EVENT-DRIVEN
PROGRAMMING
AND ANIMATIONS

Objectives

To get a taste of event-driven programming (§15.1).

B To describe events, event sources, and event classes (§15.2).

To define handler classes, register handler objects with the source
object, and write the code to handle events (§15.3).

B To define handler classes using inner classes (§15.4).

B To define handler classes using anonymous inner classes (§15.5).

B To simplify event handling using lambda expressions (§15.6).

B To develop a GUI application for a loan calculator (§15.7).

B To write programs to deal with MouseEvents (§15.8).

B To write programs to deal with KeyEvents (§15.9).

B To create listeners for processing a value change in an observable
object (§15.10).

B To use the Animation, PathTransition, FadeTransition, and
TimeTl1ine classes to develop animations (§15.11).

B To develop an animation for simulating a bouncing ball (§15.12).

B To draw, color, and resize a US map (§15.13).

M15_LIAN9966_12_SE_C15.indd 593 @

STUDENTS-HUB.com

CHAPTER

13/09/19 8:30 PM

https://students-hub.com

594 Chapter I5

Key

problem Point

EventHandler interface

setOnAction(handler)

M15_LIAN9966_12_SE_C15.indd 594

STUDENTS-HUB.com

Event-Driven Programming and Animations

5.1 Introduction

You can write code to process events such as a button click, mouse movement, and
keystrokes.

Suppose you wish to write a GUI program that lets the user enter a loan amount, annual interest
rate, and number of years then click the Calculate button to obtain the monthly payment and
total payment, as shown in Figure 15.1. How do you accomplish the task? You have to use
event-driven programming to write the code to respond to the button-clicking event.

e 0 6 LoanCalculator =)
Annual Interest Rate: 4.5
Number of Years: 4
Loan Amount: 5000
Monthly Payment: $114.02
Total Payment: $5472.84

Calculate

FIGURE 5.1 The program computes loan payments.
Before delving into event-driven programming, it is helpful to get a taste using a simple
example. The example displays two buttons in a pane, as shown in Figure 15.2.

B¥ Command Pr.. — O X

|c:\book>java HandleEvent ~
0K button clicked
|Cancel button clicked

‘ ¥ ' HandleEvent - m} X

=
(a) (b)

FIGURE 15.2 (a) The program displays two buttons. (b) A message is displayed in the
console when a button is clicked.

To respond to a button click, you need to write the code to process the button-clicking
action. The button is an event source object—where the action originates. You need to create an
object capable of handling the action event on a button. This object is called an event handler,
as shown in Figure 15.3.

button l| event l| handler |
Clicking a button An event is The event handler
fires an action event an object processes the event
(Event source object) (Event object) (Event handler object)

FiGure 15.3 An event handler processes the event fired from the source object.

Not all objects can be handlers for an action event. To be a handler of an action event, two
requirements must be met:

1. The object must be an instance of the EventHandler<T extends Event> interface.
This interface defines the common behavior for all handlers. <T extends Event>
denotes that T is a generic type that is a subtype of Event.

2. The EventHandler object hand1er must be registered with the event source object
using the method source.setOnAction (handler).

13/09/19 8:30 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

The EventHandler<ActionEvent> interface contains the handle (ActionEvent)
method for processing the action event. Your handler class must override this method to
respond to the event. Listing 15.1 gives the code that processes the ActionEvent on the two
buttons. When you click the OK button, the message “OK button clicked” is displayed. When
you click the Cancel button, the message “Cancel button clicked” is displayed, as shown in
Figure 15.2.

LisTiING 15.1 HandleEvent.java

1 1import javafx.application.Application;

2 import javafx.geometry.Pos;

3 import javafx.scene.Scene;

4 import javafx.scene.control.Button;

5 import javafx.scene.layout.HBox;

6 import javafx.stage.Stage;

7 import javafx.event.ActionEvent;

8 import javafx.event.EventHandler;

9

10 public class HandleEvent extends Application {

11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {

13 /'l Create a pane and set its properties

14 HBox pane = new HBox(10);

15 pane.setAlignment (Pos.CENTER) ;

16 Button btOK = new Button("O0K");

17 Button btCancel = new Button("Cancel");

18 OKHandlerClass handler1 = new OKHandlerClass();

19 btOK.setOnAction(handler1);
20 CancelHandlerClass handler2 = new CancelHandlerClass();
21 btCancel.setOnAction(handler2);
22 pane.getChildren() .addA11 (btOK, btCancel);
23
24 /| Create a scene and place it in the stage
25 Scene scene = new Scene(pane);
26 primaryStage.setTitle("HandleEvent"); // Set the stage title
27 primaryStage.setScene(scene); // Place the scene in the stage
28 primaryStage.show(); // Display the stage
29 }
30 }
31

32 class OKHandlerClass implements EventHandler<ActionEvent> {
33 @Override

34 public void handle(ActionEvent e) {

35 System.out.println("0K button clicked");

36 }

37}

38

39 class CancelHandlerClass implements EventHandler<ActionEvent> {
40 @Override

41 public void handle(ActionEvent e) {

42 System.out.println("Cancel button clicked");

43 }

44 3

Two handler classes are defined in lines 32-44. Each handler class implements EventHan -
dler<ActionEvent> to process ActionEvent. The object handler1 is an instance of
OKHandlerClass (line 18), which is registered with the button bt0OK (line 19). When the
OK button is clicked, the handle (ActionEvent) method (line 34) in OKHandlerClass is

M15_LIAN9966_12_SE_C15.indd 595 @

STUDENTS-HUB.com

[5.1 Introduction 595

create handler

register handler
create handler
register handler

main method omitted
handler class

handle event

handler class

handle event

13/09/19 8:30 PM

mnawahdah
Highlight

https://students-hub.com

596 Chapter I5

Key
Point
event-driven programming
event
fire event

event source object
source object

event object
getSource()

M15_LIAN9966_12_SE_C15.indd 596

STUDENTS-HUB.com

Event-Driven Programming and Animations

invoked to process the event. The object hand1er2 is an instance of CanceTHandlerClass
(line 20), which is registered with the button btCance1 in line 21. When the Cancel button is
clicked, the handle (ActionEvent) method (line 41) in Cance1Hand1erC1ass is invoked
to process the event.

You now have seen a glimpse of event-driven programming in JavaFX. You probably have
many questions, such as why a handler class is defined to implement the EventHandler<A
ctionEvent>. The following sections will give you all the answers.

5.2 Events and Event Sources

An event is an object created from an event source. Firing an event means to create an
event and delegate the handler to handle the event.

When you run a Java GUI program, the program interacts with the user and the events drive
its execution. This is called event-driven programming. An event can be defined as a signal to
the program that something has happened. Events are triggered by external user actions, such
as mouse movements, mouse clicks, and keystrokes. The program can choose to respond to or
ignore an event. The example in the preceding section gave you a taste of event-driven
programming.

The component that creates an event and fires it is called the event source object, or simply
source object or source component. For example, a button is the source object for a button-
clicking action event. An event is an instance of an event class. The root class of the Java event
classes is java.util.EventObject. The root class of the JavaFX event classes is javafx
.event.Event. The hierarchical relationships of some event classes are shown in Figure 15.4.

— ActionEvent |
MouseEvent |

! |
! 1
! 1
! 1
! 1
! 1
! 1
! |
EventObject : Event |<]—— InputEvent !
1
. |
! 1
! 1
! |
! 1
! 1
! 1

KeyEvent |
L WindowEvent | JavaFX event classes are in
the javafx.event package

FIGURE 15.4 An event in JavaFX is an object of the javafx.event.Event class.

An event object contains whatever properties are pertinent to the event. You can identify
the source object of an event using the getSource () instance method in the EventObject
class. The subclasses of EventObject deal with specific types of events, such as action
events, window events, mouse events, and key events. The first three columns in Table 15.1
list some external user actions, source objects, and event types fired. For example, when click-
ing a button, the button creates and fires an ActionEvent, as indicated in the first line of this
table. Here, the button is an event source object, and an ActionEvent is the event object fired
by the source object, as shown in Figure 15.3.

Z Note
If a component can fire an event, any subclass of the component can fire the same type of
event. For example, every JavaFX shape, layout pane, and control can fire MouseEvent
and KeyEvent since Node is the superclass for shapes, layout panes, and controls and
Node can fire MouseEvent and KeyEvent.

13/09/19 8:30 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

15.3 Registering Handlers and Handling Events 597

TaBLE 15.1 User Action, Source Object, Event Type, Handler Interface, and Handler

User Action Source Object Event Type Fired Event Registration Method

Click a button Button ActionEvent setOnAction (EventHandler<ActionEvent>)

Press Enter in a text field TextField ActionEvent setOnAction (EventHandler<ActionEvent>)
Check or uncheck RadioButton ActionEvent setOnAction (EventHandler<ActionEvent>)
Check or uncheck CheckBox ActionEvent setOnAction (EventHandler<ActionEvent>)
Select a new item ComboBox ActionEvent setOnAction (EventHandler<ActionEvent>)
Mouse pressed Node, Scene MouseEvent setOnMousePressed (EventHandler<MouseEvent>)
Mouse released setOnMouseReleased (EventHandler<MouseEvent>)
Mouse clicked setOnMouseClicked (EventHandler<MouseEvent>)
Mouse entered setOnMouseEntered (EventHandler<MouseEvent>)
Mouse exited setOnMouseExited (EventHand1er<MouseEvent>)
Mouse moved setOnMouseMoved (EventHand1er<MouseEvent>)
Mouse dragged setOnMouseDragged (EventHandler<MouseEvent>)
Key pressed Node, Scene KeyEvent setOnKeyPressed (EventHandler<KeyEvent>)

Key released setOnKeyReleased (EventHand1er<KeyEvent>)
Key typed setOnKeyTyped (EventHandler<KeyEvent>)

15.2.1 What is an event source object? What is an event object? Describe the relationship
between an event source object and an event object. ﬁed‘

Point

15.2.2 Can a button fire a MouseEvent? Can a button fire a KeyEvent? Can a button
fire an ActionEvent?

5.3 Registering Handlers and Handling Events

A handler is an object that must be registered with an event source object and it must Key
be an instance of an appropriate event-handling interface.

Point

Java uses a delegation-based model for event handling: A source object fires an event, and an event delegation
object interested in the event handles it. The latter object is called an event handler or an event event handler
listener. For an object to be a handler for an event on a source object, two things are needed,

as shown in Figure 15.5.

1. The handler object must be an instance of the corresponding event—handler interface to event-handler interface
ensure the handler has the correct method for processing the event. JavaFX defines a
unified handler interface EventHandler<T extends Event> for an event T. The EventHandler<T extends
handler interface contains the handle (T e) method for processing the event. For exam- Event>
ple, the handler interface for ActionEvent is EventHandler<ActionEvent>; each event handler
handler for ActionEvent should implement the handle (ActionEvent e) method
for processing an ActionEvent.

