Chapter 10: Algorithm Design Techniques

101 First, we show that if N evenly divides P, then each of j;_3)p44 through jip must be
placed as the i job on some processor. Suppose otherwise. Then in the supposed
optimal ordering, we must be able to find some jobs j, and j, such that j, isthet™ job
on some processor and jy is the t+1™M job on some processor but ty >t,. Letj, bethe
job immediately following j,. If weswap j, and j,, it is easy to check that the mean pro-
cessing time is unchanged and thus still optimal. But now j,, follows j,, which isimpos-
sible because we know that the jobs on any processor must be in sorted order from the
results of the one processor case.

Let je1, jeor - Jeu Detheextrajobsif N does not evenly divide P. It is easy to see that
the processing time for these jobs depends only on how quickly they can be scheduled,
and that they must be the last scheduled job on some processor. It is easy to see that the
first M processors must have jobs j _1)p+1 through jip.\; We leave the details to the
reader.

10.3

104 Onemethod isto generate code that can be evaluated by a stack machine. The two opera-
tions are Push (the one node tree corresponding to) a symbol onto a stack and Combine,
which pops two trees off the stack, merges them, and pushes the result back on. For the
example in the text, the stack instructions are Push(s), Push(nl), Combine, Push(t), Com-
bine, Push(a), Combine, Push(e), Combine, Push(i), Push (sp), Combine, Combine.

By encoding a Combine with a 0 and a Push with a 1 followed by the symbol, the total
extra space is 2N — 1 bits if all the symbols are of equal length. Generating the stack
machine code can be done with asimple recursive procedure and is left to the reader.

10.6 Maintain two queues, Q4 and Q,. Q will store single-node trees in sorted order, and Q,
will store multinode trees in sorted order. Place the initial single-node trees on Q;,
enqueueing the smallest weight tree first. Initially, Q, is empty. Examine the first two
entries of each of Q4 and Q,, and degueue the two smallest. (This requires an easily
implemented extension to the ADT.) Merge the tree and place the result at the end of Q.
Continue this step until Q isempty and only onetreeisleftin Q..

STUDENTS-HUB.com Uploaded By: anonymous

109 To implement first fit, we keep track of bins b;, which have more room than any of the

lower numbered bins. A theoretically easy way to do this is to maintain a splay tree
ordered by empty space. To insert w, we find the smallest of these bins, which has at
least w empty space; after w is added to the bin, if the resulting amount of empty spaceis
less than the inorder predecessor in the tree, the entry can be removed; otherwise, a
DecreaseKey is performed.
To implement best fit, we need to keep track of the amount of empty space in each bin.
As before, a splay tree can keep track of this. To insert an item of size w, perform an
insert of w. If thereisabin that can fit the item exactly, the insert will detect it and splay
it to the root; the item can be added and the root deleted. Otherwise, the insert has placed
w at the root (which eventually needs to be removed). We find the minimum element M
in the right subtree, which brings M to the right subtree’s root, attach the left subtree to
M, and delete w. We then perform an easily implemented DecreaseKey on M to reflect
the fact that the bin isless empty.

10.10 Next fit: 12 bins (.42, .25, .27), (.07, .72), (.86, .09), (.44, .50), (.68), (.73), (.31), (.78,
A7), (.79), (.37), (.73, .23), (.30).

First fit: 10 bins (.42, .25, .27), (.07, .72, .09), (.86), (.44, .50), (.68, .31), (.73, .17), (.78),
(.79), (.37, .23, .30), (.73).

Best fit: 10 bins (.42, .25, .27), (.07, .72, .09), (.86), (.44, .50), (.68, .31), (.73, .23), (.78,
A7), (.79), (.37, .30), (.73).

First fit decreasing: 10 bins (.86, .09), (.79, .17), (.78, .07), (.73, .27), (.73, .25), (.72,
.23), (.68, .31), (.50, .44), (.42, .37), (.30).

Best fit decreasing: 10 bins (.86, .09), (.79, .17), (.78), (.73, .27), (.73, .25), (.72, .23),
(.68, .31), (.50, .44), (.42, .37, .07), (.30).

Note that use of 10 binsis optimal.

