
Objectives
 ■ To get a taste of event-driven programming (§15.1).

 ■ To describe events, event sources, and event classes (§15.2).

 ■ To define handler classes, register handler objects with the source
object, and write the code to handle events (§15.3).

 ■ To define handler classes using inner classes (§15.4).

 ■ To define handler classes using anonymous inner classes (§15.5).

 ■ To simplify event handling using lambda expressions (§15.6).

 ■ To develop a GUI application for a loan calculator (§15.7).

 ■ To write programs to deal with MouseEvents (§15.8).

 ■ To write programs to deal with KeyEvents (§15.9).

 ■ To create listeners for processing a value change in an observable
object (§15.10).

 ■ To use the Animation, PathTransition, FadeTransition, and
Timeline classes to develop animations (§15.11).

 ■ To develop an animation for simulating a bouncing ball (§15.12).

 ■ To draw, color, and resize a US map (§15.13).

EĎýĆČ-DĊāĎýĆ
PĊćÿĊùąąāĆÿ
ùĆü AĆāąùČāćĆċ

CHAPTER

15

M15_LIAN9966_12_SE_C15.indd 593 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

594 Chapter 15 Event-Driven Programming and Animations

15.1 Introduction
You can write code to process events such as a button click, mouse movement, and
keystrokes.

Suppose you wish to write a GUI program that lets the user enter a loan amount, annual interest
rate, and number of years then click the Calculate button to obtain the monthly payment and
total payment, as shown in Figure 15.1. How do you accomplish the task? You have to use
event-driven programming to write the code to respond to the button-clicking event.

Point
Key

FIGURE 15.1 The program computes loan payments.

FIGURE 15.2 (a) The program displays two buttons. (b) A message is displayed in the
 console when a button is clicked.

(a) (b)

FIGURE 15.3 An event handler processes the event fired from the source object.

handlereventbutton

Clicking a button
fires an action event

An event is
an object

(Event source object) (Event object)

The event handler
processes the event

(Event handler object)

Before delving into event-driven programming, it is helpful to get a taste using a simple
example. The example displays two buttons in a pane, as shown in Figure 15.2.

To respond to a button click, you need to write the code to process the button-clicking
action. The button is an event source object—where the action originates. You need to create an
object capable of handling the action event on a button. This object is called an event handler,
as shown in Figure 15.3.

Not all objects can be handlers for an action event. To be a handler of an action event, two
requirements must be met:

1. The object must be an instance of the EventHandler<T extends Event> interface.
This interface defines the common behavior for all handlers. <T extends Event>
denotes that T is a generic type that is a subtype of Event.

2. The EventHandler object handler must be registered with the event source object
using the method source.setOnAction(handler).

problem

EventHandler interface

setOnAction(handler)

M15_LIAN9966_12_SE_C15.indd 594 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

15.1 Introduction 595

The EventHandler<ActionEvent> interface contains the handle(ActionEvent)
method for processing the action event. Your handler class must override this method to
respond to the event. Listing 15.1 gives the code that processes the ActionEvent on the two
buttons. When you click the OK button, the message “OK button clicked” is displayed. When
you click the Cancel button, the message “Cancel button clicked” is displayed, as shown in
Figure 15.2.

LISTING 15.1 HandleEvent.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Button;
 5 import javafx.scene.layout.HBox;
 6 import javafx.stage.Stage;
 7 import javafx.event.ActionEvent;
 8 import javafx.event.EventHandler;
 9
10 public class HandleEvent extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 // Create a pane and set its properties
14 HBox pane = new HBox(10);
15 pane.setAlignment(Pos.CENTER);
16 Button btOK = new Button("OK");
17 Button btCancel = new Button("Cancel");
18 OKHandlerClass handler1 = new OKHandlerClass();
19 btOK.setOnAction(handler1);
20 CancelHandlerClass handler2 = new CancelHandlerClass();
21 btCancel.setOnAction(handler2);
22 pane.getChildren().addAll(btOK, btCancel);
23
24 // Create a scene and place it in the stage
25 Scene scene = new Scene(pane);
26 primaryStage.setTitle("HandleEvent"); // Set the stage title
27 primaryStage.setScene(scene); // Place the scene in the stage
28 primaryStage.show(); // Display the stage
29 }
30 }
31
32 class OKHandlerClass implements EventHandler<ActionEvent> {
33 @Override
34 public void handle(ActionEvent e) {
35 System.out.println("OK button clicked");
36 }
37 }
38
39 class CancelHandlerClass implements EventHandler<ActionEvent> {
40 @Override
41 public void handle(ActionEvent e) {
42 System.out.println("Cancel button clicked");
43 }
44 }

Two handler classes are defined in lines 32-44. Each handler class implements EventHan-
dler<ActionEvent> to process ActionEvent. The object handler1 is an instance of
OKHandlerClass (line 18), which is registered with the button btOK (line 19). When the
OK button is clicked, the handle(ActionEvent) method (line 34) in OKHandlerClass is

handle event

handler class

handle event

handler class

register handler
create handler
register handler
create handler

main method omitted

M15_LIAN9966_12_SE_C15.indd 595 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

596 Chapter 15 Event-Driven Programming and Animations

invoked to process the event. The object handler2 is an instance of CancelHandlerClass
(line 20), which is registered with the button btCancel in line 21. When the Cancel button is
clicked, the handle(ActionEvent) method (line 41) in CancelHandlerClass is invoked
to process the event.

You now have seen a glimpse of event-driven programming in JavaFX. You probably have
many questions, such as why a handler class is defined to implement the EventHandler<A
ctionEvent>. The following sections will give you all the answers.

15.2 Events and Event Sources
An event is an object created from an event source. Firing an event means to create an
event and delegate the handler to handle the event.

When you run a Java GUI program, the program interacts with the user and the events drive
its execution. This is called event-driven programming. An event can be defined as a signal to
the program that something has happened. Events are triggered by external user actions, such
as mouse movements, mouse clicks, and keystrokes. The program can choose to respond to or
ignore an event. The example in the preceding section gave you a taste of event-driven
programming.

The component that creates an event and fires it is called the event source object, or simply
source object or source component. For example, a button is the source object for a button-
clicking action event. An event is an instance of an event class. The root class of the Java event
classes is java.util.EventObject. The root class of the JavaFX event classes is javafx
.event.Event. The hierarchical relationships of some event classes are shown in Figure 15.4.

Point
Key

event-driven programming

event

fire event
event source object

source object

FIGURE 15.4 An event in JavaFX is an object of the javafx.event.Event class.

Event

ActionEvent

EventObject InputEvent

WindowEvent

MouseEvent

KeyEvent

JavaFX event classes are in
the javafx.event package

An event object contains whatever properties are pertinent to the event. You can identify
the source object of an event using the getSource() instance method in the EventObject
class. The subclasses of EventObject deal with specific types of events, such as action
events, window events, mouse events, and key events. The first three columns in Table 15.1
list some external user actions, source objects, and event types fired. For example, when click-
ing a button, the button creates and fires an ActionEvent, as indicated in the first line of this
table. Here, the button is an event source object, and an ActionEvent is the event object fired
by the source object, as shown in Figure 15.3.

Note
If a component can fire an event, any subclass of the component can fire the same type of
event. For example, every JavaFX shape, layout pane, and control can fire MouseEvent
and KeyEvent since Node is the superclass for shapes, layout panes, and controls and
Node can fire MouseEvent and KeyEvent.

event object

getSource()

M15_LIAN9966_12_SE_C15.indd 596 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

15.3 Registering Handlers and Handling Events 597

User Action Source Object Event Type Fired Event Registration Method

Click a button Button ActionEvent setOnAction(EventHandler<ActionEvent>)

Press Enter in a text field TextField ActionEvent setOnAction(EventHandler<ActionEvent>)

Check or uncheck RadioButton ActionEvent setOnAction(EventHandler<ActionEvent>)

Check or uncheck CheckBox ActionEvent setOnAction(EventHandler<ActionEvent>)

Select a new item ComboBox ActionEvent setOnAction(EventHandler<ActionEvent>)

Mouse pressed Node, Scene MouseEvent setOnMousePressed(EventHandler<MouseEvent>)

Mouse released setOnMouseReleased(EventHandler<MouseEvent>)

Mouse clicked setOnMouseClicked(EventHandler<MouseEvent>)

Mouse entered setOnMouseEntered(EventHandler<MouseEvent>)

Mouse exited setOnMouseExited(EventHandler<MouseEvent>)

Mouse moved setOnMouseMoved(EventHandler<MouseEvent>)

Mouse dragged setOnMouseDragged(EventHandler<MouseEvent>)

Key pressed Node, Scene KeyEvent setOnKeyPressed(EventHandler<KeyEvent>)

Key released setOnKeyReleased(EventHandler<KeyEvent>)

Key typed setOnKeyTyped(EventHandler<KeyEvent>)

TABLE 15.1 User Action, Source Object, Event Type, Handler Interface, and Handler

 15.2.1 What is an event source object? What is an event object? Describe the relationship
between an event source object and an event object.

 15.2.2 Can a button fire a MouseEvent? Can a button fire a KeyEvent? Can a button
fire an ActionEvent?

15.3 Registering Handlers and Handling Events
A handler is an object that must be registered with an event source object and it must
be an instance of an appropriate event-handling interface.

Java uses a delegation-based model for event handling: A source object fires an event, and an
object interested in the event handles it. The latter object is called an event handler or an event
listener. For an object to be a handler for an event on a source object, two things are needed,
as shown in Figure 15.5.

1. The handler object must be an instance of the corresponding event–handler interface to
ensure the handler has the correct method for processing the event. JavaFX defines a
unified handler interface EventHandler<T extends Event> for an event T. The
handler interface contains the handle(T e) method for processing the event. For exam-
ple, the handler interface for ActionEvent is EventHandler<ActionEvent>; each
handler for ActionEvent should implement the handle(ActionEvent e) method
for processing an ActionEvent.

2. The handler object must be registered by the source object. Registration methods depend
on the event type. For ActionEvent, the method is setOnAction. For a mouse-pressed
event, the method is setOnMousePressed. For a key-pressed event, the method is
setOnKeyPressed.

Let’s revisit Listing 15.1, HandleEvent.java. Since a Button object fires ActionEvent, a
handler object for ActionEvent must be an instance of EventHandler<ActionEvent>, so

Point
Check

Point
Key

event delegation
event handler

event–handler interface

EventHandler<T extends
Event>

event handler

register handler

M15_LIAN9966_12_SE_C15.indd 597 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

598 Chapter 15 Event-Driven Programming and Animations

the handler class implements EventHandler<ActionEvent> in line 32. The source object
invokes setOnAction(handler) to register a handler, as follows:

// Line 16 in Listing 15.1
Button btOK = new Button("OK");

// Line 18 in Listing 15.1
OKHandlerClass handler1 = new OKHandlerClass();

// Line 19 in Listing 15.1
btOK.setOnAction(handler1);

When you click the button, the Button object fires an ActionEvent and passes it to invoke
the handler’s handle(ActionEvent) method to handle the event. The event object contains
information pertinent to the event, which can be obtained using the methods. For example, you
can use e.getSource() to obtain the source object that fired the event.

We now write a program that uses two buttons to enlarge and shrink a circle, as shown in
Figure 15.6. We will develop this program incrementally. First, we write the program in
 Listing 15.2 that displays the user interface with a circle in the center (lines 15–19) and two
buttons on the bottom (lines 21–27).

create source object

create handler object

register handler

first version

FIGURE 15.5 A listener must be an instance of a listener interface and must be registered with a source object.

Trigger an event

(2) Register by invoking
 source.setOnXEventType(listener):

(a) A generic source object with a generic event T

(1) A listener object is an
 instance of a listener interface

(b) A Button source object with an ActionEvent

(1) An action event listener is an instance of
 EventHandler<ActionEvent>

source: SourceClass

+setOnXEventType(listener) +handle(event: T)

(2) Register by invoking
 source.setOnAction(listener);

source: javafx.scene.control.Button

+setOnAction(listener) +handle(event: ActionEvent)

listener: CustomListenerClass

listener: ListenerClass

«interface»
EventHandler<T extends Event>

«interface»
EventHandler<ActionEvent>

User
Action

FIGURE 15.6 The user clicks the Enlarge and Shrink buttons to enlarge and shrink the circle.

LISTING 15.2 ControlCircleWithoutEventHandling.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.Scene;

M15_LIAN9966_12_SE_C15.indd 598 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

15.3 Registering Handlers and Handling Events 599

 4 import javafx.scene.control.Button;
 5 import javafx.scene.layout.StackPane;
 6 import javafx.scene.layout.HBox;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.paint.Color;
 9 import javafx.scene.shape.Circle;
10 import javafx.stage.Stage;
11
12 public class ControlCircleWithoutEventHandling extends Application {
13 @Override // Override the start method in the Application class
14 public void start(Stage primaryStage) {
15 StackPane pane = new StackPane();
16 Circle circle = new Circle(50);
17 circle.setStroke(Color.BLACK);
18 circle.setFill(Color.WHITE);
19 pane.getChildren().add(circle);
20
21 HBox hBox = new HBox();
22 hBox.setSpacing(10);
23 hBox.setAlignment(Pos.CENTER);
24 Button btEnlarge = new Button("Enlarge");
25 Button btShrink = new Button("Shrink");
26 hBox.getChildren().add(btEnlarge);
27 hBox.getChildren().add(btShrink);
28
29 BorderPane borderPane = new BorderPane();
30 borderPane.setCenter(pane);
31 borderPane.setBottom(hBox);
32 BorderPane.setAlignment(hBox, Pos.CENTER);
33
34 // Create a scene and place it in the stage
35 Scene scene = new Scene(borderPane, 200, 150);
36 primaryStage.setTitle("ControlCircle"); // Set the stage title
37 primaryStage.setScene(scene); // Place the scene in the stage
38 primaryStage.show(); // Display the stage
39 }
49 }

How do you use the buttons to enlarge or shrink the circle? When the Enlarge button is clicked,
you want the circle to be repainted with a larger radius. How can you accomplish this? You can
expand and modify the program in Listing 15.2 into Listing 15.3 with the following features:

1. Define a new class named CirclePane for displaying the circle in a pane (lines 51–68).
This new class displays a circle and provides the enlarge and shrink methods for
increasing and decreasing the radius of the circle (lines 60–62 and 64–67). It is a good
strategy to design a class to model a circle pane with supporting methods so these related
methods along with the circle are coupled in one object.