2. The handler object must be registered by the source object. Registration methods depend register handler
on the event type. For ActionEvent, the method is setOnAct1ion. For a mouse-pressed
event, the method is setOnMousePressed. For a key-pressed event, the method is
setOnKeyPressed.

Let’s revisit Listing 15.1, HandleEvent.java. Since a But ton object fires ActionEvent, a
handler object for ActionEvent must be an instance of EventHandler<ActionEvent>, so

M15_LIAN9966_12_SE_C15.indd 597

STUDENTS-HUB.com

13/09/19 8:30 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

598 Chapter I5 Event-Driven Programming and Animations

Uk Trigger an event
Action) .
+setOnXEventType (listener) +handle (event: T)

(2) Register by invoking PaN
source.setOnXEventType (listener) : ;
H
(1) A listener object is an . o
instance of a listener interface listener: ListenerClass

(a) A generic source object with a generic event T

+setOnAction(listener) +handle (event: ActionEvent)

(2) Register by invoking
source.setOnAction (listener);

(1) An action event listener is an instance of listener: CustomListenerClass
EventHandler<ActionEvent>

(b) A Button source object with an ActionEvent

FIGURe 15.5 A listener must be an instance of a listener interface and must be registered with a source object.

the handler class implements EventHandler<ActionEvent> in line 32. The source object
invokes setOnAction (handler) to register a handler, as follows:

// Line 16 in Listing 15.1

create source object Button btOK = new Button("O0K");
@& /1 Line 18 in Listing 15.1
create handler object OKHandlerClass handler1 = new OKHandlerClass();

// Line 19 1in Listing 15.1
register handler btOK.setOnAction(handler1);

When you click the button, the Button object fires an ActionEvent and passes it to invoke
the handler’s hand1e (ActionEvent) method to handle the event. The event object contains
information pertinent to the event, which can be obtained using the methods. For example, you
can use e.getSource () to obtain the source object that fired the event.
We now write a program that uses two buttons to enlarge and shrink a circle, as shown in
Figure 15.6. We will develop this program incrementally. First, we write the program in
first version Listing 15.2 that displays the user interface with a circle in the center (lines 15-19) and two
buttons on the bottom (lines 21-27).

©® O O ControlCircle " | © O O ControlCircle

Enlarge ‘ Shrink ‘ ‘ Enlarge J Shrink

FIGURE 15.6 The user clicks the Enlarge and Shrink buttons to enlarge and shrink the circle.

LIsTING 15.2 ControlCircleWithoutEventHandling.java

1 dimport javafx.application.Application;
2 1import javafx.geometry.Pos;
3 import javafx.scene.Scene;

M15_LIAN9966_12_SE_C15.ndd 598 @ 1310919 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

-
O W ow~NO O N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
49

15.3 Registering Handlers and Handling Events 599

import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.BorderPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.stage.Stage;

public class ControlCircleWithoutEventHandling extends Application {

@Override // Override the start method in the Application class
public void start(Stage primaryStage) {

StackPane pane = new StackPane();

Circle circle = new Circle(50);

circle.setStroke(Color.BLACK) ;

circle.setFill(Color .WHITE);

pane.getChildren().add(circle);

HBox hBox = new HBox();
hBox.setSpacing(10);

hBox.setAlignment (Pos.CENTER) ;

Button btEnlarge = newButton("Enlarge");
Button btShrink = new Button("Shrink");
hBox.getChildren() .add(btEnlarge);
hBox.getChildren() .add(btShrink);

BorderPane borderPane = new BorderPane();
borderPane.setCenter (pane) ;
borderPane.setBottom(hBox) ;
BorderPane.setAlignment (hBox, Pos.CENTER);

/| Create a scene and place it in the stage
Scene scene = new Scene(borderPane, 200, 150);
primaryStage.setTitle("ControlCircle"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage
}
}

How do you use the buttons to enlarge or shrink the circle? When the Enlarge button is clicked,
you want the circle to be repainted with a larger radius. How can you accomplish this? You can
expand and modify the program in Listing 15.2 into Listing 15.3 with the following features:

1.

Define a new class named C1irc1ePane for displaying the circle in a pane (lines 51-68).
This new class displays a circle and provides the enlarge and shrink methods for
increasing and decreasing the radius of the circle (lines 60-62 and 64-67). It is a good
strategy to design a class to model a circle pane with supporting methods so these related
methods along with the circle are coupled in one object.

. Create a CirclePane object and declare circlePane as a data field to reference this

object (line 15) in the Contro1Circle class. The methods in the Control1Circle class
can now access the CirclePane object through this data field.

. Define a handler class named EnTargeHand1er that implements EventHand1er<Ac-

tionEvent> (lines 43-48). To make the reference variable circlePane accessible
from the hand1e method, define EnTargeHandler as an inner class of the Contro1 -
Circle class. (Inner classes are defined inside another class. We use an inner class here
and will introduce it fully in the next section.)

. Register the handler for the Enlarge button (line 29) and implement the hand1e method

in EnlargeHandler to invoke circlePane.enlarge () (line 46).

M15_LIAN9966_12_SE_C15.indd 599 @

STUDENTS-HUB.com

circle

buttons

main method omitted

second version

inner class

13/09/19 8:30 PM

https://students-hub.com

600 Chapter I5 Event-Driven Programming and Animations

M15_LIAN9966_12_SE_C15.indd 600

STUDENTS-HUB.com

a LisTING 15.3 ControlCircle.java
VideoNote 1 import javafx.application.Application;
Handler and its registration 2 import javafx.event.ActionEvent;
3 import javafx.event.EventHandler;
4 import javafx.geometry.Pos;
5 import javafx.scene.Scene;
6 import javafx.scene.control.Button;
7 dimport javafx.scene.layout.StackPane;
8 import javafx.scene.layout.HBox;
9 import javafx.scene.layout.BorderPane;
10 1import javafx.scene.paint.Color;
11 dimport javafx.scene.shape.Circle;
12 dimport javafx.stage.Stage;
13
14 public class ControlCircle extends Application {
15 private CirclePane circlePane = new CirclePane();
16
17 @Override // Override the start method in the Application class
18 public void start(Stage primaryStage) {
19 // Hold two buttons in an HBox
20 HBox hBox = new HBox();
21 hBox.setSpacing(10) ;
22 hBox.setAlignment (Pos.CENTER) ;
23 Button btEnlarge = new Button("Enlarge");
24 Button btShrink = new Button("Shrink");
25 hBox.getChildren().add(btEnlarge);
26 hBox.getChildren().add(btShrink);
27
@@' 28 /| Create and register the handler
create/register handler 29 btEnlarge.setOnAction(new EnlargeHandler());
30
31 BorderPane borderPane = new BorderPane();
32 borderPane.setCenter(circlePane);
33 borderPane.setBottom(hBox) ;
34 BorderPane.setAlignment (hBox, Pos.CENTER);
35
36 /| Create a scene and place it in the stage
37 Scene scene = new Scene(borderPane, 200, 150);
38 primaryStage.setTitle("ControlCircle"); // Set the stage title
39 primaryStage.setScene(scene); // Place the scene in the stage
40 primaryStage.show(); // Display the stage
41 }
42
handler class 43 class EnlargeHandler implements EventHandler<ActionEvent> {
44 @Override // Override the handle method
45 public void handle(ActionEvent e) {
46 circlePane.enlarge();
47 }
48 }
main method omitted 49 }
50
CirclePane class 51 class CirclePane extends StackPane {
52 private Circle circle = new Circle(50);
53
54 public CirclePane() ({
55 getChildren().add(circle);
56 circle.setStroke(Color.BLACK) ;
57 circle.setFill(Color.WHITE);
58 }

13/09/19 8:30 PM

https://students-hub.com

15.4 Inner Classes 601

59

60 public void enlarge() {

61 circle.setRadius(circle.getRadius() + 2);

62 }

63

64 public void shrink() {

65 circle.setRadius(circle.getRadius() > 2 ?

66 circle.getRadius() - 2 : circle.getRadius());
67 }

68 }

As an exercise, add the code for handling the Shrink button to display a smaller circle when
the Shrink button is clicked.

15.3.1 Why must a handler be an instance of an appropriate handler interface?

15.3.2 Explain how to register a handler object and how to implement a handler interface.
15.3.3 What is the handler method for the EventHand1ler<ActionEvent> interface?
15.3.4 What is the registration method for a button to register an ActionEvent handler?

5.4 Inner Classes

An inner class, or nested class, is a class defined within the scope of another class.
Inner classes are useful for defining handler classes.

The approach of this book is to introduce difficult programming concepts using practical
examples. We introduce inner classes, anonymous inner classes, and lambda expressions using
practical examples in this section and following two sections.

Inner classes are used in the preceding section. This section introduces inner classes in
detail. First, let us see the code in Figure 15.7. The code in Figure 15.7a defines two separate
classes, Test and A. The code in Figure 15.7b defines A as an inner class in Test.

public class Test { // OuterClass.java: inner class demo
public class OuterClass f{
} rivate int data;
P
public class A { /** A method in the outer class */
. public void m() {
} // Do something
}

// An inner class

(a) class InnerClass {
/** A method in the inner class */

public class Test { public void mi() {
.. // Directly reference data and method
// defined in its outer class
// Inner class datat+;
public class A m();

) |
} }

(b) (©)

FIGURE 15.7 An inner class is defined as a member of another class.

The class InnerClass defined inside OuterClass in Figure 15.7c is another example
of an inner class. An inner class may be used just like a regular class. Normally, you define

M15_LIAN9966_12_SE_C15.indd 601 @

STUDENTS-HUB.com

enlarge method

the Shrink button

ﬁeck
Point

Key
Point

13/09/19 8:30 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

602 Chapter 15 Event-Driven Programming and Animations

ﬁeck
Point

Key
Point

anonymous inner class

M15_LIAN9966_12_SE_C15.indd 602

STUDENTS-HUB.com

a class as an inner class if it is used only by its outer class. An inner class has the following
features:

B Aninner class is compiled into a class named OuterClassName$InnerC1lassName .
class. For example, the inner class A in Test is compiled into Test$A.class in
Figure 15.7b.

B An inner class can reference the data and the methods defined in the outer class in
which it nests, so you need not pass the reference of an object of the outer class to the
constructor of the inner class. For this reason, inner classes can make programs simple
and concise. For example, circlePane is defined in Control1Circle in Listing 15.3
(line 15). It can be referenced in the inner class EnlargeHandler in line 46.

B An inner class can be defined with a visibility modifier subject to the same visibility
rules applied to a member of the class.