10.12 We prove the second case, leaving the first and third (which give the same results as
Theorem 10.6) to the reader. Observethat

logPN =logP(b™)=mPlogPb
Working this through, Equation (10.9) becomes
m bk i-
TIN) =T@®O™ =a™ ¥ >y iPlogPb
i=0

If a = bk, then

m
T(N) =a™logPb JiP
i=0
=0(@"mP*ogPb)
Sincem =log N/log b, anda™ = N¥, and b is a constant, we obtain
T(N) =O(N¥log P*'N)

10.13 The easiest way to provethisis by an induction argument.

-55-

STUDENTS-HUB.com Uploaded By: anonymous

10.14 Divide the unit square into N—1 square grids each with side 1/ YN-1. Since there are N
points, some grid must contain two points. Thus the shortest distance is conservatively
given by at most v2/ (N-1).

10.15 The results of the previous exercise imply that the width of the strip is O(1/ VN).
Because the width of the stripis O (1/ VN), and thus coversonly O (1/ VN) of the area of
the sguare, we expect a similar fraction of the points to fall in the strip. Thus only
O(N/ VYN points are expected in the strip; thisis O (YN).

10.17 Therecurrenceworks out to

T(N)=T(2N/3)+T(N/3)+O(N)
Thisisnot linear, because the sum is not less than one. The running timeis O (Nlog N).

10.18 The recurrencefor median-of-median-of-seven partitioning is

T(N)=T(5N/7) + T(N/7) + O(N)

If al we are concerned about is the linearity, then median-of-median-of-seven can be
used.

10.20 When computing the median-of-median-of-five, 30% of the elements are known to be
smaller than the pivot, and 30% are known to be larger. Thus these elements do not need
to be involved in the partitioning phase. (Extra work would need to be done to imple-
ment this, but since the whole algorithm isn’t practical anyway, we can ignore any extra
work that doesn't involve element comparisons.) The original paper [9] describes the
exact constants in the worst-case bound, with and without this extra effort.

10.21 We derive the values of s and 9§, following the style in the original paper [17]. Let R x
be the rank of element t in some sample X. If asample S of elements is chosen ran-
domly fromS,and |S| =s, |S| =N, then we've aready seen that

E(Rs)= ﬂR{,S

s+1

where E means expected value. For instance, if t isthethird largest in asample of 5 ele-
ments, then in a group of 19 elementsiit is expected to be the tenth largest. We can also
calculate the variance:

(R s)(s-R s+tD)(N+1)(N-s)

- Vs
AT O(N/Vs)

V(Rs)=
We choose v, and v, so that

E(R.s) +2dV(R,s) Bk BE(R,s) - 2dV(R,,s)

where d indicates how many varianceswe allow. (Thelarger d is, thelesslikely the ele-
ment we are looking for will not bein S'.)

The probability that k is not betweenv, and v, is
2ferf (x) dx =0 (e™¥/d)
d
If d =logY 2N, then this probability is o(1/ N), specifically O (1/ (Nlog N)). This means

that the expected work in this case is O (log™*N) because O (N) work is performed with
very small probability.

-56-

STUDENTS-HUB.com Uploaded By: anonymous

These mean and variance equations imply

R.s 2 kﬂ —dvVs

(N+1)
and
R,.g < k_(_S+_1) +dvVs
S =T (N+1)
This gives equation (A):
d=dVs =Vslog V2N (A)
If wefirst pivot around v, the cost is N comparisons. |f we now partition elementsin S
that are less than v, around v, the cost is R, s, which has expected vaue k + & ’::11 .
Thusthe total cost of partitioningisN +k +90 '::ll . The cost of the selectionsto find v,

and v, inthesample S isO(s). Thusthetotal expected number of comparisonsis
N +k+0O(s)+O(Nds)

The low order term is minimized when

s=Nd/s (B)

Combining Equations (A) and (B), we see that
s2=N&=VsNlog V2N ©
s¥2=Nlog V°N (D)
s =NZ3og V3N (E)
3=N¥3og?3N (P

10.22 First, we caculate 12*43. In this case, X =1, Xg =2, Y =4, Yy =3, D;=-1,
DZ:_l, XLYL :4, XRYR = 6, D1D2: 1, D3= 11, and the result is 516.
Next, we calculate 34*21. In this case, X, =3, Xg =4, Y =2, Yr =1, D;=-1,
D2=_1, XLYL = 6, XRYR =4, D1D2: l, D3= 11, and theresult is 714.
Third, we calculate 22*22. Here, X, =2, Xg =2, Y. =2, Yy =2, D1=0, D,=0,
XLYL :4, XRYR =4, D1D2:0, D3=8, and the result is 484.

