
Object-Oriented

Thinking

STUDENTS-HUB.com

https://students-hub.com

Introduction to Object-Oriented

Thinking

 Moving beyond basic class definition to how to think in an object-oriented

way.

 Focuses on design principles and common OOP patterns.

 Key concepts: inheritance, polymorphism, abstract classes, interfaces.

STUDENTS-HUB.com

https://students-hub.com

Class Relationships: Association

 Association: A general binary relationship that describes an activity between

two classes."Has a" or "uses a" relationship.

 Example: A Student takes a Course. (Many-to-many)

 Represented by a plain line in UML.

STUDENTS-HUB.com

https://students-hub.com

Class Relationships: Aggregation

 Aggregation: A special form of association that represents a "has-a"

relationship where one object "owns" or contains another, but the contained

object can exist independently.

 "Part-of" relationship.

 Example: A Department has Professors. If the department is dissolved,

professors still exist.

 Represented by a hollow diamond on the "whole" side.

STUDENTS-HUB.com

https://students-hub.com

Class Relationships: Composition

 Composition: A stronger form of aggregation where the contained object

cannot exist independently of the containing object. "Part-of" with strong

ownership.

 Example: A House has Rooms. If the house is demolished, the rooms cease to

exist.

 Represented by a filled diamond on the "whole" side.

STUDENTS-HUB.com

https://students-hub.com

Class Relationships: Inheritance

 Inheritance: An "is-a" relationship where a new class (subclass/derived

class/child class) is created from an existing class (superclass/base

class/parent class).

 The subclass inherits all public and protected members of the superclass.

 Promotes code reuse and establishes a hierarchy.

STUDENTS-HUB.com

https://students-hub.com

Defining a Superclass and Subclass

 Use the extends keyword to indicate inheritance.

 Syntax: class Subclass extends Superclass { ... }

 Example:

class Circle extends GeometricObject { ... }

STUDENTS-HUB.com

https://students-hub.com

The Object Class

 All classes in Java implicitly or explicitly extend the java.lang.Object class.

 It is the root of the class hierarchy.

 Provides common methods like equals(), toString(), hashCode().

STUDENTS-HUB.com

https://students-hub.com

Constructor Chaining

 When a subclass object is created, its constructor implicitly or explicitly calls

a superclass constructor.

 The super() keyword is used to call a superclass constructor.

 If super() is not explicitly called, Java automatically inserts a call to the no-

arg superclass constructor.

STUDENTS-HUB.com

https://students-hub.com

Overriding Methods

 A subclass can provide its own implementation of a method that is already

defined in its superclass.

 The method signature (name, parameter list) must be identical.

 Use @Override annotation for clarity and compile-time checking.

STUDENTS-HUB.com

https://students-hub.com

Invoking Superclass Methods (super

keyword)

 The super keyword can be used to explicitly call a method from the superclass

that has been overridden in the subclass.

 Syntax:

super.methodName(arguments);

STUDENTS-HUB.com

https://students-hub.com

Polymorphism

 Polymorphism: "Many forms." The ability of an object to take on many forms.

 A reference variable of a superclass type can refer to an object of any of its

subclasses.

 The actual method executed is determined at runtime based on the object's

actual type.

STUDENTS-HUB.com

https://students-hub.com

Dynamic Binding (Runtime

Polymorphism)

 The JVM determines which version of an overridden method to execute at

runtime, based on the actual type of the object pointed to by the reference

variable.

STUDENTS-HUB.com

https://students-hub.com

Casting Objects

 Upcasting: Assigning a subclass object to a superclass reference variable

(always safe, implicit).

 Downcasting: Assigning a superclass reference variable to a subclass reference

variable (requires explicit cast, potentially unsafe, compile-time check for

validity).

 Use instanceof operator to check object type before downcasting.

STUDENTS-HUB.com

https://students-hub.com

The instanceof Operator

 Used to test whether an object is an instance of a particular class or an

instance of a class that implements a particular interface.

 Syntax: object instanceof ClassOrInterface

 Returns true or false.

STUDENTS-HUB.com

https://students-hub.com

equals() Method in Object Class

 The default equals() method in Object compares memory addresses (object

identity).

