abstract Classes vs. Interfaces

» Abstract Class: "Is-a" relationship, single inheritance, can have constructors,
instance variables, concrete methods, abstract methods.

» Interface: "Can-do" relationship, multiple inheritance possible, no instance
variables (only constants), all methods implicitly public abstract (pre-Java 8),
or default/static.

ENTS-HUB.com

https://students-hub.com

Polymorphism with Interfaces

» An interface reference variable can refer to any object of a class that
implements that interface.

» Example:
Comparable c = new Circle(5);

» Allows treating diverse objects uniformly based on their shared capabilities.

ENTS-HUB.com

https://students-hub.com

Designing with Interfaces

» Define common behaviors that multiple unrelated classes might share.
» Decouple the client code from the specific implementation details.

» Example:

Flyable interface for Bird, Airplane, Kite.

ENTS-HUB.com

https://students-hub.com

+ abstract parts

extends

Concept What It Is Used To / Purpose Keywords / Syntax Notes
A contract with Define what a class interface, All methods are
Interface . : public abstract by
method signatures should do (not how) implements
default
Provide base class abstract class Can have both
Abstract Incomplete class with some common ’ abstract & concrete

methods

Polymorphism

One interface,
many forms

Allow objects to
behave differently
via the same
method

Method Overriding,
Overloading

STUDENTS-HUB.com

Achieved via
inheritance,
interface, or
override

https://students-hub.com

Cloning Objects

» Creating a duplicate of an existing object.
» Java's Object.clone() method performs a shallow copy.

» For deep copy (duplicating nested objects), you usually need to implement
Cloneable interface and override clone().

ENTS-HUB.com

https://students-hub.com

Immutable Classes (Revisited in Context
of OOP Design)

» A good design practice to make classes immutable when their state should not
change after creation.

» Enhances thread safety and simplifies reasoning.

» Requires private final fields, no setters, and defensive copying of mutable
object fields.

ENTS-HUB.com

https://students-hub.com

Design Guidelines for Classes

» Cohesion: A class should represent a single logical entity (highly cohesive).
» Consistency: Maintain consistent naming conventions, method signatures.
» Completeness: Provide necessary methods for typical usage.

» Clarity: Well-documented, easy to understand.

ENTS-HUB.com

https://students-hub.com

Encapsulation (Revisited)

» Crucial for robust OOP design.
» Hides implementation details and provides a clean public interface.

» Changes to internal implementation don't affect external code if the public
interface is maintained.

ENTS-HUB.com

https://students-hub.com

Key Concepts of Object-Oriented
Thinking

» Association, Aggregation, Composition: Different forms of "has-a"
relationships.

Inheritance: "Is-a" relationship, code reuse.
Polymorphism: One interface, multiple implementations.

Abstract Classes & Interfaces: Defining contracts and common behaviors.

vV v v Vv

Design Principles: Cohesion, encapsulation, immutability.

ENTS-HUB.com

https://students-hub.com

Conclusion

» Chapter 10 moves from syntax to design philosophy.

» Understanding these concepts allows you to build flexible, maintainable, and
scalable object-oriented software.

» Practice applying these principles in your code!

ENTS-HUB.com

https://students-hub.com

	Chapter 10
	Slide 1: Object-Oriented Thinking
	Slide 2: Introduction to Object-Oriented Thinking
	Slide 3: Class Relationships: Association
	Slide 4: Class Relationships: Aggregation
	Slide 5: Class Relationships: Composition
	Slide 6: Class Relationships: Inheritance
	Slide 7: Defining a Superclass and Subclass
	Slide 8: The Object Class
	Slide 9: Constructor Chaining
	Slide 10: Overriding Methods
	Slide 11: Invoking Superclass Methods (super keyword)
	Slide 12: Polymorphism
	Slide 13: Dynamic Binding (Runtime Polymorphism)
	Slide 14: Casting Objects
	Slide 15: The instanceof Operator
	Slide 16: equals() Method in Object Class
	Slide 17: Guidelines for Overriding equals()
	Slide 18: The toString() Method
	Slide 19: Abstract Classes and Methods
	Slide 20: Example Of abstract class
	Slide 21
	Slide 22: Purpose of Abstract Classes
	Slide 23: Interfaces
	Slide 24
	Slide 25: Abstract Classes vs. Interfaces
	Slide 26: Polymorphism with Interfaces
	Slide 27: Designing with Interfaces
	Slide 28
	Slide 29: Cloning Objects
	Slide 30: Immutable Classes (Revisited in Context of OOP Design)
	Slide 31: Design Guidelines for Classes
	Slide 32: Encapsulation (Revisited)
	Slide 33: Key Concepts of Object-Oriented Thinking
	Slide 34: Conclusion