B An inner class can be defined as static. A static inner class can be accessed
using the outer class name. A static inner class cannot access nonstatic members
of the outer class.

B Objects of an inner class are often created in the outer class. However, you can also
create an object of an inner class from another class. If the inner class is nonstatic,
you must first create an instance of the outer class, then use the following syntax to
create an object for the inner class:

OuterClass.InnerClass innerObject = outerObject.new InnerClass();

m If the inner class is static, use the following syntax to create an object for it:

OuterClass.InnerClass innerObject = new OuterClass.InnerClass();

A simple use of inner classes is to combine dependent classes into a primary class. This reduces
the number of source files. It also makes class files easy to organize since they are all named
with the primary class as the prefix. For example, rather than creating the two source files
Test.java and A.java as shown in Figure 15.7a, you can merge class A into class Test and
create just one source file, Test.java as shown in Figure 15.7b. The resulting class files are
Test.class and Test$A.class.

Another practical use of inner classes is to avoid class-naming conflicts. Two versions
of A are defined in Figure 15.7a and 15.7b. You can define them as inner classes to avoid
a conflict.

A handler class is designed specifically to create a handler object for a GUI component (e.g.,
a button). The handler class will not be shared by other applications and therefore is appropriate
to be defined inside the main class as an inner class.

15.4.1 Can an inner class be used in a class other than the class in which it nests?

15.4.2 Can the modifiers public, protected, private, and static be used for inner
classes?

5.5 Anonymous Inner-Class Handlers

An anonymous inner class is an inner class without a name. It combines defining an
inner class and creating an instance of the class into one step.

Inner-class handlers can be shortened using anonymous inner classes. The inner class in
Listing 15.3 can be replaced by an anonymous inner class as shown below. The complete
code is available at liveexample.pearsoncmg.com/html/ControlCircle WithAnonymousInnerClass.html.

13/09/19 8:30 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

15.5 Anonymous Inner-Class Handlers 603

public void start(Stage primaryStage) { public void start(Stage primaryStage) {
// Omitted // Omitted
btEnlarge.setOnAction (btEnlarge.setOnAction (
new EnlargeHandler()); new clrass—FErrzroctardiTeT
} itmprements EventHandler<ActionEvent>() {
5 public void handle (ActionEvent e) {
class EnlargeHandler circlePane.enlarge();

implements EventHandler<ActionEvent> { }
public void handle (ActionEvent e) {)i
circlePane.enlarge(); }

}

(a) Inner class Enlargelistener (b) Anonymous inner class

The syntax for an anonymous inner class is shown below.

new SuperClassName/InterfaceName() {
/1 Implement or override methods in superclass or interface

/1 Other methods if necessary

}

Since an anonymous inner class is a special kind of inner class, it is treated like an inner class
with the following features:

B An anonymous inner class must always extend a superclass or implement an interface,
@ but it cannot have an explicit extends or implements clause.

B An anonymous inner class must implement all the abstract methods in the superclass
or in the interface.

B An anonymous inner class always uses the no-arg constructor from its superclass to
create an instance. If an anonymous inner class implements an interface, the con-
structor is Object ().

B An anonymous inner class is compiled into a class named OuterClassName$n.
class. For example, if the outer class Test has two anonymous inner classes, they
are compiled into Test$1.class and Test$2.class.

Listing 15.4 gives an example that displays a text and uses four buttons to move a text up,
down, left, and right, as shown in Figure 15.8.

\ ® O O AnonymousHandlerDemo !

Programming is fun

Up Down Left Right

FiIGUre 15.8 The program handles the events from four buttons.

LISTING 15.4 AnonymousHandlerDemo. java

1 import javafx.application.Application; VideoNote

2 1import javafx.event.ActionEvent; Anonymous handler
3 import javafx.event.EventHandler;

4 import javafx.geometry.Pos;

M15_LIAN9966_12_SE_C15.indd 603 @ 1310919 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

604 Chapter I5

anonymous handler

@ handle event

M15_LIAN9966_12_SE_C15.indd 604

STUDENTS-HUB.com

Event-Driven Programming and Animations

import javafx.scene.Scene;

import javafx.scene.control.Button;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Pane;
import javafx.scene.text.Text;

import javafx.stage.Stage;

public class AnonymousHandlerDemo extends Application {
@Override // Override the start method in the Application class
public void start(Stage primaryStage) {
Text text = new Text (40, 40, "Programming is fun");
Pane pane = new Pane(text);

// Hold four buttons in an HBox

Button btUp = new Button("Up");

Button btDown = new Button("Down");

Button btLeft = new Button("Left");

Button btRight = new Button("Right");

HBox hBox = new HBox(btUp, btDown, btLeft, btRight);
hBox.setSpacing(10);

hBox.setAlignment (Pos.CENTER) ;

BorderPane borderPane = new BorderPane(pane);
borderPane.setBottom(hBox) ;

/'l Create and register the handler
btUp.setOnAction(new EventHandler<ActionEvent>() ({
@Override // Override the handle method
public void handle(ActionEvent e) {
text.setY(text.getY() > 10 ? text.getY() - 5 : 10);
}
1

btDown.setOnAction(new EventHandler<ActionEvent>() {
@Override // Override the handle method
public void handle(ActionEvent e) {
text.setY(text.getY() < pane.getHeight() ?
text.getY() + 5 : pane.getHeight());
}
2

btLeft.setOnAction(new EventHandler<ActionEvent>() {
@Override // Override the handle method
public void handle(ActionEvent e) {
text.setX(text.getX() > 0 ? text.getX() - 5 : 0);
}
3

btRight.setOnAction(new EventHandler<ActionEvent>() ({
@Override // Override the handle method
public void handle(ActionEvent e) {
text.setX(text.getX() < pane.getWidth() - 1007
text.getX() + 5 : pane.getWidth() - 100);
}
2

/'l Create a scene and place it in the stage
Scene scene = new Scene(borderPane, 400, 350);
primaryStage.setTitle("AnonymousHandlerDemo™); // Set title

13/09/19 8:30 PM

https://students-hub.com

15.6 Simplifying Event Handling Using Lambda Expressions

65 primaryStage.setScene(scene); // Place the scene in the stage
66 primaryStage.show(); // Display the stage

67 }

68 }

The program creates four handlers using anonymous inner classes (lines 32-60). Without using anon-
ymous inner classes, you would have to create four separate classes. An anonymous handler works
the same way as that of an inner-class handler. The program is condensed using an anonymous inner
class. Another benefit of using anonymous inner class is that the handler can access local variables.
In this example, the event handler references local variable text (lines 35, 42, 50, and 57).

The anonymous inner classes in this example are compiled into AnonymousHand1erDemo$1 .
class, AnonymousHandlerDemo$2.cl1ass, AnonymousHandlerDemo$3.class, and
AnonymousHandlerDemo$4 .class.

15.5.1 Ifclass Ais an inner class in class B, what is the .class file for A? If class B con-
tains two anonymous inner classes, what are the .class file names for these two
classes?

15.5.2 What is wrong in the following code?

ﬁeck
Point

public class Test extends Application {
public void start(Stage stage) ({
Button btOK = new Button("OK");

public class Test extends Application {
public void start(Stage stage) ({
Button btOK = new Button("OK");

}
btOK.setOnAction (
private class Handler implements
EventHandler<ActionEvent> {
public void handle(Action e) { (ActionEvent e) {
System.out.printin(e.getSource()); System.out.printin
} (e.getSource());
} }
} }
}
}

public void handle

/| Something missing here

new EventHandler<ActionEvent> {

(a) (b)

5.6 Simplifying Event Handling Using Lambda
Expressions

Lambda expressions can be used to greatly simplify coding for event handling.

Lambda expression is a new feature in Java 8. Lambda expressions can be viewed as an anonymous
class with a concise syntax. For example, the following code in (a) can be greatly simplified using a
lambda expression in (b) in three lines. Note that the interface EventHand1er<ActionEvent>and
the method handTe in (a) are removed in (b). This simplification is possible because that the Java
compiler can automatically infer that the setOnAction method requires an instance of
EvenHandler<ActionEvent> and the handle is the only method in the
EvenHandler<ActionEvent> interface. The complete code that contains the lambda expression
in (b) can be seen at liveexample.pearsoncmg.com/html/ControlCircleWithLambdaExpression.html.

btEnlarge.setOnAction { btEnlarge.setOnAction(e —> {
new EventHandler<ActionEvent>() ({ /1 Code for processing event e
@Override 1)
public void handle(ActionEvent e) {
/| Code for processing event e

(a) Anonymous inner class event handler (b) Lambda expression event handler

M15_LIAN9966_12_SE_C15.indd 605 @

STUDENTS-HUB.com

Key
Point

lambda expression

605

13/09/19 8:30 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

606 Chapter I5

M15_LIAN9966_12_SE_C15.indd 606

STUDENTS-HUB.com

Event-Driven Programming and Animations

The basic syntax for a lambda expression is either

(typel paramil, type2 param2,) —> expression

or

(typel paramil, type2 param2,) —> { statements; }

The data type for a parameter may be explicitly declared or implicitly inferred by the com-
piler. The parentheses can be omitted if there is only one parameter without an explicit data
type. The curly braces can be omitted if there is only one statement. For example, the following
lambda expressions are all equivalent. Note there is no semicolon after the statement in (d).

(ActiionEvent e) —> { (e) —> {
circlePane.enlarge(); } circlePane.enlarge(); }

(a) Lambda expression with one statement (b) Omit parameter data type

e —> { e —>
circlePane.enlarge(); } circlePane.enlarge ()

(c) Omit parentheses (d) Omit braces

The compiler treats a lambda expression as if it is an object created from an anonymous
inner class. The compiler processes a lambda expression in three steps: (1) identify the lambda
expression type, (2) identify the parameter types, and (3) identify statements. Consider the
following lambda expression:

btEnlarge.setOnAction(

e —> {
/| Code for processing event e
}

)
It is processed as follows:

Step 1: The compiler recognizes that the object must be an instance of EventHan -
dler<ActionEvent>, since the expression is an argument of the setOnAction method
as shown in the following figure:

btEnlarge.setOnAction(
e —> {
/| code for processing event e

(1) The compiler recognizes that the lambda
expression is an object of the
EventHandler<ActionEvent> type,

} because the expression is an argument in the

); \ setOnAction method.

(2) The compiler recognizes that e is a parameter
of the ActionEvent type, since the
EventHandler<ActionEvent>

interface defines the handle method with a parameter

of the ActionEvent type.

(3) The compiler recognizes that the code for
processing event e are the statements in the handle
method.

Step 2: Since the EventHand1er interface defines the hand1e method with a parameter of the
ActionEvent type, the compiler recognizes that e is a parameter of the ActionEvent type.