Finadly, we caculate 1234*4321. X =12, Xz =34, Y, =43, Yy =21, D, =-22,
D,=-2. By previous caculations, X, Y, =516, XgYg =714, and DD, =484. Thus
D5 =1714, and theresult is 714 + 171400 + 5160000 = 5332114.

10.23 The multiplication evaluates to (ac —bd) +(bc +ad)i. Compute ac, bd, and
(a-b)(d -c)+ac +bd.

10.24 The algebrais easy to verify. The problem with this method is that if X and Y are posi-
tive N bit numbers, their sum might be an N+1 bit number. This causes complications.

10.26 Matrix multiplication is not commutative, so the algorithm couldn’t be used recursively
on matricesif commutativity was used.

-57-

STUDENTS-HUB.com Uploaded By: anonymous

10.27 If the algorithm doesn’t use commutativity (which turns out to be true), then a divide and
conquer algorithm gives arunning time of O (N340 = o (N2795),

10.28 1150 scalar multiplications are used if the order of evaluationis
((A1A2) (((AzA4) As) Ag))

10.29 (@) Let the chain be a 1x1 matrix, a 1xA matrix, and an AXB matrix. Multiplication by
using the first two matrices first makes the cost of the chain A + AB. The alternative
method gives acost of AB + B, soif A > B, then the algorithm fails. Thus, a counterex-
ampleis multiplying a 1x1 matrix by a 1x3 matrix by a 3x2 matrix.

(b, ¢) A counterexampleis multiplying a 1x1 matrix by a 1x2 matrix by a 2x3 matrix.

10.31 The optimal binary search tree is the same one that would be obtained by a greedy stra-
tegy: | is at the root and has children and and it; a and or are leaves, the total cost is
2.14.

10.33 Thistheoremisfrom F. Y ao's paper, reference[58].

10.34 A recursive procedureis clearly called for; if thereis an intermediate vertex, SopOver on
the path from s to t, then we want to print out the path from s to SopOver and then
SopOver tot. We don't want to print out SopOver twice, however, so the procedure
does not print out the first or last vertex on the path and reservesthat for the driver.

/* Print the path between Sand T, except do not print */
/* thefirst or last vertex. Print atrailing" to" only. */

void
PrintPath1l(TwoDArray Path, int S, int T)
{
int StopOver = Path[S][T];
if(S!=T && StopOver 1=0)
{
PrintPathl1(Path, S, StopOver);
printf("%d to ", StopOver);
PrintPath1(Path, StopOver, T);

}

/* Assume the existence of a Path of length at least 1 */

void
PrintPath(TwoDArray Path, int S, int T)
{

printf("%dto", S);

PrintPathl(Path, S, T);

printf("%d", T); NewLine();

-58-

STUDENTS-HUB.com Uploaded By: anonymous

10.35 Many random number generators are poor. The default UNIX random number generator
rand uses a modulus of the form 2°, as does the VAX/VMS random number generator.
UNIX does, however, provide better random number generators in the form of random.
The Turbo random number generators, likewise, are also deficient. The paper by Park
and Miller [44] discusses the random number generators on many machines.

10.38 If the modulus is a power of two, then the least significant bit of the "random” number
oscillates. Thus Flip will always return heads and tails alternately, and the level chosen
for a skip list insertion will always be one or two. Consequently, the performance of the
skip list will be ©(N) per operation.

10.39 (a) 2°=32mod 341, 2°=1mod341. Since 322=1mod 341, this proves that 341 is
not prime. We can also immediately conclude that 2°*° = 1 mod 341 by raising the last
equation to the 34™ power. The exponentiation would continue as follows:
2% =1 mod 341, 2% =2 mod 341, 2% =4 mod 341, 284 =16 mod 341, 2%° = 32 mod 341,
2170 =1 mod 341, and 234 = 1 mod 341.

(b) If A =2, then although 2°%° =1 mod 561, 22%° =1 mod 561 proves that 561 is not
prime. If A =3, then 3% =375mod 561, which proves that 561 is not prime. A =4
obviously doesn’t fool the algorithm, since 4**° =1 mod 561. A =5 fools the algorithm:
5! =5mod 561, 52 = 25 mod 561, 5% = 64 mod 561, 58 = 169 mod 561,
5% =511 mod561, 5 =311mod561, 5%=229mod561, 5% =23mod561,
570 = 529 mod 561, 5*° = 463 mod 561, 5%%° = 67 mod 561, 5°° = 1 mod 561.