2. Create a CirclePane object and declare circlePane as a data field to reference this
object (line 15) in the ControlCircle class. The methods in the ControlCircle class
can now access the CirclePane object through this data field.

3. Define a handler class named EnlargeHandler that implements EventHandler<Ac-
tionEvent> (lines 43–48). To make the reference variable circlePane accessible
from the handle method, define EnlargeHandler as an inner class of the Control-
Circle class. (Inner classes are defined inside another class. We use an inner class here
and will introduce it fully in the next section.)

4. Register the handler for the Enlarge button (line 29) and implement the handle method
in EnlargeHandler to invoke circlePane.enlarge() (line 46).

circle

buttons

second version

inner class

main method omitted

M15_LIAN9966_12_SE_C15.indd 599 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

600 Chapter 15 Event-Driven Programming and Animations

VideoNote

Handler and its registration

LISTING 15.3 ControlCircle.java
 1 import javafx.application.Application;
 2 import javafx.event.ActionEvent;
 3 import javafx.event.EventHandler;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.layout.StackPane;
 8 import javafx.scene.layout.HBox;
 9 import javafx.scene.layout.BorderPane;
10 import javafx.scene.paint.Color;
11 import javafx.scene.shape.Circle;
12 import javafx.stage.Stage;
13
14 public class ControlCircle extends Application {
15 private CirclePane circlePane = new CirclePane();
16
17 @Override // Override the start method in the Application class
18 public void start(Stage primaryStage) {
19 // Hold two buttons in an HBox
20 HBox hBox = new HBox();
21 hBox.setSpacing(10);
22 hBox.setAlignment(Pos.CENTER);
23 Button btEnlarge = new Button("Enlarge");
24 Button btShrink = new Button("Shrink");
25 hBox.getChildren().add(btEnlarge);
26 hBox.getChildren().add(btShrink);
27
28 // Create and register the handler
29 btEnlarge.setOnAction(new EnlargeHandler());
30
31 BorderPane borderPane = new BorderPane();
32 borderPane.setCenter(circlePane);
33 borderPane.setBottom(hBox);
34 BorderPane.setAlignment(hBox, Pos.CENTER);
35
36 // Create a scene and place it in the stage
37 Scene scene = new Scene(borderPane, 200, 150);
38 primaryStage.setTitle("ControlCircle"); // Set the stage title
39 primaryStage.setScene(scene); // Place the scene in the stage
40 primaryStage.show(); // Display the stage
41 }
42
43 class EnlargeHandler implements EventHandler<ActionEvent> {
44 @Override // Override the handle method
45 public void handle(ActionEvent e) {
46 circlePane.enlarge();
47 }
48 }
49 }
50
51 class CirclePane extends StackPane {
52 private Circle circle = new Circle(50);
53
54 public CirclePane() {
55 getChildren().add(circle);
56 circle.setStroke(Color.BLACK);
57 circle.setFill(Color.WHITE);
58 }

create/register handler

handler class

CirclePane class

main method omitted

M15_LIAN9966_12_SE_C15.indd 600 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

15.4 Inner Classes 601

59
60 public void enlarge() {
61 circle.setRadius(circle.getRadius() + 2);
62 }
63
64 public void shrink() {
65 circle.setRadius(circle.getRadius() > 2 ?
66 circle.getRadius() – 2 : circle.getRadius());
67 }
68 }

As an exercise, add the code for handling the Shrink button to display a smaller circle when
the Shrink button is clicked.

 15.3.1 Why must a handler be an instance of an appropriate handler interface?

 15.3.2 Explain how to register a handler object and how to implement a handler interface.

 15.3.3 What is the handler method for the EventHandler<ActionEvent> interface?

 15.3.4 What is the registration method for a button to register an ActionEvent handler?

15.4 Inner Classes
An inner class, or nested class, is a class defined within the scope of another class.
Inner classes are useful for defining handler classes.

The approach of this book is to introduce difficult programming concepts using practical
examples. We introduce inner classes, anonymous inner classes, and lambda expressions using
practical examples in this section and following two sections.

Inner classes are used in the preceding section. This section introduces inner classes in
detail. First, let us see the code in Figure 15.7. The code in Figure 15.7a defines two separate
classes, Test and A. The code in Figure 15.7b defines A as an inner class in Test.

enlarge method

the Shrink button

Point
Check

Point
Key

FIGURE 15.7 An inner class is defined as a member of another class.

public class Test {
 ...
}

public class A {
 ...
}

(a)

public class Test {
 ...

 // Inner class
 public class A {

...
}

}

(b)

// OuterClass.java: inner class demo
public class OuterClass {
private int data;

/** A method in the outer class */
public void m() {

// Do something
 }

// An inner class
class InnerClass {

/** A method in the inner class */
public void mi() {
// Directly reference data and method
// defined in its outer class
data++;
m();

 }
 }
}

(c)

The class InnerClass defined inside OuterClass in Figure 15.7c is another example
of an inner class. An inner class may be used just like a regular class. Normally, you define

M15_LIAN9966_12_SE_C15.indd 601 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

602 Chapter 15 Event-Driven Programming and Animations

a class as an inner class if it is used only by its outer class. An inner class has the following
features:

 ■ An inner class is compiled into a class named OuterClassName$InnerClassName.
class. For example, the inner class A in Test is compiled into Test$A.class in
Figure 15.7b.

 ■ An inner class can reference the data and the methods defined in the outer class in
which it nests, so you need not pass the reference of an object of the outer class to the
constructor of the inner class. For this reason, inner classes can make programs simple
and concise. For example, circlePane is defined in ControlCircle in Listing 15.3
(line 15). It can be referenced in the inner class EnlargeHandler in line 46.

 ■ An inner class can be defined with a visibility modifier subject to the same visibility
rules applied to a member of the class.

 ■ An inner class can be defined as static. A static inner class can be accessed
using the outer class name. A static inner class cannot access nonstatic members
of the outer class.

 ■ Objects of an inner class are often created in the outer class. However, you can also
create an object of an inner class from another class. If the inner class is nonstatic,
you must first create an instance of the outer class, then use the following syntax to
create an object for the inner class:

OuterClass.InnerClass innerObject = outerObject.new InnerClass();

 ■ If the inner class is static, use the following syntax to create an object for it:

OuterClass.InnerClass innerObject = new OuterClass.InnerClass();

A simple use of inner classes is to combine dependent classes into a primary class. This reduces
the number of source files. It also makes class files easy to organize since they are all named
with the primary class as the prefix. For example, rather than creating the two source files
Test.java and A.java as shown in Figure 15.7a, you can merge class A into class Test and
create just one source file, Test.java as shown in Figure 15.7b. The resulting class files are
Test.class and Test$A.class.

Another practical use of inner classes is to avoid class-naming conflicts. Two versions
of A are defined in Figure 15.7a and 15.7b. You can define them as inner classes to avoid
a conflict.

A handler class is designed specifically to create a handler object for a GUI component (e.g.,
a button). The handler class will not be shared by other applications and therefore is appropriate
to be defined inside the main class as an inner class.

 15.4.1 Can an inner class be used in a class other than the class in which it nests?

 15.4.2 Can the modifiers public, protected, private, and static be used for inner
classes?

15.5 Anonymous Inner-Class Handlers
An anonymous inner class is an inner class without a name. It combines defining an
inner class and creating an instance of the class into one step.

Inner-class handlers can be shortened using anonymous inner classes. The inner class in
Listing 15.3 can be replaced by an anonymous inner class as shown below. The complete
code is available at liveexample.pearsoncmg.com/html/ControlCircleWithAnonymousInnerClass.html.

Point
Check

Point
Key

anonymous inner class

M15_LIAN9966_12_SE_C15.indd 602 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

15.5 Anonymous Inner-Class Handlers 603

The syntax for an anonymous inner class is shown below.

new SuperClassName/InterfaceName() {
 // Implement or override methods in superclass or interface

 // Other methods if necessary
}

Since an anonymous inner class is a special kind of inner class, it is treated like an inner class
with the following features:

 ■ An anonymous inner class must always extend a superclass or implement an interface,
but it cannot have an explicit extends or implements clause.

 ■ An anonymous inner class must implement all the abstract methods in the superclass
or in the interface.

 ■ An anonymous inner class always uses the no-arg constructor from its superclass to
create an instance. If an anonymous inner class implements an interface, the con-
structor is Object().

 ■ An anonymous inner class is compiled into a class named OuterClassName$n.
class. For example, if the outer class Test has two anonymous inner classes, they
are compiled into Test$1.class and Test$2.class.

Listing 15.4 gives an example that displays a text and uses four buttons to move a text up,
down, left, and right, as shown in Figure 15.8.

FIGURE 15.8 The program handles the events from four buttons.

public void start(Stage primaryStage) {
// Omitted

 btEnlarge.setOnAction(
new EnlargeHandler());

}

class EnlargeHandler
implements EventHandler<ActionEvent> {

public void handle(ActionEvent e) {
 circlePane.enlarge();
 }
}

public void start(Stage primaryStage) {
// Omitted

btEnlarge.setOnAction(
new class EnlargeHandlner

implements EventHandler<ActionEvent>() {
public void handle(ActionEvent e) {

circlePane.enlarge();
}
);

}
}

(a) Inner class Enlargelistener (b) Anonymous inner class

LISTING 15.4 AnonymousHandlerDemo.java
 1 import javafx.application.Application;
 2 import javafx.event.ActionEvent;
 3 import javafx.event.EventHandler;
 4 import javafx.geometry.Pos;

VideoNote

Anonymous handler

M15_LIAN9966_12_SE_C15.indd 603 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

604 Chapter 15 Event-Driven Programming and Animations

 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.layout.HBox;
 9 import javafx.scene.layout.Pane;
10 import javafx.scene.text.Text;
11 import javafx.stage.Stage;
12
13 public class AnonymousHandlerDemo extends Application {
14 @Override // Override the start method in the Application class
15 public void start(Stage primaryStage) {
16 Text text = new Text(40, 40, "Programming is fun");
17 Pane pane = new Pane(text);
18
19 // Hold four buttons in an HBox
20 Button btUp = new Button("Up");
21 Button btDown = new Button("Down");
22 Button btLeft = new Button("Left");
23 Button btRight = new Button("Right");
24 HBox hBox = new HBox(btUp, btDown, btLeft, btRight);
25 hBox.setSpacing(10);
26 hBox.setAlignment(Pos.CENTER);
27
28 BorderPane borderPane = new BorderPane(pane);
29 borderPane.setBottom(hBox);
30
31 // Create and register the handler
32 btUp.setOnAction(new EventHandler<ActionEvent>() {
33 @Override // Override the handle method
34 public void handle(ActionEvent e) {
35 text.setY(text.getY() > 10 ? text.getY() − 5 : 10);
36 }
37 });
38
39 btDown.setOnAction(new EventHandler<ActionEvent>() {
40 @Override // Override the handle method
41 public void handle(ActionEvent e) {
42 text.setY(text.getY() < pane.getHeight() ?
43 text.getY() + 5 : pane.getHeight());
44 }
45 });
46
47 btLeft.setOnAction(new EventHandler<ActionEvent>() {
48 @Override // Override the handle method
49 public void handle(ActionEvent e) {
50 text.setX(text.getX() > 0 ? text.getX() − 5 : 0);
51 }
52 });
53
54 btRight.setOnAction(new EventHandler<ActionEvent>() {
55 @Override // Override the handle method
56 public void handle(ActionEvent e) {
57 text.setX(text.getX() < pane.getWidth() − 100?
58 text.getX() + 5 : pane.getWidth() − 100);
59 }
60 });
61
62 // Create a scene and place it in the stage
63 Scene scene = new Scene(borderPane, 400, 350);
64 primaryStage.setTitle("AnonymousHandlerDemo"); // Set title

anonymous handler

handle event

M15_LIAN9966_12_SE_C15.indd 604 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

15.6 Simplifying Event Handling Using Lambda Expressions 605

65 primaryStage.setScene(scene); // Place the scene in the stage
66 primaryStage.show(); // Display the stage
67 }
68 }

The program creates four handlers using anonymous inner classes (lines 32–60). Without using anon-
ymous inner classes, you would have to create four separate classes. An anonymous handler works
the same way as that of an inner-class handler. The program is condensed using an anonymous inner
class. Another benefit of using anonymous inner class is that the handler can access local variables.
In this example, the event handler references local variable text (lines 35, 42, 50, and 57).