Step 3: The compiler recognizes that the code for processing e is the statements in the body

of the hand1e method.

The EventHand1er interface contains just one method named hand1e. The statements in
the lambda expression are all for that method. If it contains multiple methods, the compiler

13/09/19 8:30 PM

mnawahdah
Highlight

https://students-hub.com

15.6 Simplifying Event Handling Using Lambda Expressions 607

will not be able to compile the lambda expression. Therefore, for the compiler to understand
lambda expressions, the interface must contain exactly one abstract method. Such an interface
is known as a Single Abstract Method (SAM) interface.

In essence, a lambda expression creates an object and the object performs a function by
invoking this single method. Thus, a SAM interface is also known as a functional interface,
and an instance of a functional interface is known as a function object. Since a lambda expres-
sion is squarely on defining a function, a lambda expression is also called a lambda function.
The terms lambda expression and lambda function are interchangeable.

Listing 15.4 can be simplified using lambda expressions as shown in Listing 15.5.

LisTING 15.5 LambdaHandlerDemo.java

1 import javafx.application.Application;
2 import javafx.event.ActionEvent;
3 import javafx.event.EventHandler;
4 import javafx.geometry.Pos;
5 import javafx.scene.Scene;
6 import javafx.scene.control.Button;
7 import javafx.scene.layout.BorderPane;
8 import javafx.scene.layout.HBox;
9 import javafx.scene.layout.Pane;
10 1dimport javafx.scene.text.Text;
11 import javafx.stage.Stage;
12
13 public class LambdaHandlerDemo extends Application {
14 @Override // Override the start method in the Application class
15 public void start(Stage primaryStage) {
16 Text text = new Text (40, 40, "Programming is fun");
17 Pane pane = new Pane(text);
18
19 /1 Hold four buttons in an HBox
20 Button btUp = new Button("Up");
21 Button btDown = new Button("Down");
22 Button btLeft = new Button("Left");
23 Button btRight = new Button("Right");
24 HBox hBox = new HBox(btUp, btDown, btLeft, btRight);
25 hBox.setSpacing(10);
26 hBox.setAlignment (Pos.CENTER) ;
27
28 BorderPane borderPane = new BorderPane(pane);
29 borderPane.setBottom(hBox) ;
30
31 /| Create and register the handler
32 btUp.setOnAction((ActionEvent e) —> {
33 text.setY(text.getY() > 10 ? text.getY() - 5 : 10);
34 1
35
36 btDown.setOnAction((e) —> {
37 text.setY(text.getY() < pane.getHeight() ?
38 text.getY() + 5 : pane.getHeight());
39 1)
40
41 btLeft.setOnAction(e —> {
42 text.setX(text.getX() > 0 ? text.getX() - 5 : 0);
43 1)
44
45 btRight.setOnAction(e —>
46 text.setX(text.getX() < pane.getWidth() - 1007
47 text.getX() + 5 : pane.getWidth() - 100)
48)
M15_LIAN9966_12_SE_C15.indd 607 @

STUDENTS-HUB.com

SAM interface

functional interface
function object

lambda function
functional programming

lambda handler

lambda handler

lambda handler

lambda handler

13/09/19 8:30 PM

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

608 Chapter I5 Event-Driven Programming and Animations

49

50 /| Create a scene and place it in the stage

51 Scene scene = new Scene(borderPane, 400, 350);

52 primaryStage.setTitle("AnonymousHandlerDemo™); // Set title
53 primaryStage.setScene(scene); // Place the scene in the stage
54 primaryStage.show(); // Display the stage

55 }

56 }

The program creates four handlers using lambda expressions (lines 32—48). Using lambda
expressions, the code is shorter and cleaner. As seen in this example, lambda expressions may
have many variations. Line 32 uses a declared type. Line 36 uses an inferred type since the
type can be determined by the compiler. Line 41 omits the parentheses for a single inferred
type. Line 45 omits the braces for a single statement in the body.
You can handle events by defining handler classes using inner classes, anonymous inner
inner class, anonymous class, classes, or lambda expressions. We recommend you use lambda expressions because it pro-

or Lambda? duces a shorter, clearer, and cleaner code.
simplify syntax Using lambda expressions not only simplifies the syntax, but also simplifies the event-
simplify concept handling concept. For the statement in line 45,
(1) When the button is clicked (2) This function is performed

I—H r A \

btRight.setOnAction (e -> move the text right);

you can now simply say that when the btRight button is clicked, the lambda function is
invoked to move the text right.

You can define a custom functional interface and use it in a lambda expression. Consider
@ the following example in Listing 15.6:

LISTING 15.6 TestlLambda.java

1 public class TestLambda {

2 public static void main(String[] args) {

3 TestLambda test = new TestLambda();

4 test.setAction1(() —> System.out.print("Action 1! "));
5 test.setAction2(e —> System.out.print(e + " "));

6 System.out.printin(test.getValue((el, e2) -> el + e2));
7
8

}
9 public void setAction1(T1 t) {
10 t.ml1();
11 }
12
13 public void setAction2(T2 t) {
14 t.m2(4.5);
15 }
16
17 public int getValue(T3 t) {
18 return t.m3(5, 2);
19 }
20 }
21

22 @Functionallnterface
23 dinterface T1 {

24 public void m1();
25 }

26

27 @Functionallnterface
28 interface T2 {

M15_LIAN9966_12_SE_C15.indd 608 @ 1310919 8:30 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

15.7 Case Study: Loan Calculator 609

29 public void m2(Double d);

30 }

31

32 @Functionallnterface

33 interface T3 {

34 public int m3(int d1, int d2);
35 }

The annotation @FunctionalInterface tells the compiler that the interface is a functional
interface. Since T1, T2, and T3 are all functional interfaces, a lambda expression can be used
with the methods setAction1(T1), setAction2(T2), and getValue (T3). The statement
in line 4 is equivalent to using an anonymous inner class, as follows:

test.setAction1 (new T1() {
@0verride
public void m1() {
System.out.print("Action 1! ");
}
1

15.6.1 Whatis a lambda expression? What is the benefit of using lambda expressions for
event handling? What is the syntax of a lambda expression?

15.6.2 What is a functional interface? Why is a functional interface required for a lambda
expression?

15.6.3 Replace the code in lines 5 and 6 in TestLambda.java using anonymous inner classes.

5.7 Case Study: Loan Calculator

This case study develops a loan calculator using event-driven programming with GUI
controls.

Now, we will write the program for the loan-calculator problem presented at the beginning of
this chapter. Here are the major steps in the program:

1. Create the user interface, as shown in Figure 15.9.
a. Create a GridPane. Add labels, text fields, and button to the pane.
b. Set the alignment of the button to the right.

2. Process the event.

Create and register the handler for processing the button-clicking action event. The
handler obtains the user input on the loan amount, interest rate, and number of years,
computes the monthly and total payments, and displays the values in the text fields.

® 0 6 LoanCalculator o
~<~—GridPane
Annual Interest Rate: 4.5
Number of Years: 4
Loan Amount: 5000 — Text field is right aligned
Monthly Payment: $114.02
Total Payment: $5472.84
Button is right aligned

FIGURE 15.9 The program computes loan payments.

M15_LIAN9966_12_SE_C15.indd 609 @

STUDENTS-HUB.com

ﬁeck
Point

Key
Point

13/09/19 8:30 PM

mnawahdah
Highlight

https://students-hub.com

610 Chapter I5

text fields

button

create a grid pane

add to grid pane

register handler

M15_LIAN9966_12_SE_C15.indd 610

STUDENTS-HUB.com

Event-

Driven Programming and Animations

The complete program is given in Listing 15.7.

LisTING 15.7 LoanCalculator.java

©CoO~NOORWN-=

import javafx.application.Application;
import javafx.geometry.Pos;

import javafx.geometry.HPos;

import javafx.scene.Scene;

import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class LoanCalculator extends Application {
private TextField tfAnnuallnterestRate = new TextField();
private TextField tfNumberOfYears = new TextField();
private TextField tfLoanAmount = new TextField();
private TextField tfMonthlyPayment = new TextField();
private TextField tfTotalPayment = new TextField();
private Button btCalculate = new Button("Calculate");

@Override // Override the start method in the Application class
public void start(Stage primaryStage) {
/| Create UI
GridPane gridPane =
gridPane.setHgap(5);
gridPane.setVgap(5);
gridPane.add (new Label ("Annual Interest Rate:"), 0, 0);
gridPane.add (tfAnnualInterestRate, 1, 0);
gridPane.add (new Label ("Number of Years:"), 0, 1);
gridPane.add (tfNumberOfYears, 1, 1);
gridPane.add (new Label ("Loan Amount:"), 0, 2);
gridPane.add (tfLoanAmount, 1, 2);
gridPane.add (new Label ("Monthly Payment:"), 0, 3);
gridPane.add (tfMonthlyPayment, 1, 3);
gridPane.add(new Label ("Total Payment:"), 0, 4);
gridPane.add (tfTotalPayment, 1, 4);
gridPane.add(btCalculate, 1, 5);

new GridPane();

/|l Set properties for UI

gridPane.setAlignment (Pos.CENTER) ;
tfAnnuallInterestRate.setAlignment (Pos.BOTTOM_RIGHT) ;
tfNumberOfYears.setAlignment (Pos.BOTTOM_RIGHT) ;
tfLoanAmount.setAlignment (Pos.BOTTOM_RIGHT) ;
tfMonthlyPayment.setAlignment (Pos.BOTTOM_RIGHT) ;
tfTotalPayment.setAlignment (Pos.BOTTOM_RIGHT) ;
tfMonthlyPayment.setEditable(false);
tfTotalPayment.setEditable(false);
GridPane.setHalignment (btCalculate, HPos.RIGHT);

/| Process events
btCalculate.setOnAction(e —> calculatelLoanPayment());

/'l Create a scene and place it in the stage

Scene scene = new Scene(gridPane, 400, 250);
primaryStage.setTitle("LoanCalculator™); // Set title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage

13/09/19 8:30 PM

https://students-hub.com

5.8 Mouse Events 611

57

58 private void calculatelLoanPayment() {

59 /1 Get values from text fields

60 double interest =

61 Double.parseDouble(tfAnnualInterestRate.getText());
62 int year = Integer.parselnt(tfNumberOfYears.getText());
63 double ToanAmount =

64 Double.parseDouble(tfLoanAmount.getText());

65

66 /| Create a 1oan object. Loan defined in Listing 10.2
67 Loan 1oan = new Loan(interest, year, loanAmount);

68

69 /1 Display monthly payment and total payment

70 tfMonthlyPayment.setText (String.format("$%.2f",

71 lToan.getMonthlyPayment()));

72 tfTotalPayment.setText(String.format("$%.2f",

73 Toan.getTotalPayment()));

74 }

75 '}

The user interface is created in the start method (lines 22-46). The button is the source of the
event. A handler is created and registered with the button (line 49). The button handler invokes the
calculatelLoanPayment () method to get the interest rate (line 60), number of years (line 62),
and loan amount (line 64). Invoking tfAnnualInterestRate.getText () returns the string
text in the tfAnnualInterestRate text field. The Loan class is used for computing the loan
payments. This class was introduced in Listing 10.2, Loan.java. Invoking Toan .getMonth1yPay -
ment () returns the monthly payment for the loan (line 71). The String. format method, intro-
duced in Section 10.10.7, is used to format a number into a desirable format and returns it as a string
(lines 70 and 72). Invoking the setText method on a text field sets a string value in the text field.