 Often needs to be overridden in custom classes to compare object content

(values of data fields).

STUDENTS-HUB.com

https://students-hub.com

Guidelines for Overriding equals()

 Reflexive: x.equals(x) is true.

 Symmetric: x.equals(y) implies y.equals(x).

 Transitive: If x.equals(y) and y.equals(z), then x.equals(z).

 Consistent: Multiple invocations return the same result (if objects are unchanged).

 x.equals(null) is false.

 Cast Object parameter to the correct type and handle null and instanceof.

STUDENTS-HUB.com

https://students-hub.com

The toString() Method

 Returns a string representation of the object.Default implementation in

Object provides class name and hash code.

 Usually overridden to provide a meaningful, human-readable description of

the object's state.

STUDENTS-HUB.com

https://students-hub.com

Abstract Classes and Methods

 Abstract class: A class that cannot be instantiated directly. It serves as a

blueprint for other classes. May contain abstract methods.

 Abstract method: A method declared without an implementation (no method

body). Must be implemented by concrete (non-abstract) subclasses.

 Declared with the abstract keyword.

 The abstract keyword is a non-access modifier, used for classes and methods

 An abstract class can have both abstract and regular methods

STUDENTS-HUB.com

https://students-hub.com

Example Of abstract class

// Abstract class

abstract class Animal {

public abstract void animalSound(); // Abstract method (does not have a body)

public void sleep() {// Regular method

System.out.println("Zzz");

}

}

 From the example above, it is not possible to create an object of the Animal class:
Animal myObj = new Animal(); // will generate an error

STUDENTS-HUB.com

https://students-hub.com

// Subclass (inherit from Animal)

class Cat extends Animal {

public void animalSound() {

// The body of animalSound() is provided here

System.out.println("The cat says: mew mew");

}

}

class Main {

public static void main(String[] args) {

Cat myCat = new Cat(); // Create a Cat object

myCat.animalSound();

myCat.sleep();

}

}

STUDENTS-HUB.com

https://students-hub.com

Purpose of Abstract Classes

 Define a common interface for a set of subclasses.

 Enforce that certain methods must be implemented by subclasses.

 Provide partial implementation (some concrete methods) while leaving others

abstract.

STUDENTS-HUB.com

https://students-hub.com

Interfaces

 An interface is a completely "abstract class" that is used to group related methods with

empty bodies

 A class can implement one or more interfaces.

 Interfaces establish a "can-do" or "has-a-capability" relationship.

 Like abstract classes, interfaces cannot be used to create objects (in the example above, it

is not possible to create an "Animal" object in the MyMainClass)

 Interface methods do not have a body - the body is provided by the "implement" class

 On implementation of an interface, you must override all of its methods

 Interface methods are by default abstract and public

 Interface attributes are by default public, static and final

 An interface cannot contain a constructor (as it cannot be used to create objects)

STUDENTS-HUB.com

https://students-hub.com

// interface

interface Animal {

public void animalSound();

// interface method (does not have a body)

public void run();

// interface method (does not have a body)

}

class Cat implements Animal {

public void animalSound() {

// The body of animalSound() is provided here

System.out.println("The cat says: mew mew");

}

public void sleep() {

// The body of sleep() is provided here

System.out.println("Zzz");

}

}

class Main {

 public static void main(String[] args) {

 Cat myCat = new Cat(); // Create a cat object

 myCat.animalSound();

 myCat.sleep();

 }

}

STUDENTS-HUB.com

https://students-hub.com

Abstract Classes vs. Interfaces

 Abstract Class: "Is-a" relationship, single inheritance, can have constructors,

instance variables, concrete methods, abstract methods.

 Interface: "Can-do" relationship, multiple inheritance possible, no instance

variables (only constants), all methods implicitly public abstract (pre-Java 8),

or default/static.

STUDENTS-HUB.com

https://students-hub.com

Polymorphism with Interfaces

 An interface reference variable can refer to any object of a class that

implements that interface.

 Example:

Comparable c = new Circle(5);

 Allows treating diverse objects uniformly based on their shared capabilities.