The anonymous inner classes in this example are compiled into AnonymousHandlerDemo$1.
class, AnonymousHandlerDemo$2.class, AnonymousHandlerDemo$3.class, and
AnonymousHandlerDemo$4.class.

 15.5.1 If class A is an inner class in class B, what is the .class file for A? If class B con-
tains two anonymous inner classes, what are the .class file names for these two
classes?

 15.5.2 What is wrong in the following code?

public class Test extends Application {
 public void start(Stage stage) {
 Button btOK = new Button("OK");
 }

 private class Handler implements
 EventHandler<ActionEvent> {
 public void handle(Action e) {
 System.out.println(e.getSource());
 }
 }
}

public class Test extends Application {
 public void start(Stage stage) {
 Button btOK = new Button("OK");

 btOK.setOnAction(
 new EventHandler<ActionEvent> {
 public void handle
 (ActionEvent e) {
 System.out.println
 (e.getSource());
 }
 } // Something missing here
 }
}

(a) (b)

15.6 Simplifying Event Handling Using Lambda
Expressions

Lambda expressions can be used to greatly simplify coding for event handling.

Lambda expression is a new feature in Java 8. Lambda expressions can be viewed as an anonymous
class with a concise syntax. For example, the following code in (a) can be greatly simplified using a
lambda expression in (b) in three lines. Note that the interface EventHandler<ActionEvent> and
the method handle in (a) are removed in (b). This simplification is possible because that the Java
compiler can automatically infer that the setOnAction method requires an instance of
EvenHandler<ActionEvent> and the handle is the only method in the
EvenHandler<ActionEvent> interface. The complete code that contains the lambda expression
in (b) can be seen at liveexample.pearsoncmg.com/html/ControlCircle WithLambdaExpression.html.

btEnlarge.setOnAction {
 new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent e) {
 // Code for processing event e
 }
 }
});

btEnlarge.setOnAction(e –> {
 // Code for processing event e
});

(a) Anonymous inner class event handler (b) Lambda expression event handler

Point
Check

Point
Key

lambda expression

M15_LIAN9966_12_SE_C15.indd 605 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

606 Chapter 15 Event-Driven Programming and Animations

The basic syntax for a lambda expression is either

(type1 param1, type2 param2, . . .) −> expression

or

(type1 param1, type2 param2, . . .) −> { statements; }

The data type for a parameter may be explicitly declared or implicitly inferred by the com-
piler. The parentheses can be omitted if there is only one parameter without an explicit data
type. The curly braces can be omitted if there is only one statement. For example, the following
lambda expressions are all equivalent. Note there is no semicolon after the statement in (d).

btEnlarge.setOnAction(
 e −> {
 // code for processing event e
 }
);

(1) The compiler recognizes that the lambda
expression is an object of the
EventHandler<ActionEvent> type,
because the expression is an argument in the
setOnAction method.

(2) The compiler recognizes that e is a parameter
of the ActionEvent type, since the
EventHandler<ActionEvent>
interface defines the handle method with a parameter
of the ActionEvent type.

(3) The compiler recognizes that the code for
processing event e are the statements in the handle
method.

(ActiionEvent e) −> {
 circlePane.enlarge(); }

(e) −> {
 circlePane.enlarge(); }

(a) Lambda expression with one statement (b) Omit parameter data type

e −> {
 circlePane.enlarge(); }

e −>
 circlePane.enlarge()

(c) Omit parentheses (d) Omit braces

The compiler treats a lambda expression as if it is an object created from an anonymous
inner class. The compiler processes a lambda expression in three steps: (1) identify the lambda
expression type, (2) identify the parameter types, and (3) identify statements. Consider the
following lambda expression:

btEnlarge.setOnAction(
 e −> {
 // Code for processing event e
 }
);

It is processed as follows:

Step 1: The compiler recognizes that the object must be an instance of EventHan-
dler<ActionEvent>, since the expression is an argument of the setOnAction method
as shown in the following figure:

Step 2: Since the EventHandler interface defines the handle method with a parameter of the
ActionEvent type, the compiler recognizes that e is a parameter of the ActionEvent type.

Step 3: The compiler recognizes that the code for processing e is the statements in the body
of the handle method.

The EventHandler interface contains just one method named handle. The statements in
the lambda expression are all for that method. If it contains multiple methods, the compiler

M15_LIAN9966_12_SE_C15.indd 606 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

15.6 Simplifying Event Handling Using Lambda Expressions 607

will not be able to compile the lambda expression. Therefore, for the compiler to understand
lambda expressions, the interface must contain exactly one abstract method. Such an interface
is known as a Single Abstract Method (SAM) interface.

In essence, a lambda expression creates an object and the object performs a function by
invoking this single method. Thus, a SAM interface is also known as a functional interface,
and an instance of a functional interface is known as a function object. Since a lambda expres-
sion is squarely on defining a function, a lambda expression is also called a lambda function.
The terms lambda expression and lambda function are interchangeable.

Listing 15.4 can be simplified using lambda expressions as shown in Listing 15.5.

LISTING 15.5 LambdaHandlerDemo.java
 1 import javafx.application.Application;
 2 import javafx.event.ActionEvent;
 3 import javafx.event.EventHandler;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.layout.HBox;
 9 import javafx.scene.layout.Pane;
10 import javafx.scene.text.Text;
11 import javafx.stage.Stage;
12
13 public class LambdaHandlerDemo extends Application {
14 @Override // Override the start method in the Application class
15 public void start(Stage primaryStage) {
16 Text text = new Text(40, 40, "Programming is fun");
17 Pane pane = new Pane(text);
18
19 // Hold four buttons in an HBox
20 Button btUp = new Button("Up");
21 Button btDown = new Button("Down");
22 Button btLeft = new Button("Left");
23 Button btRight = new Button("Right");
24 HBox hBox = new HBox(btUp, btDown, btLeft, btRight);
25 hBox.setSpacing(10);
26 hBox.setAlignment(Pos.CENTER);
27
28 BorderPane borderPane = new BorderPane(pane);
29 borderPane.setBottom(hBox);
30
31 // Create and register the handler
32 btUp.setOnAction((ActionEvent e) −> {
33 text.setY(text.getY() > 10 ? text.getY() − 5 : 10);
34 });
35
36 btDown.setOnAction((e) −> {
37 text.setY(text.getY() < pane.getHeight() ?
38 text.getY() + 5 : pane.getHeight());
39 });
40
41 btLeft.setOnAction(e −> {
42 text.setX(text.getX() > 0 ? text.getX() − 5 : 0);
43 });
44
45 btRight.setOnAction(e −>
46 text.setX(text.getX() < pane.getWidth() − 100?
47 text.getX() + 5 : pane.getWidth() − 100)
48);

SAM interface

functional interface
function object
lambda function

functional programming

lambda handler

lambda handler

lambda handler

lambda handler

M15_LIAN9966_12_SE_C15.indd 607 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

608 Chapter 15 Event-Driven Programming and Animations

49
50 // Create a scene and place it in the stage
51 Scene scene = new Scene(borderPane, 400, 350);
52 primaryStage.setTitle("AnonymousHandlerDemo"); // Set title
53 primaryStage.setScene(scene); // Place the scene in the stage
54 primaryStage.show(); // Display the stage
55 }
56 }

The program creates four handlers using lambda expressions (lines 32–48). Using lambda
expressions, the code is shorter and cleaner. As seen in this example, lambda expressions may
have many variations. Line 32 uses a declared type. Line 36 uses an inferred type since the
type can be determined by the compiler. Line 41 omits the parentheses for a single inferred
type. Line 45 omits the braces for a single statement in the body.

You can handle events by defining handler classes using inner classes, anonymous inner
classes, or lambda expressions. We recommend you use lambda expressions because it pro-
duces a shorter, clearer, and cleaner code.

Using lambda expressions not only simplifies the syntax, but also simplifies the event-
handling concept. For the statement in line 45,

you can now simply say that when the btRight button is clicked, the lambda function is
invoked to move the text right.

You can define a custom functional interface and use it in a lambda expression. Consider
the following example in Listing 15.6:

LISTING 15.6 TestLambda.java
 1 public class TestLambda {
 2 public static void main(String[] args) {
 3 TestLambda test = new TestLambda();
 4 test.setAction1(() –> System.out.print("Action 1! "));
 5 test.setAction2(e –> System.out.print(e + " "));
 6 System.out.println(test.getValue((e1, e2) –> e1 + e2));
 7 }
 8
 9 public void setAction1(T1 t) {
10 t.m1();
11 }
12
13 public void setAction2(T2 t) {
14 t.m2(4.5);
15 }
16
17 public int getValue(T3 t) {
18 return t.m3(5, 2);
19 }
20 }
21
22 @FunctionalInterface
23 interface T1 {
24 public void m1();
25 }
26
27 @FunctionalInterface
28 interface T2 {

inner class, anonymous class,
or Lambda?

simplify syntax
simplify concept

(1) When the button is clicked (2) This function is performed

btRight.setOnAction (e –> move the text right);

M15_LIAN9966_12_SE_C15.indd 608 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

15.7 Case Study: Loan Calculator 609

29 public void m2(Double d);
30 }
31
32 @FunctionalInterface
33 interface T3 {
34 public int m3(int d1, int d2);
35 }

The annotation @FunctionalInterface tells the compiler that the interface is a functional
interface. Since T1, T2, and T3 are all functional interfaces, a lambda expression can be used
with the methods setAction1(T1), setAction2(T2), and getValue(T3). The statement
in line 4 is equivalent to using an anonymous inner class, as follows:

test.setAction1(new T1() {
 @Override
 public void m1() {
 System.out.print("Action 1! ");
 }
});

 15.6.1 What is a lambda expression? What is the benefit of using lambda expressions for
event handling? What is the syntax of a lambda expression?

 15.6.2 What is a functional interface? Why is a functional interface required for a lambda
expression?

 15.6.3 Replace the code in lines 5 and 6 in TestLambda.java using anonymous inner classes.

15.7 Case Study: Loan Calculator
This case study develops a loan calculator using event-driven programming with GUI
controls.

Now, we will write the program for the loan-calculator problem presented at the beginning of
this chapter. Here are the major steps in the program:

1. Create the user interface, as shown in Figure 15.9.

a. Create a GridPane. Add labels, text fields, and button to the pane.

b. Set the alignment of the button to the right.

2. Process the event.

 Create and register the handler for processing the button-clicking action event. The
handler obtains the user input on the loan amount, interest rate, and number of years,
computes the monthly and total payments, and displays the values in the text fields.

Point
Check

Point
Key

FIGURE 15.9 The program computes loan payments.

GridPane

Button is right aligned

Text field is right aligned

M15_LIAN9966_12_SE_C15.indd 609 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

610 Chapter 15 Event-Driven Programming and Animations

The complete program is given in Listing 15.7.

LISTING 15.7 LoanCalculator.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.geometry.HPos;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Button;
 6 import javafx.scene.control.Label;
 7 import javafx.scene.control.TextField;
 8 import javafx.scene.layout.GridPane;
 9 import javafx.stage.Stage;
10
11 public class LoanCalculator extends Application {
12 private TextField tfAnnualInterestRate = new TextField();
13 private TextField tfNumberOfYears = new TextField();
14 private TextField tfLoanAmount = new TextField();
15 private TextField tfMonthlyPayment = new TextField();
16 private TextField tfTotalPayment = new TextField();
17 private Button btCalculate = new Button("Calculate");
18
19 @Override // Override the start method in the Application class
20 public void start(Stage primaryStage) {
21 // Create UI
22 GridPane gridPane = new GridPane();
23 gridPane.setHgap(5);
24 gridPane.setVgap(5);
25 gridPane.add(new Label("Annual Interest Rate:"), 0, 0);
26 gridPane.add(tfAnnualInterestRate, 1, 0);
27 gridPane.add(new Label("Number of Years:"), 0, 1);
28 gridPane.add(tfNumberOfYears, 1, 1);
29 gridPane.add(new Label("Loan Amount:"), 0, 2);
30 gridPane.add(tfLoanAmount, 1, 2);
31 gridPane.add(new Label("Monthly Payment:"), 0, 3);
32 gridPane.add(tfMonthlyPayment, 1, 3);
33 gridPane.add(new Label("Total Payment:"), 0, 4);
34 gridPane.add(tfTotalPayment, 1, 4);
35 gridPane.add(btCalculate, 1, 5);
36
37 // Set properties for UI
38 gridPane.setAlignment(Pos.CENTER);
39 tfAnnualInterestRate.setAlignment(Pos.BOTTOM_RIGHT);
40 tfNumberOfYears.setAlignment(Pos.BOTTOM_RIGHT);
41 tfLoanAmount.setAlignment(Pos.BOTTOM_RIGHT);
42 tfMonthlyPayment.setAlignment(Pos.BOTTOM_RIGHT);
43 tfTotalPayment.setAlignment(Pos.BOTTOM_RIGHT);
44 tfMonthlyPayment.setEditable(false);
45 tfTotalPayment.setEditable(false);
46 GridPane.setHalignment(btCalculate, HPos.RIGHT);
47
48 // Process events
49 btCalculate.setOnAction(e –> calculateLoanPayment());
50
51 // Create a scene and place it in the stage
52 Scene scene = new Scene(gridPane, 400, 250);
53 primaryStage.setTitle("LoanCalculator"); // Set title
54 primaryStage.setScene(scene); // Place the scene in the stage
55 primaryStage.show(); // Display the stage
56 }

text fields

button

create a grid pane

add to grid pane

register handler

M15_LIAN9966_12_SE_C15.indd 610 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

15.8 Mouse Events 611

57
58 private void calculateLoanPayment() {
59 // Get values from text fields
60 double interest =
61 Double.parseDouble(tfAnnualInterestRate.getText());
62 int year = Integer.parseInt(tfNumberOfYears.getText());
63 double loanAmount =
64 Double.parseDouble(tfLoanAmount.getText());
65
66 // Create a loan object. Loan defined in Listing 10.2
67 Loan loan = new Loan(interest, year, loanAmount);
68
69 // Display monthly payment and total payment
70 tfMonthlyPayment.setText(String.format("$%.2f",
71 loan.getMonthlyPayment()));
72 tfTotalPayment.setText(String.format("$%.2f",
73 loan.getTotalPayment()));
74 }
75 }

The user interface is created in the start method (lines 22–46). The button is the source of the
event. A handler is created and registered with the button (line 49). The button handler invokes the
calculateLoanPayment() method to get the interest rate (line 60), number of years (line 62),
and loan amount (line 64). Invoking tfAnnualInterestRate.getText() returns the string
text in the tfAnnualInterestRate text field. The Loan class is used for computing the loan
payments. This class was introduced in Listing 10.2, Loan.java. Invok ing loan.getMonthlyPay-
ment() returns the monthly payment for the loan (line 71). The String.format method, intro-
duced in Section 10.10.7, is used to format a number into a desirable format and returns it as a string
(lines 70 and 72). Invoking the setText method on a text field sets a string value in the text field.