[5.8 Mouse Events

A MouseEvent is fired whenever a mouse button is pressed, released, clicked, moved,
or dragged on a node or a scene.

The MouseEvent object captures the event, such as the number of clicks associated with it,
the location (the x- and y-coordinates) of the mouse, or which mouse button was pressed, as
shown in Figure 15.10.

get input

create loan

set result

Key
Point

+getButton () : MouseButton Indicates which mouse button has been clicked.

+getClickCount () : int Returns the number of mouse clicks associated with this event.
+getX () : double Returns the x-coordinate of the mouse point in the event source node.
+getY () : double Returns the y-coordinate of the mouse point in the event source node.
+getSceneX () : double Returns the x-coordinate of the mouse point in the scene.
+getSceneY () : double Returns the y-coordinate of the mouse point in the scene.
+getScreenX () : double Returns the x-coordinate of the mouse point in the screen.
+getScreenY () : double Returns the y-coordinate of the mouse point in the screen.
+isAltDown () : boolean Returns true if the ALt key is pressed on this event.
+isControlDown () : boolean Returns true if the Control key is pressed on this event.
+isMetaDown () : boolean Returns true if the mouse Me ta button is pressed on this event.
+isShiftDown () : boolean Returns true if the Shift key is pressed on this event.

FiGure 15.10 The MouseEvent class encapsulates information for mouse events.

M15_LIAN9966_12_SE_C15.indd 611

STUDENTS-HUB.com

13/09/19 8:30 PM

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

612 Chapter I5 Event-Driven Programming and Animations

detect mouse buttons

VideoNote

Move message using the
mouse

create a pane
create a text

add text to a pane
lambda handler
reset text position

ﬁeck
Point

M15_LIAN9966_12_SE_C15.indd 612

STUDENTS-HUB.com

Four constants—PRIMARY, SECONDARY, MIDDLE, and NONE—are defined in MouseButton
to indicate the left, right, middle, and none mouse buttons, respectively. You can use the
getButton () method to detect which button is pressed. For example, getButton () ==
MouseButton.SECONDARY tests if the right button was pressed. You can also use the
isPrimaryButtonDown (), isSecondaryButtonDown (), and isMidd1eButtonDown ()
to test if the primary button, second button, or middle button is pressed.

The mouse events and their corresponding registration methods for handlers are listed in
Table 15.1. To demonstrate using mouse events, we give an example that displays a message in
a pane and enables the message to be moved using a mouse. The message moves as the mouse
is dragged, and it is always displayed at the mouse point. Listing 15.8 gives the program. A
sample run of the program is shown in Figure 15.11.

' ® O O MouseEventDemo W

Krog ramming is fun

FIGURE 15.11 You can move the message by dragging the mouse.

LisTING 15.8 MouseEventDemo. java

1 import javafx.application.Application;

2 import javafx.scene.Scene;

3 import javafx.scene.layout.Pane;

4 import javafx.scene.text.Text;

5 import javafx.stage.Stage;

6

7 public class MouseEventDemo extends Application {

8 @Override // Override the start method in the Application class
9 public void start(Stage primaryStage) {

10 /| Create a pane and set its properties

11 Pane pane = new Pane();

12 Text text = new Text(20, 20, "Programming is fun");

13 pane.getChildren().addA11 (text);

14 text.setOnMouseDragged (e —> {

15 text.setX(e.getX());

16 text.setY(e.getY());

17 1)

18

19 /| Create a scene and place it in the stage
20 Scene scene = new Scene(pane, 300, 100);
21 primaryStage.setTitle("MouseEventDemo"); // Set the stage title
22 primaryStage.setScene(scene); // Place the scene in the stage
23 primaryStage.show(); // Display the stage
24 }
25 }

Each node or scene can fire mouse events. The program creates a Text (line 12) and registers
a handler to handle move dragged event (line 14). Whenever a mouse is dragged, the text’s
x- and y-coordinates are set to the mouse position (lines 15 and 16).

15.8.1 What method do you use to get the mouse-point position for a mouse event?

15.8.2 What methods do you use to register a handler for mouse-pressed, -released,
-clicked, -entered, -exited, -moved, and -dragged events?

13/09/19 8:30 PM

https://students-hub.com

5.9 Key Events

A KeyEvent is fired whenever a key is pressed, released, or typed on a node or a
scene.

Key events enable the use of the keys to control and perform actions, or get input from the
keyboard. The KeyEvent object describes the nature of the event (namely, that a key has been
pressed, released, or typed) and the value of the key, as shown in Figure 15.12.

+getCharacter () : String Returns the character associated with the key in this event.
+getCode () : KeyCode Returns the key code associated with the key in this event.
+getText () : String Returns a string describing the key code.

+isAltDown () : boolean Returns true if the ALt key is pressed on this event.
+isControlDown () : boolean Returns true if the Control key is pressed on this event.
+isMetaDown () : boolean Returns true if the mouse Me ta button is pressed on this event.
+isShiftDown () : boolean Returns true if the Shift key is pressed on this event.

Ficure 15.12 The KeyEvent class encapsulates information about key events.

The key events key pressed, key released, and key typed and their corresponding registra-
tion methods for handlers are listed in Table 15.1. The key pressed handler is invoked when a
key is pressed, the key released handler is invoked when a key is released, and the key typed
handler is invoked when a Unicode character is entered. If a key does not have a Unicode
(e.g., function keys, modifier keys, action keys, arrow keys, and control keys), the key typed
handler will not be invoked.

Every key event has an associated code that is returned by the getCode () method in
KeyEvent. The key codes are constants defined in KeyCode. Table 15.2 lists some constants.
KeyCode is an enum type. For use of enum types, see Appendix I. For the key-pressed and
key-released events, getCode () returns the value as defined in the table, getText () returns
a string that describes the key code, and getCharacter () returns an empty string. For the
key-typed event, getCode () returns UNDEFINED and getCharacter () returns the Unicode
character or a sequence of characters associated with the key-typed event.

TaBLE 15.2 KeyCode Constants

Constant Description Constant Description

HOME The Home key CONTROL The Control key

END The End key SHIFT The Shift key

PAGE_UP The Page Up key BACK_SPACE The Backspace key

PAGE_DOWN The Page Down key CAPS The Caps Lock key

upP The up-arrow key NUM_LOCK The Num Lock key

DOWN The down-arrow key ENTER The Enter key

LEFT The left-arrow key UNDEFINED The keyCode unknown

RIGHT The right-arrow key F1toF12 The function keys from F1 to F12

ESCAPE The Esc key 0to9 The number keys from 0 to 9

TAB The Tab key AtoZ The letter keys from A to Z
M15_LIAN9966_12_SE_C15.indd 613 @

STUDENTS-HUB.com

Key
Point

key code

5.9 Key Events 613

13/09/19 8:30 PM

mnawahdah
Highlight

https://students-hub.com

614 Chapter I5

create a pane

register handler
get the key pressed
move a character

set a new character

request focus on text

M15_LIAN9966_12_SE_C15.indd 614

STUDENTS-HUB.com

Event-Driven Programming and Animations

The program in Listing 15.9 displays a user-input character. The user can move the
character up, down, left, and right, using the up-, down-, left-, and right-arrow keys, respec-
tively. Figure 15.13 contains a sample run of the program.

©® O O KeyEventDemo R

A

FiGure 15.13 The program responds to key events by displaying a character and moving it
up, down, left, or right.

LIsTING 15.9 KeyEventDemo.java

1 dimport javafx.application.Application;

2 1import javafx.scene.Scene;

3 dimport javafx.scene.layout.Pane;

4 dimport javafx.scene.text.Text;

5 dmport javafx.stage.Stage;

6

7 public class KeyEventDemo extends Application {

8 @Override // Override the start method in the Application class
9 public void start(Stage primaryStage) {

10 /| Create a pane and set its properties

11 Pane pane = new Pane();

12 Text text = new Text(20, 20, "A");

13

14 pane.getChildren().add(text);

15 text.setOnKeyPressed(e —> {

16 switch (e.getCode()) {

17 case DOWN: text.setY(text.getY() + 10); break;

18 case UP: text.setY(text.getY() — 10); break;

19 case LEFT: text.setX(text.getX() - 10); break;

20 case RIGHT: text.setX(text.getX() + 10); break;

21 default:

22 if (e.getText().length() > 0)

23 text.setText(e.getText());

24 }

25 s

26

27 /'l Create a scene and place it in the stage

28 Scene scene = new Scene(pane);

29 primaryStage.setTitle("KeyEventDemo™); // Set the stage title
30 primaryStage.setScene(scene); // Place the scene in the stage
31 primaryStage.show(); // Display the stage

32

33 text.requestFocus(); // text is focused to receive key input
34 }

35 }

The program creates a pane (line 11), creates a text (line 12), and places the text into the pane
(line 14). The text registers the handler for the key-pressed event in lines 15-25. When a key
is pressed, the handler is invoked. The program uses e .getCode () (line 16) to obtain the key
code and e.getText () (line 23) to get the character for the key. Note for a nonprintable
character such as a CTRL key or SHIFT key, e.getText () returns an empty string. When a
non-arrow key is pressed, the character is displayed (lines 22 and 23). When an arrow key is
pressed, the character moves in the direction indicated by the arrow key (lines 17-20). Note in

13/09/19 8:30 PM

https://students-hub.com

a switch statement for an enum-type value, the cases are for the enum constants (lines 16-24).
The constants are unqualified. For example, using KeyCode . DOWN in the case clause would
be wrong (see Appendix I).

Only a focused node can receive KeyEvent. Invoking requestFocus () on text enables
text to receive key input (line 33). This method must be invoked after the stage is displayed.
The program would work fine if text is replaced by scene in line 15 as follows:

scene.setOnKeyPressed(e —> { ... });

You don’t need to invoke scene . requestFocus () because scene is a top-level container
for receiving key events.

We can now add more control for our Contro1C1ircle example in Listing 15.3 to increase/
decrease the circle radius by clicking the left/right mouse button or by pressing the up and
down arrow keys. The new program is given in Listing 15.10.