STUDENTS-HUB.com

https://students-hub.com

Designing with Interfaces

 Define common behaviors that multiple unrelated classes might share.

 Decouple the client code from the specific implementation details.

 Example:

Flyable interface for Bird, Airplane, Kite.

STUDENTS-HUB.com

https://students-hub.com

Concept What It Is Used To / Purpose Keywords / Syntax Notes

Interface
A contract with

method signatures

Define what a class

should do (not how)

interface,

implements

All methods are

public abstract by

default

Abstract Incomplete class

Provide base class

with some common

+ abstract parts

abstract class,

extends

Can have both

abstract & concrete

methods

Polymorphism
One interface,

many forms

Allow objects to

behave differently

via the same

method

Method Overriding,

Overloading

Achieved via

inheritance,

interface, or

override

STUDENTS-HUB.com

https://students-hub.com

Cloning Objects

 Creating a duplicate of an existing object.

 Java's Object.clone() method performs a shallow copy.

 For deep copy (duplicating nested objects), you usually need to implement

Cloneable interface and override clone().

STUDENTS-HUB.com

https://students-hub.com

Immutable Classes (Revisited in Context

of OOP Design)

 A good design practice to make classes immutable when their state should not

change after creation.

 Enhances thread safety and simplifies reasoning.

 Requires private final fields, no setters, and defensive copying of mutable

object fields.

STUDENTS-HUB.com

https://students-hub.com

Design Guidelines for Classes

 Cohesion: A class should represent a single logical entity (highly cohesive).

 Consistency: Maintain consistent naming conventions, method signatures.

 Completeness: Provide necessary methods for typical usage.

 Clarity: Well-documented, easy to understand.

STUDENTS-HUB.com

https://students-hub.com

Encapsulation (Revisited)

 Crucial for robust OOP design.

 Hides implementation details and provides a clean public interface.

 Changes to internal implementation don't affect external code if the public

interface is maintained.

STUDENTS-HUB.com

https://students-hub.com

Key Concepts of Object-Oriented

Thinking

 Association, Aggregation, Composition: Different forms of "has-a"

relationships.

 Inheritance: "Is-a" relationship, code reuse.

 Polymorphism: One interface, multiple implementations.

 Abstract Classes & Interfaces: Defining contracts and common behaviors.

 Design Principles: Cohesion, encapsulation, immutability.

STUDENTS-HUB.com

https://students-hub.com

Conclusion

 Chapter 10 moves from syntax to design philosophy.

 Understanding these concepts allows you to build flexible, maintainable, and

scalable object-oriented software.

 Practice applying these principles in your code!

STUDENTS-HUB.com

https://students-hub.com

	Chapter 10
	Slide 1: Object-Oriented Thinking
	Slide 2: Introduction to Object-Oriented Thinking
	Slide 3: Class Relationships: Association
	Slide 4: Class Relationships: Aggregation
	Slide 5: Class Relationships: Composition
	Slide 6: Class Relationships: Inheritance
	Slide 7: Defining a Superclass and Subclass
	Slide 8: The Object Class
	Slide 9: Constructor Chaining
	Slide 10: Overriding Methods
	Slide 11: Invoking Superclass Methods (super keyword)
	Slide 12: Polymorphism
	Slide 13: Dynamic Binding (Runtime Polymorphism)
	Slide 14: Casting Objects
	Slide 15: The instanceof Operator
	Slide 16: equals() Method in Object Class
	Slide 17: Guidelines for Overriding equals()
	Slide 18: The toString() Method
	Slide 19: Abstract Classes and Methods
	Slide 20: Example Of abstract class
	Slide 21
	Slide 22: Purpose of Abstract Classes
	Slide 23: Interfaces
	Slide 24
	Slide 25: Abstract Classes vs. Interfaces
	Slide 26: Polymorphism with Interfaces
	Slide 27: Designing with Interfaces
	Slide 28
	Slide 29: Cloning Objects
	Slide 30: Immutable Classes (Revisited in Context of OOP Design)
	Slide 31: Design Guidelines for Classes
	Slide 32: Encapsulation (Revisited)
	Slide 33: Key Concepts of Object-Oriented Thinking
	Slide 34: Conclusion