15.8 Mouse Events
A MouseEvent is fired whenever a mouse button is pressed, released, clicked, moved,
or dragged on a node or a scene.

The MouseEvent object captures the event, such as the number of clicks associated with it,
the location (the x- and y-coordinates) of the mouse, or which mouse button was pressed, as
shown in Figure 15.10.

set result

create loan

get input

Point
Key

FIGURE 15.10 The MouseEvent class encapsulates information for mouse events.

javafx.scene.input.MouseEvent

+getButton(): MouseButton

+getClickCount(): int

+getX(): double

+getY(): double

+getSceneX(): double

+getSceneY(): double

+getScreenX(): double

+getScreenY(): double

+isAltDown(): boolean

+isControlDown(): boolean

+isMetaDown(): boolean

+isShiftDown(): boolean

Indicates which mouse button has been clicked.

Returns the number of mouse clicks associated with this event.

Returns the x-coordinate of the mouse point in the event source node.

Returns the y-coordinate of the mouse point in the event source node.

Returns the x-coordinate of the mouse point in the scene.

Returns the y-coordinate of the mouse point in the scene.

Returns the x-coordinate of the mouse point in the screen.

Returns the y-coordinate of the mouse point in the screen.

Returns true if the Alt key is pressed on this event.

Returns true if the Control key is pressed on this event.

Returns true if the mouse Meta button is pressed on this event.

Returns true if the Shift key is pressed on this event.

M15_LIAN9966_12_SE_C15.indd 611 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

612 Chapter 15 Event-Driven Programming and Animations

Four constants—PRIMARY, SECONDARY, MIDDLE, and NONE—are defined in MouseButton
to indicate the left, right, middle, and none mouse buttons, respectively. You can use the
 getButton() method to detect which button is pressed. For example, getButton() ==
MouseButton.SECONDARY tests if the right button was pressed. You can also use the
 isPrimaryButtonDown(), isSecondaryButtonDown(), and isMiddleButtonDown()
to test if the primary button, second button, or middle button is pressed.

The mouse events and their corresponding registration methods for handlers are listed in
Table 15.1. To demonstrate using mouse events, we give an example that displays a message in
a pane and enables the message to be moved using a mouse. The message moves as the mouse
is dragged, and it is always displayed at the mouse point. Listing 15.8 gives the program. A
sample run of the program is shown in Figure 15.11.

detect mouse buttons

FIGURE 15.11 You can move the message by dragging the mouse.

LISTING 15.8 MouseEventDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.text.Text;
 5 import javafx.stage.Stage;
 6
 7 public class MouseEventDemo extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
10 // Create a pane and set its properties
11 Pane pane = new Pane();
12 Text text = new Text(20, 20, "Programming is fun");
13 pane.getChildren().addAll(text);
14 text.setOnMouseDragged(e –> {
15 text.setX(e.getX());
16 text.setY(e.getY());
17 });
18
19 // Create a scene and place it in the stage
20 Scene scene = new Scene(pane, 300, 100);
21 primaryStage.setTitle("MouseEventDemo"); // Set the stage title
22 primaryStage.setScene(scene); // Place the scene in the stage
23 primaryStage.show(); // Display the stage
24 }
25 }

Each node or scene can fire mouse events. The program creates a Text (line 12) and registers
a handler to handle move dragged event (line 14). Whenever a mouse is dragged, the text’s
x- and y-coordinates are set to the mouse position (lines 15 and 16).

 15.8.1 What method do you use to get the mouse-point position for a mouse event?

 15.8.2 What methods do you use to register a handler for mouse-pressed, -released,
-clicked, -entered, -exited, -moved, and -dragged events?

VideoNote

Move message using the
mouse

create a pane
create a text
add text to a pane
lambda handler
reset text position

Point
Check

M15_LIAN9966_12_SE_C15.indd 612 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

15.9 Key Events 613

15.9 Key Events
A KeyEvent is fired whenever a key is pressed, released, or typed on a node or a
scene.

Key events enable the use of the keys to control and perform actions, or get input from the
keyboard. The KeyEvent object describes the nature of the event (namely, that a key has been
pressed, released, or typed) and the value of the key, as shown in Figure 15.12.

Point
Key

FIGURE 15.12 The KeyEvent class encapsulates information about key events.

javafx.scene.input.KeyEvent

+getCharacter(): String

+getCode(): KeyCode

+getText(): String

+isAltDown(): boolean

+isControlDown(): boolean

+isMetaDown(): boolean

+isShiftDown(): boolean

Returns the character associated with the key in this event.

Returns the key code associated with the key in this event.

Returns a string describing the key code.

Returns true if the Alt key is pressed on this event.

Returns true if the Control key is pressed on this event.

Returns true if the mouse Meta button is pressed on this event.

Returns true if the Shift key is pressed on this event.

The key events key pressed, key released, and key typed and their corresponding registra-
tion methods for handlers are listed in Table 15.1. The key pressed handler is invoked when a
key is pressed, the key released handler is invoked when a key is released, and the key typed
handler is invoked when a Unicode character is entered. If a key does not have a Unicode
(e.g., function keys, modifier keys, action keys, arrow keys, and control keys), the key typed
handler will not be invoked.

Every key event has an associated code that is returned by the getCode() method in
KeyEvent. The key codes are constants defined in KeyCode. Table 15.2 lists some constants.
KeyCode is an enum type. For use of enum types, see Appendix I. For the key-pressed and
key-released events, getCode() returns the value as defined in the table, getText() returns
a string that describes the key code, and getCharacter() returns an empty string. For the
key-typed event, getCode() returns UNDEFINED and getCharacter() returns the Unicode
character or a sequence of characters associated with the key-typed event.

key code

TABLE 15.2 KeyCode Constants

Constant Description

HOME The Home key

END The End key

PAGE_UP The Page Up key

PAGE_DOWN The Page Down key

UP The up-arrow key

DOWN The down-arrow key

LEFT The left-arrow key

RIGHT The right-arrow key

ESCAPE The Esc key

TAB The Tab key

Constant Description

CONTROL The Control key

SHIFT The Shift key

BACK_SPACE The Backspace key

CAPS The Caps Lock key

NUM_LOCK The Num Lock key

ENTER The Enter key

UNDEFINED The keyCode unknown

F1 to F12 The function keys from F1 to F12

0 to 9 The number keys from 0 to 9

A to Z The letter keys from A to Z

M15_LIAN9966_12_SE_C15.indd 613 13/09/19 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

614 Chapter 15 Event-Driven Programming and Animations

FIGURE 15.13 The program responds to key events by displaying a character and moving it
up, down, left, or right.

LISTING 15.9 KeyEventDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.text.Text;
 5 import javafx.stage.Stage;
 6
 7 public class KeyEventDemo extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
10 // Create a pane and set its properties
11 Pane pane = new Pane();
12 Text text = new Text(20, 20, "A");
13
14 pane.getChildren().add(text);
15 text.setOnKeyPressed(e –> {
16 switch (e.getCode()) {
17 case DOWN: text.setY(text.getY() + 10); break;
18 case UP: text.setY(text.getY() – 10); break;
19 case LEFT: text.setX(text.getX() – 10); break;
20 case RIGHT: text.setX(text.getX() + 10); break;
21 default:
22 if (e.getText().length() > 0)
23 text.setText(e.getText());
24 }
25 });
26
27 // Create a scene and place it in the stage
28 Scene scene = new Scene(pane);
29 primaryStage.setTitle("KeyEventDemo"); // Set the stage title
30 primaryStage.setScene(scene); // Place the scene in the stage
31 primaryStage.show(); // Display the stage
32
33 text.requestFocus(); // text is focused to receive key input
34 }
35 }

The program creates a pane (line 11), creates a text (line 12), and places the text into the pane
(line 14). The text registers the handler for the key-pressed event in lines 15–25. When a key
is pressed, the handler is invoked. The program uses e.getCode() (line 16) to obtain the key
code and e.getText() (line 23) to get the character for the key. Note for a nonprintable
character such as a CTRL key or SHIFT key, e.getText() returns an empty string. When a
non-arrow key is pressed, the character is displayed (lines 22 and 23). When an arrow key is
pressed, the character moves in the direction indicated by the arrow key (lines 17–20). Note in

create a pane

register handler
get the key pressed
move a character

set a new character

request focus on text

The program in Listing 15.9 displays a user-input character. The user can move the
 character up, down, left, and right, using the up-, down-, left-, and right-arrow keys, respec-
tively. Figure 15.13 contains a sample run of the program.

M15_LIAN9966_12_SE_C15.indd 614 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

15.9 Key Events 615

a switch statement for an enum-type value, the cases are for the enum constants (lines 16–24).
The constants are unqualified. For example, using KeyCode.DOWN in the case clause would
be wrong (see Appendix I).

Only a focused node can receive KeyEvent. Invoking requestFocus() on text enables
text to receive key input (line 33). This method must be invoked after the stage is displayed.
The program would work fine if text is replaced by scene in line 15 as follows:

scene.setOnKeyPressed(e –> { ... });

You don’t need to invoke scene.requestFocus() because scene is a top-level container
for receiving key events.

We can now add more control for our ControlCircle example in Listing 15.3 to increase/
decrease the circle radius by clicking the left/right mouse button or by pressing the up and
down arrow keys. The new program is given in Listing 15.10.

LISTING 15.10 ControlCircleWithMouseAndKey.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Button;
 5 import javafx.scene.input.KeyCode;
 6 import javafx.scene.input.MouseButton;
 7 import javafx.scene.layout.HBox;
 8 import javafx.scene.layout.BorderPane;
 9 import javafx.stage.Stage;
10
11 public class ControlCircleWithMouseAndKey extends Application {
12 private CirclePane circlePane = new CirclePane();
13
14 @Override // Override the start method in the Application class
15 public void start(Stage primaryStage) {
16 // Hold two buttons in an HBox
17 HBox hBox = new HBox();
18 hBox.setSpacing(10);
19 hBox.setAlignment(Pos.CENTER);
20 Button btEnlarge = new Button("Enlarge");
21 Button btShrink = new Button("Shrink");
22 hBox.getChildren().add(btEnlarge);
23 hBox.getChildren().add(btShrink);
24
25 // Create and register the handler
26 btEnlarge.setOnAction(e –> circlePane.enlarge());
27 btShrink.setOnAction(e –> circlePane.shrink());
28
29 BorderPane borderPane = new BorderPane();
30 borderPane.setCenter(circlePane);
31 borderPane.setBottom(hBox);
32 BorderPane.setAlignment(hBox, Pos.CENTER);
33
34 // Create a scene and place it in the stage
35 Scene scene = new Scene(borderPane, 200, 150);
36 primaryStage.setTitle("ControlCircle"); // Set the stage title
37 primaryStage.setScene(scene); // Place the scene in the stage
38 primaryStage.show(); // Display the stage
39
40 circlePane.setOnMouseClicked(e –> {
41 if (e.getButton() == MouseButton.PRIMARY) {
42 circlePane.enlarge();
43 }

requestFocus()

button handler

mouse-click handler

M15_LIAN9966_12_SE_C15.indd 615 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

616 Chapter 15 Event-Driven Programming and Animations

44 else if (e.getButton() == MouseButton.SECONDARY) {
45 circlePane.shrink();
46 }
47 });
48
49 scene.setOnKeyPressed(e –> {
50 if (e.getCode() == KeyCode.UP) {
51 circlePane.enlarge();
52 }
53 else if (e.getCode() == KeyCode.DOWN) {
54 circlePane.shrink();
55 }
56 });
57 }
58 }

The CirclePane class (line 12) is already defined in Listing 15.3 and can be reused in this
program.