LIsTING 15.10 ControlCircleWithMouseAndKey.java

1 import javafx.application.Application;

2 import javafx.geometry.Pos;

3 import javafx.scene.Scene;

4 import javafx.scene.control.Button;

5 import javafx.scene.input.KeyCode;

6 import javafx.scene.input.MouseButton;

7 import javafx.scene.layout.HBox;

8 import javafx.scene.layout.BorderPane;

9 import javafx.stage.Stage;

10

11 public class ControlCircleWithMouseAndKey extends Application {
12 private CirclePane circlePane = new CirclePane();
13

14 @Override // Override the start method in the Application class
15 public void start(Stage primaryStage) {

16 /1 Hold two buttons in an HBox
17 HBox hBox = new HBox();
18 hBox.setSpacing(10);
19 hBox.setAlignment (Pos.CENTER) ;
20 Button btEnlarge = new Button("Enlarge");
21 Button btShrink = new Button("Shrink");
22 hBox.getChildren() .add(btEnlarge);
23 hBox.getChildren() .add(btShrink);
24
25 /'l Create and register the handler
26 btEnlarge.setOnAction(e —> circlePane.enlarge());
27 btShrink.setOnAction(e —> circlePane.shrink());
28
29 BorderPane borderPane = new BorderPane();
30 borderPane.setCenter(circlePane);
31 borderPane.setBottom(hBox) ;
32 BorderPane.setAlignment (hBox, Pos.CENTER);
33
34 /| Create a scene and place it in the stage
35 Scene scene = new Scene(borderPane, 200, 150);
36 primaryStage.setTitle("ControlCircle"); // Set the stage title
37 primaryStage.setScene(scene); // Place the scene in the stage
38 primaryStage.show(); // Display the stage
39
40 circlePane.setOnMouseClicked (e —> {
41 if (e.getButton() == MouseButton.PRIMARY) {
42 circlePane.enlarge();
43 }
M15_LIAN9966_12_SE_C15.indd 615 @

STUDENTS-HUB.com

5.9 Key Events 615

requestFocus ()

button handler

mouse-click handler

13/09/19 8:30 PM

https://students-hub.com

616 Chapter I5 Event-Driven Programming and Animations

key-pressed handler
Up-arrow key pressed

Down-arrow key pressed

mouse-clicked event

key-pressed event

ﬁeck
Point

Key
Point

observable object

M15_LIAN9966_12_SE_C15.indd 616

STUDENTS-HUB.com

44 else if (e.getButton() == MouseButton.SECONDARY) {
45 circlePane.shrink();

46 }

47 1

48

49 scene.setOnKeyPressed(e —> {

50 if (e.getCode() == KeyCode.UP) {

51 circlePane.enlarge();

52 }

53 else if (e.getCode() == KeyCode.DOWN) {
54 circlePane.shrink();

55 }

56 1

57 }

58 }

The CirclePane class (line 12) is already defined in Listing 15.3 and can be reused in this
program.

A handler for mouse-clicked events is created in lines 40—47. If the left mouse button is
clicked, the circle is enlarged (lines 41-43); if the right mouse button is clicked, the circle is
shrunk (lines 44-46).

A handler for key-pressed events is created in lines 49-56. If the up arrow key is pressed,
the circle is enlarged (lines 50-52); if the down arrow key is pressed, the circle is shrunk
(lines 53-55).

15.9.1 What methods do you use to register handlers for key-pressed, key-released, and
key-typed events? In which classes are these methods defined? (See Table 15.1.)

15.9.2 What method do you use to get the key character for a key-typed event? What
method do you use to get the key code for a key-pressed or key-released event?

15.9.3 How do you set focus on a node so it can listen for key events?

15.9.4 If the following code is inserted in line 57 in Listing 15.9, what is the output if the user
presses the key for letter A? What is the output if the user presses the up arrow key?

circlePane.setOnKeyPressed(e —>
System.out.printin("Key pressed " + e.getCode()));

circlePane.setOnKeyTyped(e —>
System.out.printin("Key typed " + e.getCode()));

15.10 Listeners for Observable Objects

You can add a listener to process a value change in an observable object.

An instance of Observable is known as an observable object, which contains the
addListener (InvalidationListener T1istener) method for adding a listener. The
listener class must implement the functional interface InvalidationListener to over-
ride the invalidated (Observable o) method for handling the value change. Once the
value is changed in the Observable object, the listener is notified by invoking its
invalidated(Observable o) method. Every binding property is an instance of
Observable. Listing 15.11 gives an example of observing and handling a change in a
DoubleProperty object balance.

LisTING 15.11 ObservablePropertyDemo. java

1 1import javafx.beans.InvalidationListener;
2 import javafx.beans.Observable;
3 import javafx.beans.property.DoubleProperty;

13/09/19 8:30 PM

https://students-hub.com

15.10 Listeners for Observable Objects 617

import javafx.beans.property.SimpleDoubleProperty;

public static void main(String[] args) {

4
5

6 public class ObservablePropertyDemo {

7

8 DoubleProperty balance = new SimpleDoubleProperty();

9 balance.addListener (new InvalidationListener() {
10 public void invalidated(Observable ov) {

11 System.out.printin("The new value is " +

12 balance.doubleValue());

13 }

14 1

15

16 balance.set(4.5);

17 }

18 }

The new value is 4.5

When line 16 is executed, it causes a change in balance, which notifies the listener by
invoking the listener’s invalidated method.

Note the anonymous inner class in lines 9—14 can be simplified using a lambda expression
as follows:

balance.addListener(ov —> {
System.out.printin("The new value is " +
balance.doubleValue());

s

Listing 15.12 gives a program that displays a circle with its bounding rectangle, as shown
in Figure 15.14. The circle and rectangle are automatically resized when the user resizes the
window.

LIsTING 15.12 ResizableCircleRectangle.java

1 import javafx.application.Application;

2 import javafx.scene.paint.Color;

3 import javafx.scene.shape.Circle;

4 import javafx.scene.shape.Rectangle;

5 import javafx.stage.Stage;

6 import javafx.scene.Scene;

7 import javafx.scene.control.Label;

8 import javafx.scene.layout.StackPane;

9

10 public class ResizableCircleRectangle extends Application {

11 /'l Create a circle and a rectangle

12 private Circle circle = new Circle(60);

13 private Rectangle rectangle = new Rectangle(120, 120);

14

15 /'l Place clock and Tabel in border pane

16 private StackPane pane = new StackPane();

17

18 @Override // Override the start method in the Application class

19 public void start(Stage primaryStage) {

20 circle.setFill(Color.GRAY);

21 rectangle.setFil1(Color.WHITE) ;

22 rectangle.setStroke(Color.BLACK) ;

23 pane.getChildren().addA11(rectangle, circle);
M15_LIAN9966_12_SE_C15.indd 617 @

STUDENTS-HUB.com

observable property
add listener
handle change

13/09/19 8:30 PM

https://students-hub.com

618 Chapter I5 Event-Driven Programming and Animations

set a new width for clock
set a new height for clock

ﬁeck
Point

Key
Point
VideoNote
Animate a rising flag

M15_LIAN9966_12_SE_C15.indd 618

STUDENTS-HUB.com

24

25 /1 Create a scene and place the pane in the stage

26 Scene scene = new Scene(pane, 140, 140);

27 primaryStage.setTitle("ResizableCircleRectangle");

28 primaryStage.setScene(scene); // Place the scene in the stage
29 primaryStage.show(); // Display the stage

30

31 pane.widthProperty().addListener (ov —> resize());

32 pane.heightProperty().addListener(ov —> resize());

33 }

34

35 private void resize() {

36 double Tength = Math.min(pane.getWidth(), pane.getHeight());
37 circle.setRadius(length / 2 - 15);

38 rectangle.setWidth(length - 30);

39 rectangle.setHeight (1length - 30);

40 }

41}

® O O ResizableCircleRectangle ™

Y
\ 4

FIGURE 15.14 The program places a rectangle and a circle inside a stack pane, and
automatically sets their sizes when the window is resized.

The program registers the listeners for the stack pane’s width and height properties
(lines 31 and 32). When the user resizes the window, the pane’s size is changed, so the listen-
ers are called to invoke the resize () method to change the size of the circle and rectangle
(lines 35-40).

15.10.1 What would happen if you replace pane with scene or primaryStage in
lines 31-32?

[5.11 Animation

JavaFX provides the Animation class with the core functionality for all animations.
Suppose you want to write a program that animates a rising flag, as shown in Figure 15.15.
How do you accomplish the task? There are several ways to program this. An effective one is
to use the subclasses of the JavaFX Animation class, which is the subject of this section.

® O O FlagRisingAnimation ™ © O O FlagRisingAnimation " ©® O O FlagRisingAnimation ™

FiGure 15.15 The animation simulates a flag rising. Source: booka/Fotolia.

13/09/19 8:30 PM

https://students-hub.com

[5.11 Animation 619

The abstract Animation class provides the core functionalities for animations in JavaFX,
as shown in Figure 15.16. Many concrete subclasses of Animation are provided in JavaFX.
This section introduces PathTransition, FadeTransition, and Timeline.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

—autoReverse: BooleanProperty Defines whether the animation reverses direction on alternating cycles.
—cycleCount: IntegerProperty Defines the number of cycles in this animation.

-rate: DoubleProperty Defines the speed and direction for this animation.

—-status: ReadOnlyObjectProperty Read-only property to indicate the status of the animation.

<Animation.Status>

+pause () : void Pauses the animation.
+play(): void Plays the animation from the current position.
+stop(): void Stops the animation and resets the animation.

FIGURE 15.16 The abstract Animation class is the root class for JavaFX animations.

The autoReverse is a Boolean property that indicates whether an animation will reverse
its direction on the next cycle. The cycleCount indicates the number of the cycles for the
animation. You can use the constant Time1ine . INDEFINITE to indicate an indefinite number
of cycles. The rate defines the speed of the animation. A negative rate value indicates the
@ opposite direction for the animation. The status is a read-only property that indicates the
status of the animation (Animation.Status.PAUSED, Animation.Status.RUNNING, and
Animation.Status.STOPPED). The methods pause (), play(), and stop () pause, play,
and stop an animation, respectively.

15.11.1 PathTransition

The PathTransition class animates the moves of a node along a path from one end to
the other over a given time. PathTransition is a subtype of Animation. The UML class
diagram for the class is shown in Figure 15.17.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

—duration: ObjectProperty<Duration> The duration of this transition.

-node: ObjectProperty<Node> The target node of this transition.

-orientation: ObjectProperty The orientation of the node along the path.
<PathTransition.OrientationType>

-path: ObjectType<Shape> The shape whose outline is used as a path to animate the node move.