10.41 Thetwo point setsare{0, 4, 6, 9, 16, 17} and {0, 5, 7, 13, 16, 17}.

10.42 To find dl point sets, we backtrack even if Found == true, and print out information
when line 2 is executed. In the case where there are some duplicate distances, it is possi-
ble that several symmetries will be printed.

10.43
® Max
® ® Min
©) () © (2 Max
® ® ® @, ® ® () () Min
& ® ® ® @ O O & o ® O O O O Max

GOEEEGEEO®E®EOOOOO®E®®E®@OOO000O000

10.44 Actudly, it implements both; Alpha is lowered for subsequent recursive calls on line 9
when Value is changed at line 12. Beta is used to terminate the while loop when aline
of play leads to a position so good that it is obvious the human player (who has already
seen a more favorable line for himself or herself before making this call) won’t play into
it. To implement the complementary routine, switch the roles of the human and com-
puter. Lines that change are 3 and 4 (obvious changes), 5 (replace Alpha with Beta), 6
(replace *Value<Beta with *Value>Alpha), 8 (obvious), 9 (replace
Human - - - *Value ,Beta with Comp - - - Alpha,*Value), and 11 (cbvious).

-50-

STUDENTS-HUB.com Uploaded By: anonymous

10.46 We place circlesin order. Suppose we are trying to place circle j, of radiusr;. If some
circlei of radiusr; is centered at x;, then j istangent toi if it is placed at x; + 2Vr; rs;.
To see this, notice that the line connecting the centers has length r; + r, and the
difference in y-coordinates of the centersis |r; —r; |. The difference in x-coordinates
follows from the Pythagorean theorem.

To place circle j, we compute where it would be placed if it were tangent to each of the
first j =1 circles, selecting the maximum value. If thisvalueislessthanr;, then we place
circlej atx;. Therunning timeisO(N?).

10.47 Construct a minimum spanning tree T of G, pick any vertex in the graph, and then find a
pathin T that goes through every edge exactly once in each direction. (Thisis doneby a
depth-first search; see Exercise 9.31.) This path has twice the cost of the minimum span-
ning tree, but it is not asimple cycle.

Make it a simple cycle, without increasing the total cost, by bypassing a vertex wheniit is
seen a second time (except that if the start vertex is seen, close the cycle) and going to the
next unseen vertex on the path, possibly bypassing several vertices in the process. The
cost of this direct route cannot be larger than original because of the triangle inequality.

If there were a tour of cost K, then by removing one edge on the tour, we would have a
minimum spanning tree of cost less than K (assuming that edge weights are positive).
Thus the minimum spanning tree is alower bound on the optimal traveling salesman tour.
Thisimplies that the algorithm is within afactor of 2 of optimal.

10.48 If there are two players, then the problem is easy, so assume k>1. If the players are num-
bered 1 through N, then divide them into two groups: 1 through N /2 and N /2+1
though N. Onthei'" day, for 1<i <N /2, player p in the second group plays players
((p +i)mod N /2) + 1inthefirst group. Thusafter N / 2 days, everyonein group 1 has
played everyone in group 2. In the last N / 2-1 days, recursively conduct round-robin
tournaments for the two groups of players.

10.49 Dividethe playersinto two groupsof size [N /2] and [N /2], respectively, and recur-
sively arrange the playersin any order. Then merge the two lists (declare that p, > p, if
X has defeated y, and p, > py if y has defeated x — exactly oneis possible) in linear time
asis donein mergesort.

10.50

10.51 Divide and conguer algorithms (among others) can be used for both problems, but neither
istrivial to implement. See the computational geometry referencesfor more information.

-60-

STUDENTS-HUB.com Uploaded By: anonymous

10.52 (@) Use dynamic programming. Let S .= the best setting of words wy, W11, ... Wy, U=
the ugliness of this setting, and I, = for this setting, (a pointer to) the word that starts the
second line.