A handler for mouse-clicked events is created in lines 40–47. If the left mouse button is
clicked, the circle is enlarged (lines 41–43); if the right mouse button is clicked, the circle is
shrunk (lines 44–46).

A handler for key-pressed events is created in lines 49–56. If the up arrow key is pressed,
the circle is enlarged (lines 50–52); if the down arrow key is pressed, the circle is shrunk
(lines 53–55).

 15.9.1 What methods do you use to register handlers for key-pressed, key-released, and
key-typed events? In which classes are these methods defined? (See Table 15.1.)

 15.9.2 What method do you use to get the key character for a key-typed event? What
method do you use to get the key code for a key-pressed or key-released event?

 15.9.3 How do you set focus on a node so it can listen for key events?

 15.9.4 If the following code is inserted in line 57 in Listing 15.9, what is the output if the user
presses the key for letter A? What is the output if the user presses the up arrow key?

circlePane.setOnKeyPressed(e –>
 System.out.println("Key pressed " + e.getCode()));
circlePane.setOnKeyTyped(e –>
 System.out.println("Key typed " + e.getCode()));

15.10 Listeners for Observable Objects
You can add a listener to process a value change in an observable object.

An instance of Observable is known as an observable object, which contains the
addListener(InvalidationListener listener) method for adding a listener. The
listener class must implement the functional interface InvalidationListener to over-
ride the invalidated(Observable o) method for handling the value change. Once the
value is changed in the Observable object, the listener is notified by invoking its
invalidated(Observable o) method. Every binding property is an instance of
 Observable. Listing 15.11 gives an example of observing and handling a change in a
 DoubleProperty object balance.

LISTING 15.11 ObservablePropertyDemo.java
 1 import javafx.beans.InvalidationListener;
 2 import javafx.beans.Observable;
 3 import javafx.beans.property.DoubleProperty;

Down-arrow key pressed

Up-arrow key pressed
key-pressed handler

mouse-clicked event

key-pressed event

Point
Check

Point
Key

observable object

M15_LIAN9966_12_SE_C15.indd 616 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

15.10 Listeners for Observable Objects 617

 4 import javafx.beans.property.SimpleDoubleProperty;
 5
 6 public class ObservablePropertyDemo {
 7 public static void main(String[] args) {
 8 DoubleProperty balance = new SimpleDoubleProperty();
 9 balance.addListener(new InvalidationListener() {
10 public void invalidated(Observable ov) {
11 System.out.println("The new value is " +
12 balance.doubleValue());
13 }
14 });
15
16 balance.set(4.5);
17 }
18 }

handle change
add listener
observable property

When line 16 is executed, it causes a change in balance, which notifies the listener by
 invoking the listener’s invalidated method.

Note the anonymous inner class in lines 9–14 can be simplified using a lambda expression
as follows:

 balance.addListener(ov –> {
 System.out.println("The new value is " +
 balance.doubleValue());
 });

Listing 15.12 gives a program that displays a circle with its bounding rectangle, as shown
in Figure 15.14. The circle and rectangle are automatically resized when the user resizes the
window.

LISTING 15.12 ResizableCircleRectangle.java
 1 import javafx.application.Application;
 2 import javafx.scene.paint.Color;
 3 import javafx.scene.shape.Circle;
 4 import javafx.scene.shape.Rectangle;
 5 import javafx.stage.Stage;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.layout.StackPane;
 9
10 public class ResizableCircleRectangle extends Application {
11 // Create a circle and a rectangle
12 private Circle circle = new Circle(60);
13 private Rectangle rectangle = new Rectangle(120, 120);
14
15 // Place clock and label in border pane
16 private StackPane pane = new StackPane();
17
18 @Override // Override the start method in the Application class
19 public void start(Stage primaryStage) {
20 circle.setFill(Color.GRAY);
21 rectangle.setFill(Color.WHITE);
22 rectangle.setStroke(Color.BLACK);
23 pane.getChildren().addAll(rectangle, circle);

The new value is 4.5

M15_LIAN9966_12_SE_C15.indd 617 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

618 Chapter 15 Event-Driven Programming and Animations

24
25 // Create a scene and place the pane in the stage
26 Scene scene = new Scene(pane, 140, 140);
27 primaryStage.setTitle("ResizableCircleRectangle");
28 primaryStage.setScene(scene); // Place the scene in the stage
29 primaryStage.show(); // Display the stage
30
31 pane.widthProperty().addListener(ov –> resize());
32 pane.heightProperty().addListener(ov –> resize());
33 }
34
35 private void resize() {
36 double length = Math.min(pane.getWidth(), pane.getHeight());
37 circle.setRadius(length / 2 – 15);
38 rectangle.setWidth(length – 30);
39 rectangle.setHeight(length – 30);
40 }
41 }

set a new height for clock
set a new width for clock

FIGURE 15.15 The animation simulates a flag rising. Source: booka/Fotolia.

FIGURE 15.14 The program places a rectangle and a circle inside a stack pane, and
 automatically sets their sizes when the window is resized.

The program registers the listeners for the stack pane’s width and height properties
(lines 31 and 32). When the user resizes the window, the pane’s size is changed, so the listen-
ers are called to invoke the resize() method to change the size of the circle and rectangle
(lines 35–40).

 15.10.1 What would happen if you replace pane with scene or primaryStage in
lines 31–32?

15.11 Animation
JavaFX provides the Animation class with the core functionality for all animations.
Suppose you want to write a program that animates a rising flag, as shown in Figure 15.15.
How do you accomplish the task? There are several ways to program this. An effective one is
to use the subclasses of the JavaFX Animation class, which is the subject of this section.

Point
Check

Point
Key

VideoNote

Animate a rising flag

M15_LIAN9966_12_SE_C15.indd 618 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

The autoReverse is a Boolean property that indicates whether an animation will reverse
its direction on the next cycle. The cycleCount indicates the number of the cycles for the
animation. You can use the constant Timeline.INDEFINITE to indicate an indefinite number
of cycles. The rate defines the speed of the animation. A negative rate value indicates the
opposite direction for the animation. The status is a read-only property that indicates the
status of the animation (Animation.Status.PAUSED, Animation.Status.RUNNING, and
Animation.Status.STOPPED). The methods pause(), play(), and stop() pause, play,
and stop an animation, respectively.

15.11.1 PathTransition
The PathTransition class animates the moves of a node along a path from one end to
the other over a given time. PathTransition is a subtype of Animation. The UML class
 diagram for the class is shown in Figure 15.17.

FIGURE 15.16 The abstract Animation class is the root class for JavaFX animations.

–autoReverse: BooleanProperty

–cycleCount: IntegerProperty

–rate: DoubleProperty

–status: ReadOnlyObjectProperty
 <Animation.Status>

javafx.animation.Animation

Defines whether the animation reverses direction on alternating cycles.

Defines the number of cycles in this animation.

Defines the speed and direction for this animation.

Read-only property to indicate the status of the animation.

+pause(): void

+play(): void

+stop(): void

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Pauses the animation.

Plays the animation from the current position.

Stops the animation and resets the animation.

The abstract Animation class provides the core functionalities for animations in JavaFX,
as shown in Figure 15.16. Many concrete subclasses of Animation are provided in JavaFX.
This section introduces PathTransition, FadeTransition, and Timeline.

FIGURE 15.17 The PathTransition class defines an animation for a node along a path.

–duration: ObjectProperty<Duration>

–node: ObjectProperty<Node>

–orientation: ObjectProperty
 <PathTransition.OrientationType>

–path: ObjectType<Shape>

javafx.animation.PathTransition

The duration of this transition.

The target node of this transition.

The orientation of the node along the path.

The shape whose outline is used as a path to animate the node move.

+PathTransition()

+PathTransition(duration: Duration,
 path: Shape)

+PathTransition(duration: Duration,
 path: Shape, node: Node)

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Creates an empty PathTransition.

Creates a PathTransition with the specified duration and path.

Creates a PathTransition with the specified duration, path, and node.

15.11 Animation 619

M15_LIAN9966_12_SE_C15.indd 619 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

620 Chapter 15 Event-Driven Programming and Animations

The Duration class defines a duration of time. It is an immutable class. The class
defines constants INDEFINITE, ONE, UNKNOWN, and ZERO to represent an indefinte duration,
one millisecond, unknown, and zero duration, respectively. You can use new Duration(dou-
ble millis) to create an instance of Duration, the add, subtract, multiply, and divide
methods to perform arithmetic operations, and the toHours(), toMinutes(), toSeconds(),
and toMillis() to return the number of hours, minutes, seconds, and milliseconds in this
duration, respectively. You can also use compareTo to compare two durations.

The constants NONE and ORTHOGONAL_TO_TANGENT are defined in PathTransition
.OrientationType. The latter specifies that the node is kept perpendicular to the path’s
 tangent along the geometric path.

Listing 15.13 gives an example that moves a rectangle along the outline of a circle, as shown
in Figure 15.18a.

LISTING 15.13 PathTransitionDemo.java
 1 import javafx.animation.PathTransition;
 2 import javafx.animation.Timeline;
 3 import javafx.application.Application;
 4 import javafx.scene.Scene;
 5 import javafx.scene.layout.Pane;
 6 import javafx.scene.paint.Color;
 7 import javafx.scene.shape.Rectangle;
 8 import javafx.scene.shape.Circle;
 9 import javafx.stage.Stage;
10 import javafx.util.Duration;
11
12 public class PathTransitionDemo extends Application {
13 @Override // Override the start method in the Application class
14 public void start(Stage primaryStage) {
15 // Create a pane
16 Pane pane = new Pane();
17
18 // Create a rectangle
19 Rectangle rectangle = new Rectangle (0, 0, 25, 50);
20 rectangle.setFill(Color.ORANGE);
21
22 // Create a circle
23 Circle circle = new Circle(125, 100, 50);
24 circle.setFill(Color.WHITE);
25 circle.setStroke(Color.BLACK);
26
27 // Add circle and rectangle to the pane
28 pane.getChildren().add(circle);
29 pane.getChildren().add(rectangle);
30
31 // Create a path transition
32 PathTransition pt = new PathTransition();
33 pt.setDuration(Duration.millis(4000));
34 pt.setPath(circle);
35 pt.setNode(rectangle);
36 pt.setOrientation(
37 PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);
38 pt.setCycleCount(Timeline.INDEFINITE);
39 pt.setAutoReverse(true);
40 pt.play(); // Start animation
41
42 circle.setOnMousePressed(e –> pt.pause());
43 circle.setOnMouseReleased(e –> pt.play());

create a pane

create a rectangle

create a circle

add circle to pane
add rectangle to pane

create a PathTransition
set transition duration
set path in transition
set node in transition
set orientation

set cycle count indefinite
set auto reverse true
play animation

pause animation
resume animation

M15_LIAN9966_12_SE_C15.indd 620 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

44
45 // Create a scene and place it in the stage
46 Scene scene = new Scene(pane, 250, 200);
47 primaryStage.setTitle("PathTransitionDemo"); // Set the stage title
48 primaryStage.setScene(scene); // Place the scene in the stage
49 primaryStage.show(); // Display the stage
50 }
51 }

FIGURE 15.18 The PathTransition animates a rectangle moving along the circle.

(a) (b)

The program creates a pane (line 16), a rectangle (line 19), and a circle (line 23). The circle
and rectangle are placed in the pane (lines 28 and 29). If the circle was not placed in the pane,
you will see the screen shot as shown in Figure 15.18b.

The program creates a path transition (line 32), sets its duration to 4 seconds for one cycle
of animation (line 33), sets circle as the path (line 34), sets rectangle as the node (line 35), and
sets the orientation to orthogonal to tangent (line 36).

The cycle count is set to indefinite (line 38) so the animation continues forever. The auto
reverse is set to true (line 39) so the direction of the move is reversed in the alternating cycle.
The program starts animation by invoking the play() method (line 40).

If the pause() method is replaced by the stop() method in line 42, the animation will
start over from the beginning when it restarts.

Listing 15.14 gives the program that animates a flag rising, as shown in Figure 15.14.

LISTING 15.14 FlagRisingAnimation.java
 1 import javafx.animation.PathTransition;
 2 import javafx.application.Application;
 3 import javafx.scene.Scene;
 4 import javafx.scene.image.ImageView;
 5 import javafx.scene.layout.Pane;
 6 import javafx.scene.shape.Line;
 7 import javafx.stage.Stage;
 8 import javafx.util.Duration;
 9
10 public class FlagRisingAnimation extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 // Create a pane
14 Pane pane = new Pane();
15
16 // Add an image view and add it to pane
17 ImageView imageView = new ImageView("image/us.gif");
18 pane.getChildren().add(imageView);

create a pane

create an image view
add image view to pane

15.11 Animation 621

M15_LIAN9966_12_SE_C15.indd 621 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

622 Chapter 15 Event-Driven Programming and Animations

19
20 // Create a path transition
21 PathTransition pt = new PathTransition(Duration.millis(10000),
22 new Line(100, 200, 100, 0), imageView);
23 pt.setCycleCount(5);
24 pt.play(); // Start animation
25
26 // Create a scene and place it in the stage
27 Scene scene = new Scene(pane, 250, 200);
28 primaryStage.setTitle("FlagRisingAnimation"); // Set the stage title
29 primaryStage.setScene(scene); // Place the scene in the stage
30 primaryStage.show(); // Display the stage
31 }
32 }

The program creates a pane (line 14), an image view from an image file (line 17), and places the
image view to the pane (line 18). A path transition is created with a duration of 10 seconds using
a line as a path and the image view as the node (lines 21 and 22). The image view will move
along the line. Since the line is not placed in the scene, you will not see the line in the window.