+PathTransition () Creates an empty PathTransition.

+PathTransition (duration: Duration, Creates a PathTransition with the specified duration and path.

path: Shape)

+PathTransition (duration: Duration,

Creates a PathTransition with the specified duration, path, and node.
path: Shape, node: Node)

FIGUuRe 15.17 The PathTrans1ition class defines an animation for a node along a path.

M15_LIAN9966_12_SE_C15.indd 619 @ 1310919 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

620 Chapter I5 Event-Driven Programming and Animations

The Duration class defines a duration of time. It is an immutable class. The class
defines constants INDEFINITE, ONE, UNKNOWN, and ZERO to represent an indefinte duration,
one millisecond, unknown, and zero duration, respectively. You can use new Duration (dou-
ble mi1l1is) to create an instance of Duration, the add, subtract, multiply, and divide
methods to perform arithmetic operations, and the toHours (), toMinutes (), toSeconds (),
and toMi111is() to return the number of hours, minutes, seconds, and milliseconds in this
duration, respectively. You can also use compareTo to compare two durations.

The constants NONE and ORTHOGONAL_TO_TANGENT are defined in PathTransition
.OrientationType. The latter specifies that the node is kept perpendicular to the path’s
tangent along the geometric path.

Listing 15.13 gives an example that moves a rectangle along the outline of a circle, as shown
in Figure 15.18a.

LisTING 15.13 PathTransitionDemo.java

import javafx.animation.PathTransition;
import javafx.animation.Timeline;
import javafx.application.Application;
import javafx.scene.Scene;

import javafx.scene.layout.Pane;

import javafx.scene.paint.Color;

import javafx.scene.shape.Rectangle;
import javafx.scene.shape.Circle;
import javafx.stage.Stage;

10 1dimport javafx.util.Duration;

11

12 public class PathTransitionDemo extends Application {

©oO~NOOORWN=

@ 13 @Override // Override the start method in the Application class
14 public void start(Stage primaryStage) {
15 /'l Create a pane
create a pane 16 Pane pane = new Pane();
17
18 /| Create a rectangle
create a rectangle 19 Rectangle rectangle = new Rectangle (0, 0, 25, 50);
20 rectangle.setFil1 (Color.ORANGE) ;
21
22 /| Create a circle
create a circle 23 Circle circle = new Circle(125, 100, 50);
24 circle.setFill1(Color.WHITE);
25 circle.setStroke(Color.BLACK) ;
26
27 /1 Add circle and rectangle to the pane
add circle to pane 28 pane.getChildren().add(circle);
add rectangle to pane 29 pane.getChildren().add(rectangle);
30
31 /1 Create a path transition
create a PathTransition 32 PathTransition pt = new PathTransition();
set transition duration 33 pt.setDuration(Duration.mi11is(4000));
set path in transition 34 pt.setPath(circle);
set node in transition 35 pt.setNode(rectangle);
set orientation 36 pt.setOrientation(
37 PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT) ;
set cycle count indefinite 38 pt.setCycleCount(Timeline.INDEFINITE);
set auto reverse true 39 pt.setAutoReverse(true);
play animation 40 pt.play(); // Start animation
41
pause animation 42 circle.setOnMousePressed(e —> pt.pause());
resume animation 43 circle.setOnMouseReleased(e —> pt.play());
M15_LIAN9966_12_SE_C15.indd 620 @ 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

[5.11 Animation 621

44

45 /|l Create a scene and place it in the stage

46 Scene scene = new Scene(pane, 250, 200);

47 primaryStage.setTitle("PathTransitionDemo"); // Set the stage title
48 primaryStage.setScene(scene); // Place the scene in the stage

49 primaryStage.show(); // Display the stage

50 }

51 }

® O O PathTransitionDemo %} ® O O PathTransitionDemo o

(a) (b)

FIGURE 15.18 The PathTransition animates a rectangle moving along the circle.

The program creates a pane (line 16), a rectangle (line 19), and a circle (line 23). The circle
and rectangle are placed in the pane (lines 28 and 29). If the circle was not placed in the pane,
you will see the screen shot as shown in Figure 15.18b.

The program creates a path transition (line 32), sets its duration to 4 seconds for one cycle
of animation (line 33), sets circle as the path (line 34), sets rectangle as the node (line 35), and
sets the orientation to orthogonal to tangent (line 36).

The cycle count is set to indefinite (line 38) so the animation continues forever. The auto
reverse is set to true (line 39) so the direction of the move is reversed in the alternating cycle.
The program starts animation by invoking the pTlay () method (line 40).

If the pause () method is replaced by the stop () method in line 42, the animation will
start over from the beginning when it restarts.

Listing 15.14 gives the program that animates a flag rising, as shown in Figure 15.14.

LisTING 15.14 FlagRisingAnimation.java

1 import javafx.animation.PathTransition;

2 import javafx.application.Application;

3 import javafx.scene.Scene;

4 import javafx.scene.image.ImageView;

5 import javafx.scene.layout.Pane;

6 import javafx.scene.shape.lLine;

7 import javafx.stage.Stage;

8 import javafx.util.Duration;

9

10 public class FlagRisingAnimation extends Application {

11 @Override // Override the start method in the Application class

12 public void start(Stage primaryStage) {

13 /| Create a pane

14 Pane pane = new Pane(); create a pane

15

16 // Add an image view and add it to pane

17 ImageView imageView = new ImageView("image/us.gif"); create an image view

18 pane.getChildren() .add(imageView) ; add image view to pane
M15_LIAN9966_12_SE_C15.indd 621 @ 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

622 Chapter I5 Event-Driven Programming and Animations

19

20
create a path transition 21

22
set cycle count 23
play animation 24

25

26

27

28

29

30

31 }

32}

/1 Create a path transition

PathTransition pt = new PathTransition(Duration.mi11is(10000),
new Line(100, 200, 100, 0), imageView);

pt.setCycleCount(5);

pt.play(); // Start animation

/'l Create a scene and place it in the stage

Scene scene = new Scene(pane, 250, 200);
primaryStage.setTitle("FlagRisingAnimation"”); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage

The program creates a pane (line 14), an image view from an image file (line 17), and places the

image view to the pane (line 18). A path transition is created with a duration of 10 seconds using

a line as a path and the image view as the node (lines 21 and 22). The image view will move

along the line. Since the line is not placed in the scene, you will not see the line in the window.
The cycle count is set to 5 (line 23) so the animation is repeated five times.

15.11.2 FadeTransition

The FadeTrans1ition class animates the change of the opacity in a node over a given time.
FadeTransitionisasubtype of Animation. The UML class diagram for the class is shown
in Figure 15.19.

—duration: ObjectProperty<Duration> The duration of this transition.
-node: ObjectProperty<Node> The target node of this transition.
—fromValue: DoubleProperty The start opacity for this animation.

—toValue: DoubleProperty
—byValue: DoubleProperty

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

The stop opacity for this animation.

The incremental value on the opacity for this animation.

+FadeTransition ()

+FadeTransition (duration:

+FadeTransition (duration:

node: Node)

Creates an empty FadeTransition.
Duration) Creates a FadeTransition with the specified duration.

Duration, Creates a FadeTransition with the specified duration and node.

FiGure 15.19 The FadeTrans1ition class defines an animation for the change of opacity in a node.

Listing 15.15 gives an example that applies a fade transition to the filled color in an ellipse,
as shown in Figure 15.20.

LisTING 15.15 FadeTransitionDemo.java

O~NOO U~ WN =

M15_LIAN9966_12_SE_C15.indd 622

STUDENTS-HUB.com

import javafx.animation.FadeTransition;
import javafx.animation.Timeline;
import javafx.application.Application;
import javafx.scene.Scene;

import javafx.scene.layout.Pane;

import javafx.scene.paint.Color;

import javafx.scene.shape.Ellipse;
import javafx.stage.Stage;

13/09/19 8:30 PM

https://students-hub.com

9 dimport javafx.util.Duration;

10
11 public class FadeTransitionDemo extends Application {
12 @Override // Override the start method in the Application class
13 public void start(Stage primaryStage) {
14 /1 Place an ellipse to the pane
15 Pane pane = new Pane();
16 Ellipse ellipse = new Ellipse(10, 10, 100, 50);
17 ellipse.setFill(Color.RED);
18 ellipse.setStroke(Color.BLACK) ;
19 ellipse.centerXProperty().bind(pane.widthProperty().divide(2));
20 ellipse.centerYProperty().bind(pane.heightProperty().divide(2));
21 ellipse.radiusXProperty().bind(
22 pane.widthProperty().multiply(0.4));
23 ellipse.radiusYProperty().bind(
24 pane.heightProperty().multiply(0.4));
25 pane.getChildren().add(ellipse);
26
27 /| Apply a fade transition to ellipse
28 FadeTransition ft =
29 new FadeTransition(Duration.millis(3000), ellipse);
30 ft.setFromValue(1.0);
31 ft.setToValue(0.1);
32 ft.setCycleCount (Timeline.INDEFINITE) ;
33 ft.setAutoReverse(true);
34 ft.play(); // Start animation
35
36 // Control animation
37 ellipse.setOnMousePressed(e —> ft.pause());
‘@5 38 ellipse.setOnMouseReleased(e -> ft.play());
39
40 /| Create a scene and place it in the stage
41 Scene scene = new Scene(pane, 200, 150);
42 primaryStage.setTitle("FadeTransitionDemo"); // Set the stage title
43 primaryStage.setScene(scene); // Place the scene in the stage
44 primaryStage.show(); // Display the stage
45 }
46}

® O O FadeTransitionDemo ™ ® O O FadeTransitionDemo ™

FIGURE 15.20 The FadeTransition animates the change of opacity in the ellipse.

The program creates a pane (line 15) and an ellipse (line 16) and places the ellipse into the pane
(line 25). The ellipse’s centerX, centerY, radiusX, and radiusY properties are bound to
the pane’s size (lines 19-24).

A fade transition is created with a duration of 3 seconds for the ellipse (line 29). It sets the start
opaque to 1.0 (line 30) and the stop opaque to 0.1 (line 31). The cycle count is set to infinite so the
animation is repeated indefinitely (line 32). When the mouse is pressed, the animation is paused
(line 37). When the mouse is released, the animation resumes from where it was paused (line 38).