To compute S._;, try putting wWg_1, W, ..., wy al on the first line for k <M and
M

> w;<L. Compute the ugliness of each of these possibilities by, for each M, compuit-
i=k-1
ing the ugliness of setting the first line and adding U,,,,;. Let M' be the value of M that
yields the minimum ugliness. Then U,_; = this value, and I,_; =M" +1. Compute
values of U and | starting with the last word and working back to the first. The
minimum ugliness of the paragraphis U ;; the actual setting can be found by starting at | ;
and following the pointersin| since thiswill yield the first word on each line.

(b) The running time is quadratic in the case where the number of words that can fit on a
line is consistently ©(N). The space is linear to keep the arrays U and |. If the line
length is restricted to some constant, then the running time is linear because only O (1)
words can go on aline.

(c) Put as many words on aline as can fit. This clearly minimizes the number of lines,
and hence the ugliness, as can be shown by asimple calculation.

10.53 An obvious O (N?) solution to construct a graph with vertices 1, 2, ..., N and place an
edge (v,w) in G iff a, <a,. This graph must be acyclic, thus its longest path can be
found in time linear in the number of edges; the whole computation thus takes O (N?)
time.

Let BEST (k) be the increasing subsequence of exactly k elements that has the minimum
last element. Lett bethelength of the maximum increasing subsegquence. We show how
to update BEST (k) as we scan the input array. Let LAST (k) be the last element in
BEST (k). It iseasy to show that if i<j, LAST (i) <LAST(j). When scanning ay,, find
the largest k such that LAST (k) <ay. This scan takes O (logt) time because it can be
performed by a binary search. If k =t, then x,, extends the longest subseguence, so
increaset, and set BEST (t) and LAST (t) (the new value of t isthe argument). If k isO
(that is, thereis no k), then xy, is the smallest element in the list so far, so set BEST (1)
and LAST (1), appropriately. Otherwise, we extend BEST (k) with xy, , forming a new and
improved sequence of length k+1. Thus we adjust BEST (k+1) and LAST (k+1).

Processing each element takes logarithmic time, so the total iSO (Nlog N).

1054 Let LCS(A, M, B, N) be the longest common subsequence of A4, A, ..., Ay and By,
B,, ..., By. If eéither M or N is zero, then the longest common subsequence is the empty
string. If xy =yN, then LCS(A, M, B,N)=LCS(A,M-1, B, N-1),A,. Otherwise,
LCS(A,M, B, N) is either LCS(A, M, B, N-1) or LCS(A, M-1, B, N), whichever is
longer. Thisyields a standard dynamic programming solution.

10.56 (@) A dynamic programming solution resolves part (a). Let FITS(i, s) be 1 if a subset of
thefirsti items sumsto exactly s; FITS(i, 0) isaways 1. Then FITS(x,t) is1if either
FITS(x -1,t —a,) or FITS(x —1,t) is1, and O otherwise.

(b) This doesn’t show that P = NP because the size of the problem is a function of N
and logK. Only logK bits are needed to represent K; thus an O(NK) solution is
exponentia in the input size.

-61-

STUDENTS-HUB.com Uploaded By: anonymous

10.57 (@) Let the minimum number of coins required to give x cents in change be COIN (x);
COIN(0) =0. Then COIN (x) is one more than the minimum value of COIN(x —¢;),
giving adynamic programming solution.
(b) Let WAYS(x, 1) be the number of ways to make x cents in change without using the
first i coin types. If there are N types of coins, then WAYS(x, N) =0 if x #0, and
WAYS(0,i) =1. Then WAYS(x,i —1) is egual to the sum of WAYS(x —pc;,i), for
integer values of p no larger than x/c; (but including 0).

10.58 (&) Place eight queens randomly on the board, making sure that no two are on the same

row or column. Thisis done by generating a random permutation of 1..8. There are only
5040 such permutations, and 92 of these give a solution.

10.59 (a) Since the knight leaves every square once, it makes B2 moves. If the squares are
aternately colored black and white like a checkerboard, then a knight always moves to a
different colored square. If B is odd, then so is B2, which means that at the end of the
tour the knight will be on a different colored square than at the start of the tour. Thus the
knight cannot be at the original square.

10.60 (@) If the graph has a cycle, then the recursion does not always make progress toward a
base case, and thus an infinite loop will result.

(b) If the graph is acyclic, the recursive call makes progress, and the agorithm ter-
minates. This could be proved formally by induction.

(c) Thisalgorithm is exponential.

-62-

STUDENTS-HUB.com Uploaded By: anonymous