The cycle count is set to 5 (line 23) so the animation is repeated five times.

15.11.2 FadeTransition
The FadeTransition class animates the change of the opacity in a node over a given time.
FadeTransition is a subtype of Animation. The UML class diagram for the class is shown
in Figure 15.19.

play animation
set cycle count

create a path transition

FIGURE 15.19 The FadeTransition class defines an animation for the change of opacity in a node.

–duration: ObjectProperty<Duration>

–node: ObjectProperty<Node>

–fromValue: DoubleProperty

–toValue: DoubleProperty

–byValue: DoubleProperty

javafx.animation.FadeTransition

The duration of this transition.

The target node of this transition.

The start opacity for this animation.

The stop opacity for this animation.

The incremental value on the opacity for this animation.

+FadeTransition()

+FadeTransition(duration: Duration)

+FadeTransition(duration: Duration,
 node: Node)

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Creates an empty FadeTransition.

Creates a FadeTransition with the specified duration.

Creates a FadeTransition with the specified duration and node.

Listing 15.15 gives an example that applies a fade transition to the filled color in an ellipse,
as shown in Figure 15.20.

LISTING 15.15 FadeTransitionDemo.java
 1 import javafx.animation.FadeTransition;
 2 import javafx.animation.Timeline;
 3 import javafx.application.Application;
 4 import javafx.scene.Scene;
 5 import javafx.scene.layout.Pane;
 6 import javafx.scene.paint.Color;
 7 import javafx.scene.shape.Ellipse;
 8 import javafx.stage.Stage;

M15_LIAN9966_12_SE_C15.indd 622 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

 9 import javafx.util.Duration;
10
11 public class FadeTransitionDemo extends Application {
12 @Override // Override the start method in the Application class
13 public void start(Stage primaryStage) {
14 // Place an ellipse to the pane
15 Pane pane = new Pane();
16 Ellipse ellipse = new Ellipse(10, 10, 100, 50);
17 ellipse.setFill(Color.RED);
18 ellipse.setStroke(Color.BLACK);
19 ellipse.centerXProperty().bind(pane.widthProperty().divide(2));
20 ellipse.centerYProperty().bind(pane.heightProperty().divide(2));
21 ellipse.radiusXProperty().bind(
22 pane.widthProperty().multiply(0.4));
23 ellipse.radiusYProperty().bind(
24 pane.heightProperty().multiply(0.4));
25 pane.getChildren().add(ellipse);
26
27 // Apply a fade transition to ellipse
28 FadeTransition ft =
29 new FadeTransition(Duration.millis(3000), ellipse);
30 ft.setFromValue(1.0);
31 ft.setToValue(0.1);
32 ft.setCycleCount(Timeline.INDEFINITE);
33 ft.setAutoReverse(true);
34 ft.play(); // Start animation
35
36 // Control animation
37 ellipse.setOnMousePressed(e –> ft.pause());
38 ellipse.setOnMouseReleased(e –> ft.play());
39
40 // Create a scene and place it in the stage
41 Scene scene = new Scene(pane, 200, 150);
42 primaryStage.setTitle("FadeTransitionDemo"); // Set the stage title
43 primaryStage.setScene(scene); // Place the scene in the stage
44 primaryStage.show(); // Display the stage
45 }
46 }

create a pane

set ellipse fill color
set ellipse stroke color
bind ellipse properties

add ellipse to pane

create a FadeTransition

set start opaque value
set end opaque value
set cycle count
set auto reverse true
play animation

pause animation
resume animation

create an ellipse

FIGURE 15.20 The FadeTransition animates the change of opacity in the ellipse.

The program creates a pane (line 15) and an ellipse (line 16) and places the ellipse into the pane
(line 25). The ellipse’s centerX, centerY, radiusX, and radiusY properties are bound to
the pane’s size (lines 19–24).

A fade transition is created with a duration of 3 seconds for the ellipse (line 29). It sets the start
opaque to 1.0 (line 30) and the stop opaque to 0.1 (line 31). The cycle count is set to infinite so the
animation is repeated indefinitely (line 32). When the mouse is pressed, the animation is paused
(line 37). When the mouse is released, the animation resumes from where it was paused (line 38).

15.11 Animation 623

M15_LIAN9966_12_SE_C15.indd 623 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

624 Chapter 15 Event-Driven Programming and Animations

15.11.3 Timeline
PathTransition and FadeTransition define specialized animations. The Timeline class
can be used to program any animation using one or more KeyFrames. Each KeyFrame is
executed sequentially at a specified time interval. Timeline inherits from Animation. You
can construct a Timeline using the constructor new Timeline(KeyFrame...keyframes).
A KeyFrame can be constructed using

new KeyFrame(Duration duration, EventHandler<ActionEvent> onFinished)

The handler onFinished is called when the duration for the key frame is elapsed.
Listing 15.15 gives an example that displays a flashing text, as shown in Figure 15.21. The

text is on and off alternating to animate flashing.

LISTING 15.16 TimelineDemo.java
 1 import javafx.animation.Animation;
 2 import javafx.application.Application;
 3 import javafx.stage.Stage;
 4 import javafx.animation.KeyFrame;
 5 import javafx.animation.Timeline;
 6 import javafx.event.ActionEvent;
 7 import javafx.event.EventHandler;
 8 import javafx.scene.Scene;
 9 import javafx.scene.layout.StackPane;
10 import javafx.scene.paint.Color;
11 import javafx.scene.text.Text;
12 import javafx.util.Duration;
13
14 public class TimelineDemo extends Application {
15 @Override // Override the start method in the Application class
16 public void start(Stage primaryStage) {
17 StackPane pane = new StackPane();
18 Text text = new Text(20, 50, "Programming is fun");
19 text.setFill(Color.RED);
20 pane.getChildren().add(text); // Place text into the stack pane
21
22 // Create a handler for changing text
23 EventHandler<ActionEvent> eventHandler = e –> {
24 if (text.getText().length() != 0) {
25 text.setText("");
26 }
27 else {
28 text.setText("Programming is fun");
29 }
30 };
31
32 // Create an animation for alternating text
33 Timeline animation = new Timeline(
34 new KeyFrame(Duration.millis(500), eventHandler));
35 animation.setCycleCount(Timeline.INDEFINITE);
36 animation.play(); // Start animation
37
38 // Pause and resume animation
39 text.setOnMouseClicked(e –> {
40 if (animation.getStatus() == Animation.Status.PAUSED) {
41 animation.play();
42 }
43 else {
44 animation.pause();

VideoNote

Flashing text

create a stack pane
create a text

add text to pane

handler for changing text

set text empty

set text

create a Timeline

create a KeyFrame for handler
set cycle count indefinite
play animation

resume animation

pause animation

M15_LIAN9966_12_SE_C15.indd 624 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

45 }
46 });
47
48 // Create a scene and place it in the stage
49 Scene scene = new Scene(pane, 250, 250);
50 primaryStage.setTitle("TimelineDemo"); // Set the stage title
51 primaryStage.setScene(scene); // Place the scene in the stage
52 primaryStage.show(); // Display the stage
53 }
54 }

FIGURE 15.21 The handler is called to set the text to “Programming is fun” or empty in turn.

The program creates a stack pane (line 17) and a text (line 18) and places the text into the pane
(line 20). A handler is created to change the text to empty (lines 24–26) if it is not empty or to
Programming is fun if it is empty (lines 27–29). A KeyFrame is created to run an action
event in every half second (line 34). A Timeline animation is created to contain a key frame
(lines 33 and 34). The animation is set to run indefinitely (line 35).

The mouse-clicked event is set for the text (lines 39–46). A mouse click on the text resumes
the animation if the animation is paused (lines 40–42), and a mouse click on the text pauses
the animation if the animation is running (lines 43–45).

In Section 14.12, Case Study: The ClockPane Class, you drew a clock to show the cur-
rent time. The clock does not tick after it is displayed. What can you do to make the clock
display a new current time every second? The key to making the clock tick is to repaint it
every second with a new current time. You can use a Timeline to control the repainting
of the clock with the code in Listing 15.17. The sample run of the program is shown in
Figure 15.22.

LISTING 15.17 ClockAnimation.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.animation.KeyFrame;
 4 import javafx.animation.Timeline;
 5 import javafx.event.ActionEvent;
 6 import javafx.event.EventHandler;
 7 import javafx.scene.Scene;
 8 import javafx.util.Duration;
 9
10 public class ClockAnimation extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 ClockPane clock = new ClockPane(); // Create a clock
14
15 // Create a handler for animation
16 EventHandler<ActionEvent> eventHandler = e –> {
17 clock.setCurrentTime(); // Set a new clock time
18 };
19
20 // Create an animation for a running clock
21 Timeline animation = new Timeline(

create a clock

create a handler

create a time line

15.11 Animation 625

M15_LIAN9966_12_SE_C15.indd 625 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

626 Chapter 15 Event-Driven Programming and Animations

22 new KeyFrame(Duration.millis(1000), eventHandler));
23 animation.setCycleCount(Timeline.INDEFINITE);
24 animation.play(); // Start animation
25
26 // Create a scene and place it in the stage
27 Scene scene = new Scene(clock, 250, 50);
28 primaryStage.setTitle("ClockAnimation"); // Set the stage title
29 primaryStage.setScene(scene); // Place the scene in the stage
30 primaryStage.show(); // Display the stage
31 }
32 }

play animation
set cycle count indefinite
create a key frame

The program creates an instance clock of ClockPane for displaying a clock (line 13). The
ClockPane class is defined in Listing 14.21. The clock is placed in the scene in line 27. An
event handler is created for setting the current time in the clock (lines 16–18). This handler is
called every second in the key frame in the time line animation (lines 21–24). Thus, the clock
time is updated every second in the animation.

 15.11.1 How do you set the cycle count of an animation to infinite? How do you auto
reverse an animation? How do you start, pause, and stop an animation?

 15.11.2 Are PathTransition, FadeTransition, and Timeline subtypes of
Animation?

 15.11.3 How do you create a PathTransition? How do you create a
 FadeTransition? How do you create a Timeline?

 15.11.4 How do you create a KeyFrame?

15.12 Case Study: Bouncing Ball
This section presents an animation that displays a ball bouncing in a pane.

The program uses Timeline to animate ball bouncing, as shown in Figure 15.23.

Point
Check

Point
Key

FIGURE 15.22 A live clock is displayed in the window.

FIGURE 15.23 A ball is bouncing in a pane.

M15_LIAN9966_12_SE_C15.indd 626 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

15.12 Case Study: Bouncing Ball 627

Here are the major steps to write this program:

1. Define a subclass of Pane named BallPane to display a ball bouncing, as shown in
Listing 15.18.

2. Define a subclass of Application named BounceBallControl to control the bounc-
ing ball with mouse actions, as shown in Listing 15.19. The animation pauses when the
mouse is pressed, and resumes when the mouse is released. Pressing the up and down
arrow keys increases/decreases the animation speed.

The relationship among these classes is shown in Figure 15.24.

LISTING 15.18 BallPane.java
 1 import javafx.animation.KeyFrame;
 2 import javafx.animation.Timeline;
 3 import javafx.beans.property.DoubleProperty;
 4 import javafx.scene.layout.Pane;
 5 import javafx.scene.paint.Color;
 6 import javafx.scene.shape.Circle;
 7 import javafx.util.Duration;
 8
 9 public class BallPane extends Pane {
10 public final double radius = 20;
11 private double x = radius, y = radius;
12 private double dx = 1, dy = 1;
13 private Circle circle = new Circle(x, y, radius);
14 private Timeline animation;
15
16 public BallPane() {
17 circle.setFill(Color.GREEN); // Set ball color
18 getChildren().add(circle); // Place a ball into this pane

FIGURE 15.24 BounceBallControl contains BallPane.

1 1
BallPane

–x: double

–y: double

–dx: double

–dy: double

–radius: double

–circle: Circle

–animation: Timeline

+BallPane()

+play(): void

+pause(): void

+increaseSpeed(): void

+decreaseSpeed(): void

+rateProperty(): DoubleProperty

#moveBall(): void

javafx.scene.layout.Pane javafx.application.Application

BounceBallControl

M15_LIAN9966_12_SE_C15.indd 627 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

628 Chapter 15 Event-Driven Programming and Animations

19
20 // Create an animation for moving the ball
21 animation = new Timeline(
22 new KeyFrame(Duration.millis(50), e –> moveBall()));
23 animation.setCycleCount(Timeline.INDEFINITE);
24 animation.play(); // Start animation
25 }
26
27 public void play() {
28 animation.play();
29 }
30
31 public void pause() {
32 animation.pause();
33 }
34
35 public void increaseSpeed() {
36 animation.setRate(animation.getRate() + 0.1);
37 }
38
39 public void decreaseSpeed() {
40 animation.setRate(
41 animation.getRate() > 0 ? animation.getRate() – 0.1 : 0);
42 }
43
44 public DoubleProperty rateProperty() {
45 return animation.rateProperty();
46 }
47
48 protected void moveBall() {
49 // Check boundaries
50 if (x < radius || x > getWidth() – radius) {
51 dx *= –1; // Change ball move direction
52 }
53 if (y < radius || y > getHeight() – radius) {
54 dy *= –1; // Change ball move direction
55 }
56
57 // Adjust ball position
58 x += dx;
59 y += dy;
60 circle.setCenterX(x);
61 circle.setCenterY(y);
62 }
63 }

BallPane extends Pane to display a moving ball (line 9). An instance of Timeline is
created to control animation (lines 21 and 22). This instance contains a KeyFrame object that
invokes the moveBall() method at a fixed rate. The moveBall() method moves the ball to
simulate animation. The center of the ball is at (x, y), which changes to (x + dx, y + dy) on
the next move (lines 58–61). When the ball is out of the horizontal boundary, the sign of dx is
changed (from positive to negative or vice versa) (lines 50–52). This causes the ball to change
its horizontal movement direction. When the ball is out of the vertical boundary, the sign of dy
is changed (from positive to negative or vice versa) (lines 53–55). This causes the ball to change
its vertical movement direction. The pause and play methods (lines 27–33) can be used to
pause and resume the animation. The increaseSpeed() and decreaseSpeed() methods
(lines 35–42) can be used to increase and decrease animation speed. The rateProperty()

create animation

keep animation running
start animation

play animation

pause animation

increase animation rate

decrease animation rate

change horizontal direction

change vertical direction

set new ball position

M15_LIAN9966_12_SE_C15.indd 628 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

15.12 Case Study: Bouncing Ball 629

method (lines 44–46) returns a binding property value for rate. This binding property will be
useful for binding the rate in future applications in the next chapter.

LISTING 15.19 BounceBallControl.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.scene.Scene;
 4 import javafx.scene.input.KeyCode;
 5
 6 public class BounceBallControl extends Application {
 7 @Override // Override the start method in the Application class
 8 public void start(Stage primaryStage) {
 9 BallPane ballPane = new BallPane(); // Create a ball pane
10
11 // Pause and resume animation
12 ballPane.setOnMousePressed(e –> ballPane.pause());
13 ballPane.setOnMouseReleased(e –> ballPane.play());
14
15 // Increase and decrease animation
16 ballPane.setOnKeyPressed(e –> {
17 if (e.getCode() == KeyCode.UP) {
18 ballPane.increaseSpeed();
19 }
20 else if (e.getCode() == KeyCode.DOWN) {
21 ballPane.decreaseSpeed();
22 }
23 });
24
25 // Create a scene and place it in the stage
26 Scene scene = new Scene(ballPane, 250, 150);
27 primaryStage.setTitle("BounceBallControl"); // Set the stage title
28 primaryStage.setScene(scene); // Place the scene in the stage
29 primaryStage.show(); // Display the stage
30
31 // Must request focus after the primary stage is displayed
32 ballPane.requestFocus();
33 }
34 }

The BounceBallControl class is the main JavaFX class that extends Application to
display the ball pane with control functions. The mouse-pressed and mouse-released handlers
are implemented for the ball pane to pause the animation and resume the animation (lines 12
and 13). When the UP arrow key is pressed, the ball pane’s increaseSpeed() method is
invoked to increase the ball’s movement (line 18). When the down arrow key is pressed, the
ball pane’s decreaseSpeed() method is invoked to reduce the ball’s movement (line 21).

Invoking ballPane.requestFocus() in line 32 sets the input focus to ballPane.

 15.12.1 How does the program make the ball appear to be moving?

 15.12.2 How does the code in Listing 15.17, BallPane.java, change the direction of the
ball movement?

 15.12.3 What does the program do when the mouse is pressed on the ball pane? What
does the program do when the mouse is released on the ball pane?

 15.12.4 If line 32 in Listing 15.18, BounceBall.java, is not in the program, what would
happen when you press the up or the down arrow key?

 15.12.5 If line 23 is not in Listing 15.17, what would happen?

create a ball pane

pause animation
resume animation

increase speed

decrease speed

request focus on pane

Point
Check

M15_LIAN9966_12_SE_C15.indd 629 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

630 Chapter 15 Event-Driven Programming and Animations

15.13 Case Study: US Map
This section presents a program that draws, colors, and resizes a US map.

The program reads the GPS coordinates for each state in the 48 continental United States,
and draws a polygon to connect the coordinates and displays all the polygons, as shown in
Figure 15.25.

Point
Key

FIGURE 15.25 The program displays, colors, and resizes the US map.

The coordinates are contained in a file at https://liveexample.pearsoncmg.com/data/usmap.txt.
For each state, the file contains the state name (e.g., Alabama) and all the coordinates (latitude
and longitude) for the state. For example, the following is an example for Alabama and Arkansas:

Alabama
 35.0041 –88.1955
 34.9918 –85.6068
 ...
 34.9479 –88.1721
 34.9107 –88.1461
Arkansas
 33.0225 –94.0416
 33.0075 –91.2057
 ...

A polygon is displayed in red, blue, or white when the primary, secondary, or middle
mouse button is clicked in the polygon. The map size is increased when the up arrow key is
pressed, and decreased when the down arrow key is pressed. Listing 15.20 gives the code for
this program.

LISTING 15.20 USMap.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.paint.Color;
 4 import javafx.stage.Stage;
 5 import javafx.scene.shape.Polygon;
 6 import javafx.scene.Group;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.input.*;
 9 import javafx.geometry.Point2D;
 10 import java.util.*;
 11
 12 public class USMap extends Application {
 13 @Override // Override the start method in the Application class
 14 public void start(Stage primaryStage) {
 15 MapPane map = new MapPane();create a map

M15_LIAN9966_12_SE_C15.indd 630 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

15.13 Case Study: US Map 631

 16 Scene scene = new Scene(map, 1200, 800);
 17 primaryStage.setTitle("USMap"); // Set the stage title
 18 primaryStage.setScene(scene); // Place the scene in the stage
 19 primaryStage.show(); // Display the stage
 20
 21 map.setOnKeyPressed(e –> {
 22 if (e.getCode() == KeyCode.UP) {
 23 map.enlarge(); // Enlarge the map
 24 }
 25 else if (e.getCode() == KeyCode.DOWN) {
 26 map.shrink(); // SHrink the map
 27 }
 28 });
 29 map.requestFocus();
 30 }
 31
 32 class MapPane extends BorderPane {
 33 private Group group = new Group();
 34
 35 MapPane() {
 36 // Load coordinates from a file
 37 ArrayList<ArrayList<Point2D>> points = getPoints();
 38
 39 // Add points to the polygon list
 40 for (int i = 0; i < points.size(); i++) {
 41 Polygon polygon = new Polygon();
 42 // Add points to the polygon list
 43 for (int j = 0; j < points.get(i).size(); j++)
 44 polygon.getPoints().addAll(points.get(i).get(j).getX(),
 45 –points.get(i).get(j).getY());
 46 polygon.setFill(Color.WHITE);
 47 polygon.setStroke(Color.BLACK);
 48 polygon.setStrokeWidth(1 / 14.0);
 49
 50 polygon.setOnMouseClicked(e –> {
 51 if (e.getButton() == MouseButton.PRIMARY) {
 52 polygon.setFill(Color.RED);
 53 }
 54 else if (e.getButton() == MouseButton.SECONDARY) {
 55 polygon.setFill(Color.BLUE);
 56 }
 57 else {
 58 polygon.setFill(Color.WHITE);
 59 }
 60 });
 61
 62 group.getChildren().add(polygon);
 63 }
 64
 65 group.setScaleX(14);
 66 group.setScaleY(14);
 67 this.setCenter(group);
 68 }
 69
 70 public void enlarge() {
 71 group.setScaleX(1.1 * group.getScaleX());
 72 group.setScaleY(1.1 * group.getScaleY());
 73 }
 74
 75 public void shrink() {

listen to key event

enlarge map

shrink map

request focus

extends BorderPane
create a Group

get coordinates for state

add coordinates

set polygon stroke width

set listener for mouse click
color polygon

add a polygon to group

scale polygon

center group in the map

enlarge map

shrink map

M15_LIAN9966_12_SE_C15.indd 631 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

632 Chapter 15 Event-Driven Programming and Animations

 76 group.setScaleX(0.9 * group.getScaleX());
 77 group.setScaleY(0.9 * group.getScaleY());
 78 }
 79
 80 private ArrayList<ArrayList<Point2D>> getPoints() {
 81 ArrayList<ArrayList<Point2D>> points = new ArrayList<>();
 82
 83 try (Scanner input = new Scanner(new java.net.URL(
 84 "https://liveexample.pearsoncmg.com/data/usmap.txt")
 85 .openStream())) {
 86 while (input.hasNext()) {
 87 String s = input.nextLine();
 88 if (Character.isAlphabetic(s.charAt(0))) {
 89 points.add(new ArrayList<>()); // For a new state
 90 }
 91 else {
 92 Scanner scanAString = new Scanner(s); // Scan one point
 93 double y = scanAString.nextDouble();
 94 double x = scanAString.nextDouble();
 95 points.get(points.size() – 1).add(new Point2D(x, y));
 96 }
 97 }
 98 }
 99 catch (Exception ex) {
100 ex.printStackTrace();
101 }
102
103 return points;
104 }
105 }
106 }

The program defines MapPane that extends BorderPane to display a map in the center of
the border pane (line 32). The program needs to resize the polygons in the map. An instance of
the Group class is created to hold all the polygons (line 33). Grouping the polygons enables all
polygons to be resized in one operation. Resizing the group will cause all polygons in the group
to resize accordingly. Resizing can be done by applying the scaleX and scaleY properties
in the group (lines 65 and 66).

The getPoints() method is used to return all the coordinates in an array list (line 80). The
array list consists of sublists. Each sublist contains the coordinates for a state and is added to
the array list (line 89). A Point2D object represents the x- and y-coordinates of the point (line
81). The method creates a Scanner object to read data for the map coordinates from a file
on the Internet (lines 83–85). The program reads lines from the file. For each line, if the first
character is an alphabet, the line is for a new state name (line 88) and a new sublist is created
and added to the points array list (line 89). Otherwise, the line contains the two coordinates.
The latitude becomes the y-coordinate for the point (line 93), and the longitude corresponds
to the x-coordinate of the point (line 94). The program stores the points for a state in a sublist
(line 95). points is an array list that contains 48 sublists.

The constructor of MapPane obtains sublists of the coordinates from the file (line 37). For
each sublist of the points, a polygon is created (line 41). The points are added to the polygon
(lines 43–45). Since the y-coordinates increase upward in the conventional coordinate system,
but downward in the Java coordinate system, the program changes the sign for the y-coordinates
in line 45. The polygon properties are set in lines 46–48. Note the strokeWidth is set to
1 / 14.0 (line 48) because all the polygons are scaled up 14 times in lines 65 and 66. If the
strokeWidth is not set to this value, the stroke width will be very thick. Since polygons are
very small, applying the setScaleX and setScaleY methods on the group causes all the

create array list

try-with-resource
open an Internet resource

read a string
start a state

read latitude value
read longitude value
add a point to list

return list of points

the Group class

the scaleX property

the scaleY property

the scaleX property
the scaleY property

create a state list

M15_LIAN9966_12_SE_C15.indd 632 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

Chapter Summary 633

nodes inside the group to be enlarged (lines 65 and 66). MapPane is a BorderPane. The group
is placed in the center of the border pane (line 67).

The enlarge() and shrink() methods are defined in MapPane (lines 70–78). They can be
called to enlarge or shrink the group to cause all the polygons in the group to scale up or down.

Each polygon is set to listen to mouse-clicked event (lines 50–60). When clicking the
primary/secondary/middle mouse button on a polygon, the polygon is filled red/blue/white.

The program creates an instance of MapPane (line 15) and places it in the scene (line 16). The
map listens to the key-pressed event to enlarge or shrink the map upon pressing the up and down
arrow key (lines 21–28). Since the map is inside the scene, invoking map.requestFocus()
enables the map to receive key events (line 29).

 15.13.1 What would happen if line 29 in Listing 15.20 is removed?

 15.13.2 What would happen if map is replaced by scene in line 21 in Listing 15.20?

 15.13.3 What would happen if map is replaced by primaryStage in line 21 in
Listing 15.20?

Point
Check

KEY TERMS

anonymous inner class 602
event 596
event-driven programming 596
event handler 597
event–handler interface 597
event object 596
event source object 596

functional interface 607
inner class 599
key code 613
lambda expression 605
observable object 616
single abstract method interface 607

CHAPTER SUMMARY

1. The root class of the JavaFX event classes is javafx.event.Event, which is a subclass
of java.util.EventObject. The subclasses of Event deal with special types of
events, such as action events, window events, mouse events, and key events. If a node
can fire an event, any subclass of the node can fire the same type of event.

2. The handler object’s class must implement the corresponding event–handler interface.
JavaFX provides a handler interface EventHandler<T extends Event> for every event
class T. The handler interface contains the handle(T e) method for handling event e.

3. The handler object must be registered by the source object. Registration methods depend
on the event type. For an action event, the method is setOnAction. For a mouse-pressed
event, the method is setOnMousePressed. For a key-pressed event, the method is
setOnKeyPressed.

4. An inner class, or nested class, is defined within the scope of another class. An inner
class can reference the data and methods defined in the outer class in which it nests, so
you need not pass the reference of the outer class to the constructor of the inner class.

5. An anonymous inner class can be used to shorten the code for event handling.
 Furthermore, a lambda expression can be used to greatly simplify the event-handling
code for functional interface handlers.

M15_LIAN9966_12_SE_C15.indd 633 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

634 Chapter 15 Event-Driven Programming and Animations

6. A functional interface is an interface with exactly one abstract method. This is also
known as a single abstract method (SAM) interface.

7. A MouseEvent is fired whenever a mouse button is pressed, released, clicked, moved,
or dragged on a node or a scene. The getButton() method can be used to detect which
mouse button is pressed for the event.

8. A KeyEvent is fired whenever a key is pressed, released, or typed on a node or a scene.
The getCode() method can be used to return the code value for the key.

9. An instance of Observable is known as an observable object, which contains the
add-Listener(InvalidationListener listener) method for adding a listener.
Once the value is changed in the property, a listener is notified. The listener class should
implement the InvalidationListener interface, which uses the invalidated
method to handle the property value change.

10. The abstract Animation class provides the core functionalities for animations in
JavaFX. PathTransition, FadeTransition, and Timeline are specialized classes
for implementing animations.

QUIZ

Answer the quiz for this chapter online at the book Companion Website.

PROGRAMMING EXERCISES

Sections 15.2–15.7
 *15.1 (Pick four cards) Write a program that lets the user click the Refresh button to

display four cards from a deck of 52 cards, as shown in Figure 15.26a. (See the
hint in Programming Exercise 14.3 on how to obtain four random cards.)

FIGURE 15.26 (a) Exercise 15.1 displays four cards randomly. Source: Fotolia. (b) Exercise 15.2 rotates the rectangle.
(c) Exercise 15.3 uses the buttons to move the ball.

(a) (b) (c)

 15.2 (Rotate a rectangle) Write a program that rotates a rectangle 15 degrees to the
right when the Rotate button is clicked, as shown in Figure 15.26b.

 *15.3 (Move the ball) Write a program that moves the ball in a pane. You should
define a pane class for displaying the ball and provide the methods for moving
the ball left, right, up, and down, as shown in Figure 15.26c. Check the bound-
ary to prevent the ball from moving out of sight completely.

 *15.4 (Create a simple calculator) Write a program to perform addition, subtraction,
multiplication, and division, as shown in Figure 15.27a.

VideoNote

Simple calculator

M15_LIAN9966_12_SE_C15.indd 634 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 635

FIGURE 15.27 (a) Exercise 15.4 performs addition, subtraction, multiplication, and division
on double numbers. (b) The user enters the investment amount, years, and interest rate to
compute future value.

(a) (b)

 *15.5 (Create an investment-value calculator) Write a program that calculates the
future value of an investment at a given interest rate for a specified number of
years. The formula for the calculation is

futureValue = investmentAmount * (1 + monthlyInterestRate)years*12

Use text fields for the investment amount, number of years, and annual interest
rate. Display the future amount in a text field when the user clicks the Calculate
button, as shown in Figure 15.27b.

Sections 15.8 and 15.9
 **15.6 (Alternate two messages) Write a program to display the text Java is fun

and Java is powerful alternately with a mouse click.

 *15.7 (Change color using a mouse) Write a program that displays the color of a
circle as black when the mouse button is pressed, and as white when the mouse
button is released.

 *15.8 (Display the mouse position) Write two programs, such that one displays the
mouse position when the mouse button is clicked (see Figure 15.28a), and the
other displays the mouse position when the mouse button is pressed and ceases
to display it when the mouse button is released.

 *15.9 (Draw lines using the arrow keys) Write a program that draws line segments
using the arrow keys. The line starts from (100, 100) in the pane and draws
toward east, north, west, or south when the right-arrow key, up-arrow key,
left-arrow key, or down-arrow key is pressed, as shown in Figure 15.28b.

FIGURE 15.28 (a) Exercise 15.8 displays the mouse position. (b) Exercise 15.9 uses the
arrow keys to draw the lines.

(a) (b)

M15_LIAN9966_12_SE_C15.indd 635 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

636 Chapter 15 Event-Driven Programming and Animations

FIGURE 15.30 (a) Exercise 15.15 allows the user to create/remove points dynamically.
(b) Exercise 15.16 displays two vertices and a connecting edge.

 **15.10 (Enter and display a string) Write a program that receives a string from the
keyboard and displays it on a pane. The Enter key signals the end of a string.
Whenever a new string is entered, it is displayed on the pane.

 *15.11 (Move a circle using keys) Write a program that moves a circle up, down, left,
or right using the arrow keys.

 **15.12 (Geometry: inside a circle?) Write a program that draws a fixed circle centered
at (100, 60) with radius 50. Whenever the mouse is moved, display a message
indicating whether the mouse point is inside the circle at the mouse point or
outside of it, as shown in Figure 15.29a.

 **15.13 (Geometry: inside a rectangle?) Write a program that draws a fixed rectangle cen-
tered at (100, 60) with width 100 and height 40. Whenever the mouse is moved,
display a message indicating whether the mouse point is inside the rectangle at the
mouse point or outside of it, as shown in Figure 15.29b. To detect whether a point
is inside a polygon, use the contains method defined in the Node class.

VideoNote

Check mouse-point location

FIGURE 15.29 Detect whether a point is inside a circle, a rectangle, or a polygon.

(a) (b) (c)

 **15.14 (Geometry: inside a polygon?) Write a program that draws a fixed polygon
with points at (40, 20), (70, 40), (60, 80), (45, 45), and (20, 60). Whenever
the mouse is moved, display a message indicating whether the mouse point
is inside the polygon at the mouse point or outside of it, as shown in Figure
15.29c. To detect whether a point is inside a polygon, use the contains
method defined in the Node class.

 **15.15 (Geometry: add and remove points) Write a program that lets the user click on
a pane to dynamically create and remove points (see Figure 15.30a). When the
user left-clicks the mouse (primary button), a point is created and displayed
at the mouse point. The user can remove a point by pointing to it and right-
clicking the mouse (secondary button).

M15_LIAN9966_12_SE_C15.indd 636 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 637

FIGURE 15.31 (a) Exercise 15.17 enables the user to add/remove points dynamically and displays the bounding
 rectangle. (b) When you click a circle, a new circle is displayed at a random location. (c) After 20 circles are clicked,
the time spent is displayed in the pane.

(a) (b) (c)

 *15.16 (Two movable vertices and their distances) Write a program that displays two
circles with radius 10 at location (40, 40) and (120, 150) with a line connect-
ing the two circles, as shown in Figure 15.30b. The distance between the circles
is displayed along the line. The user can drag a circle. When that happens, the
circle and its line are moved, and the distance between the circles is updated.

 **15.17 (Geometry: find the bounding rectangle) Write a program that enables the user
to add and remove points in a two-dimensional plane dynamically, as shown
in Figure 15.31a. A minimum bounding rectangle is updated as the points are
added and removed. Assume the radius of each point is 10 pixels.

 **15.18 (Move a rectangle using mouse) Write a program that displays a rectangle.
You can point the mouse inside the rectangle and drag (i.e., move with mouse
pressed) the rectangle wherever the mouse goes. The mouse point becomes the
center of the rectangle.

 **15.19 (Game: eye–hand coordination) Write a program that displays a circle of
radius 10 pixels filled with a random color at a random location on a pane, as
shown in Figure 15.31b. When you click the circle, it disappears and a new
random-color circle is displayed at another random location. After 20 circles
are clicked, display the time spent in the pane, as shown in Figure 15.31c.

 **15.20 (Geometry: display angles) Write a program that enables the user to drag the
vertices of a triangle and displays the angles dynamically as the triangle shape
changes, as shown in Figure 15.32a. The formula to compute angles is given in
Listing 4.1.

FIGURE 15.32 (a) Exercise 15.20 enables the user to drag vertices and display the angles
dynamically. (b) Exercise 15.21 enables the user to drag vertices and display the angles in
the triangle dynamically.

(a) (b)

M15_LIAN9966_12_SE_C15.indd 637 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

638 Chapter 15 Event-Driven Programming and Animations

FIGURE 15.33 The program animates a pendulum swing.

FIGURE 15.34 The program animates a ball traveling along a sine curve.

 *15.26 (Change opacity) Rewrite Programming Exercise 15.24 so the ball’s opacity is
changed as it swings.

 *15.27 (Control a moving text) Write a program that displays a moving text, as shown
in Figures 15.35a and b. The text moves from left to right circularly. When it
disappears in the right, it reappears from the left. The text freezes when the
mouse is pressed, and moves again when the button is released.

 *15.21 (Drag points) Draw a circle with three random points on the circle. Connect
the points to form a triangle. Display the angles in the triangle. Use the mouse
to drag a point along the perimeter of the circle. As you drag it, the triangle and
angles are redisplayed dynamically, as shown in Figure 15.32b. For computing
angles in a triangle, see Listing 4.1.

Section 15.10
 *15.22 (Auto resize cylinder) Rewrite Programming Exercise 14.10 so the cylinder’s

width and height are automatically resized when the window is resized.

 *15.23 (Auto resize stop sign) Rewrite Programming Exercise 14.15 so the stop sign’s
width and height are automatically resized when the window is resized.

Section 15.11
 **15.24 (Animation: pendulum swing) Write a program that animates a pendulum

swing, as shown in Figure 15.33. Press/release the mouse to pause/resume the
animation.

 **15.25 (Animation: ball on curve) Write a program that animates a ball moving along
a sine curve, as shown in Figure 15.34. When the ball gets to the right border,
it starts over from the left. Enable the user to resume/pause the animation with
a click on the left/right mouse button.

M15_LIAN9966_12_SE_C15.indd 638 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 639

FIGURE 15.35 (a and b) A text is moving from left to right circularly. (c) The program simulates a fan running.

(a) (b) (c)

 **15.28 (Display a running fan) Write a program that displays a running fan, as shown
in Figure 15.35c. Use the Pause, Resume, and Reverse buttons to pause,
resume, and reverse fan running.

 **15.29 (Racing car) Write a program that simulates car racing, as shown in
 Figure 15.36a. The car moves from left to right. When it hits the right end, it
restarts from the left and continues the same process. You can use a timer to
control animation. Redraw the car with new base coordinates (x, y), as shown in
 Figure 15.36b. Also let the user pause/resume the animation with a button
press/release and increase/decrease the car speed by pressing the up and down
arrow keys.

VideoNote

Display a running fan

FIGURE 15.36 (a) The program displays a moving car. (b) You can redraw a car with a new base point.

(a) (b)

x x + 20 x + 40

y

y-20

y-10

y-30

(x, y)

 **15.30 (Slide show) Twenty-five slides are stored as image files (slide0.jpg, slide1.
jpg, . . . , slide24.jpg) in the image directory downloadable along with the
source code in the book. The size of each image is 800 * 600. Write a program
that automatically displays the slides repeatedly. Each slide is shown for two
seconds. The slides are displayed in order. When the last slide finishes, the
first slide is redisplayed, and so on. Click to pause if the animation is currently
playing. Click to resume if the animation is currently paused.

 **15.31 (Geometry: pendulum) Write a program that animates a pendulum swinging,
as shown in Figure 15.37. Press the up arrow key to increase the speed, and the
down arrow key to decrease it. Press the S key to stop animation of and the R
key to resume it.

M15_LIAN9966_12_SE_C15.indd 639 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

640 Chapter 15 Event-Driven Programming and Animations

 *15.32 (Control a clock) Modify Listing 14.21, ClockPane.java, to add the animation
into this class and add two methods start() and stop() to start and stop the
clock, respectively. Write a program that lets the user control the clock with the
Start and Stop buttons, as shown in Figure 15.38a.

 ***15.33 (Game: bean-machine animation) Write a program that animates the bean
machine introduced in Programming Exercise 7.37. The animation terminates
after 10 balls are dropped, as shown in Figures 15.38b and c.

FIGURE 15.37 Exercise 15.31 animates a pendulum swinging.

FIGURE 15.38 (a) Exercise 15.32 allows the user to start and stop a clock. (b and c) The
balls are dropped into the bean machine.

(a) (b) (c)

FIGURE 15.39 (a) A path ends at a boundary point. (b) A path ends at dead-end point. (c and d) Animation shows the
progress of a path step by step.

(a) (b) (c) (d)

M15_LIAN9966_12_SE_C15.indd 640 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 641

 ***15.34 (Simulation: self-avoiding random walk) A self-avoiding walk in a lattice
is a path from one point to another that does not visit the same point twice.
Self-avoiding walks have applications in physics, chemistry, and mathematics.
They can be used to model chain-like entities such as solvents and polymers.
Write a program that displays a random path that starts from the center and
ends at a point on the boundary, as shown in Figure 15.39a, or ends at a dead-
end point (i.e., surrounded by four points that have already been visited), as
shown in Figure 15.39b. Assume the size of the lattice is 16 by 16.

 ***15.35 (Animation: self-avoiding random walk) Revise the preceding exercise to dis-
play the walk step by step in an animation, as shown in Figures 15.39c and d.

 **15.36 (Simulation: self-avoiding random walk) Write a simulation program to show
that the chance of getting dead-end paths increases as the grid size increases.
Your program simulates lattices with size from 10 to 80 with increments of 5.
For each lattice size, simulate a self-avoiding random walk 10,000 times
and display the probability of the dead-end paths, as shown in the following
sample output:

For a lattice of size 10, the probability of dead-end paths is 10.6%
For a lattice of size 15, the probability of dead-end paths is 14.0%
...
For a lattice of size 80, the probability of dead-end paths is 99.5%

M15_LIAN9966_12_SE_C15.indd 641 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