M15_LIAN9966_12_SE_C15.indd 623 @

STUDENTS-HUB.com

[5.11 Animation 623

create a pane

create an ellipse

set ellipse fill color
set ellipse stroke color
bind ellipse properties

add ellipse to pane

create a FadeTransition

set start opaque value
set end opaque value
set cycle count

set auto reverse true
play animation

pause animation
resume animation

13/09/19 8:30 PM

https://students-hub.com

624 Chapter I5 Event-Driven Programming and Animations

15.11.3 Timeline

PathTransitionand FadeTransition define specialized animations. The Time11ine class
can be used to program any animation using one or more KeyFrames. Each KeyFrame is
executed sequentially at a specified time interval. Time11ne inherits from Animation. You
can construct a Time11ne using the constructor new Timeline (KeyFrame. . .keyframes).
A KeyFrame can be constructed using

new KeyFrame(Duration duration, EventHandler<ActionEvent> onFinished)

The handler onFinished is called when the duration for the key frame is elapsed.
Listing 15.15 gives an example that displays a flashing text, as shown in Figure 15.21. The
text is on and off alternating to animate flashing.

B LISTING 15.16 TimelineDemo.java

import javafx.animation.Animation;
import javafx.application.Application;
import javafx.stage.Stage;

import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Scene;

import javafx.scene.layout.StackPane;
10 1import javafx.scene.paint.Color;

11 dimport javafx.scene.text.Text;

12 dimport javafx.util.Duration;

VideoNote
Flashing text

O©oO~NOO U~ WN =

14 public class TimelineDemo extends Application {

15 @Override // Override the start method in the Application class
16 public void start(Stage primaryStage) {
create a stack pane 17 StackPane pane = new StackPane();
create a text 18 Text text = new Text(20, 50, "Programming is fun");
19 text.setFill(Color.RED);
add text to pane 20 pane.getChildren().add(text); // Place text into the stack pane
21
22 /1 Create a handler for changing text
handler for changing text 23 EventHandler<ActionEvent> eventHandler = e —> {
24 if (text.getText().length() != 0) {
set text empty 25 text.setText ("");
26 }
27 else {
set text 28 text.setText ("Programming is fun");
29 }
30 ik
31
32 /'l Create an animation for alternating text
create a Timeline 33 Timeline animation = new Timeline(
create a KeyFrame for handler 34 new KeyFrame(Duration.millis(500), eventHandler));
set cycle count indefinite 35 animation.setCycleCount(Timeline.INDEFINITE);
play animation 36 animation.play(); // Start animation
37
38 /| Pause and resume animation
39 text.setOnMouseClicked(e —> {
40 if (animation.getStatus() == Animation.Status.PAUSED) ({
resume animation 41 animation.play();
42 }
43 else {
pause animation 44 animation.pause();
M15_LIAN9966_12_SE_C15.indd 624 @ 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

45 }

46 P

47

48 /| Create a scene and place it in the stage

49 Scene scene = new Scene(pane, 250, 250);

50 primaryStage.setTitle("TimelineDemo"); // Set the stage title
51 primaryStage.setScene(scene); // Place the scene in the stage
52 primaryStage.show(); // Display the stage

53 }

54 '}

® O O TimelineDemo " ® O O TimelineDemo ™

Programming is fun

FiGure 15.21 The handler is called to set the text to “Programming is fun” or empty in turn.

The program creates a stack pane (line 17) and a text (line 18) and places the text into the pane
(line 20). A handler is created to change the text to empty (lines 24-26) if it is not empty or to
Programming is fun ifitis empty (lines 27-29). A KeyFrame is created to run an action
event in every half second (line 34). A Time11ine animation is created to contain a key frame
(lines 33 and 34). The animation is set to run indefinitely (line 35).

The mouse-clicked event is set for the text (lines 39-46). A mouse click on the text resumes
the animation if the animation is paused (lines 40—42), and a mouse click on the text pauses
the animation if the animation is running (lines 43—-45).

In Section 14.12, Case Study: The ClockPane Class, you drew a clock to show the cur-
rent time. The clock does not tick after it is displayed. What can you do to make the clock
display a new current time every second? The key to making the clock tick is to repaint it
every second with a new current time. You can use a Timel1ine to control the repainting
of the clock with the code in Listing 15.17. The sample run of the program is shown in
Figure 15.22.

LiIsTING 15.17 ClockAnimation.java

1 1import javafx.application.Application;

2 import javafx.stage.Stage;

3 import javafx.animation.KeyFrame;

4 import javafx.animation.Timeline;

5 import javafx.event.ActionEvent;

6 import javafx.event.EventHandler;

7 import javafx.scene.Scene;

8 import javafx.util.Duration;

9

10 public class ClockAnimation extends Application {

11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {

13 ClockPane clock = new ClockPane(); // Create a clock
14

15 /| Create a handler for animation

16 EventHandler<ActionEvent> eventHandler = e -> {
17 clock.setCurrentTime(); // Set a new clock time
18 b

19
20 /| Create an animation for a running clock
21 Timeline animation = new Timeline(

M15_LIAN9966_12_SE_C15.indd 625 @

STUDENTS-HUB.com

[5.11 Animation 625

create a clock

create a handler

create a time line

13/09/19 8:30 PM

https://students-hub.com

626 Chapter I5

create a key frame

set cycle count indefinite

play animation

ﬁeck
Point

Key
Point

M15_LIAN9966_12_SE_C15.indd 626

STUDENTS-HUB.com

Event-Driven Programming and Animations

22 new KeyFrame(Duration.millis(1000), eventHandler));

23 animation.setCycleCount(Timeline.INDEFINITE);

24 animation.play(); // Start animation

25

26 /'l Create a scene and place it in the stage

27 Scene scene = new Scene(clock, 250, 50);

28 primaryStage.setTitle("ClockAnimation™); // Set the stage title
29 primaryStage.setScene(scene); // Place the scene in the stage
30 primaryStage.show(); // Display the stage

31 }

32}

® O O ClockAnimation " ® O O ClockAnimation »™ ® O O ClockAnimation ™

FiGure 15.22 A live clock is displayed in the window.

The program creates an instance c1ock of C1ockPane for displaying a clock (line 13). The
ClockPane class is defined in Listing 14.21. The clock is placed in the scene in line 27. An
event handler is created for setting the current time in the clock (lines 16—18). This handler is
called every second in the key frame in the time line animation (lines 21-24). Thus, the clock
time is updated every second in the animation.

I5.11.1 How do you set the cycle count of an animation to infinite? How do you auto
reverse an animation? How do you start, pause, and stop an animation?

15.11.2 ArePathTransition, FadeTransition, and Timel1ine subtypes of
Animation?

15.11.3 How do you create a PathTransition? How do you create a
FadeTransition? How do you create a Timeline?

15.11.4 How do you create a KeyFrame?

15.12 Case Study: Bouncing Ball

This section presents an animation that displays a ball bouncing in a pane.

The program uses Time11ne to animate ball bouncing, as shown in Figure 15.23.

® O O BounceBallControl " ® O O BounceBallControl ™ ® O O BounceBallControl "

FIGURE 15.23 A ball is bouncing in a pane.

13/09/19 8:30 PM

https://students-hub.com

STUDENTS-HUB.com

Here are the major steps to write this program:

1. Define a subclass of Pane named Bal1Pane to display a ball bouncing, as shown in

Listing 15.18.

2. Define a subclass of App1ication named BounceBallControl to control the bounc-
ing ball with mouse actions, as shown in Listing 15.19. The animation pauses when the
mouse is pressed, and resumes when the mouse is released. Pressing the up and down

arrow keys increases/decreases the animation speed.

The relationship among these classes is shown in Figure 15.24.

javafx.scene.layout.Pane javafx.application.Application

—-x: double
—y: double
—dx: double
—dy: double
—radius: double
—circle: Circle

—animation: Timeline

+BallPane ()
+play(): void

t+pause () : void
+increaseSpeed () : void
+decreaseSpeed () : void
t+rateProperty () : DoubleProperty
#moveBall () : void

FIGURE 15.24 BounceBallControl contains Bal1Pane.

LiIsTING 15.18 BallPane.java

1 import javafx.animation.KeyFrame;

2 import javafx.animation.Timeline;

3 import javafx.beans.property.DoubleProperty;

4 import javafx.scene.layout.Pane;

5 import javafx.scene.paint.Color;

6 1import javafx.scene.shape.Circle;

7 import javafx.util.Duration;

8

9 public class BallPane extends Pane {

10 public final double radius = 20;

11 private double x = radius, y = radius;

12 private double dx =1, dy = 1;

13 private Circle circle = new Circle(x, y, radius);

14 private Timeline animation;

15

16 public BallPane() {

17 circle.setFill(Color.GREEN); // Set ball color

18 getChildren().add(circle); // Place a ball into this
M15_LIAN9966_12_SE_C15.indd 627 @

pane

15.12 Case Study: Bouncing Ball 627

13/09/19 8:30 PM

https://students-hub.com

628 Chapter I5

create animation

keep animation running
start animation

play animation

pause animation

increase animation rate

decrease animation rate

change horizontal direction

change vertical direction

set new ball position

M15_LIAN9966_12_SE_C15.indd 628

STUDENTS-HUB.com

Event-Driven Programming and Animations

19

20 /1 Create an animation for moving the ball

21 animation = new Timeline(

22 new KeyFrame(Duration.millis(50), e —> moveBall()));
23 animation.setCycleCount(Timeline.INDEFINITE) ;
24 animation.play(); // Start animation

25 }

26

27 public void play() {

28 animation.play();

29 }

30

31 public void pause() {

32 animation.pause();

33 }

34

35 public void increaseSpeed() {

36 animation.setRate(animation.getRate() + 0.1);
37 }

38

39 public void decreaseSpeed() {

40 animation.setRate(

41 animation.getRate() > 0 ? animation.getRate() - 0.1 : 0);
42 }

43

44 public DoubleProperty rateProperty() {

45 return animation.rateProperty();

46 }

47

48 protected void moveBall() ({

49 /'l Check boundaries

50 if (x < radius || x > getWidth() - radius) {
51 dx *= -1; // Change ball move direction

52 }

53 if (y < radius || y > getHeight() - radius) {
54 dy *= -1; // Change ball move direction

55 }

56

57 /1 Adjust ball position

58 X += dx;

59 y += dy;

60 circle.setCenterX(x);

61 circle.setCenterY(y);

62 }

63 }

Bal1Pane extends Pane to display a moving ball (line 9). An instance of Timel1ine is
created to control animation (lines 21 and 22). This instance contains a KeyFrame object that
invokes the moveBal1 () method at a fixed rate. The moveBal1 () method moves the ball to
simulate animation. The center of the ball is at (x, y), which changes to (x + dx,y + dy)on
the next move (lines 58—61). When the ball is out of the horizontal boundary, the sign of dx is
changed (from positive to negative or vice versa) (lines 50-52). This causes the ball to change
its horizontal movement direction. When the ball is out of the vertical boundary, the sign of dy
is changed (from positive to negative or vice versa) (lines 53-55). This causes the ball to change
its vertical movement direction. The pause and p1lay methods (lines 27-33) can be used to
pause and resume the animation. The increaseSpeed () and decreaseSpeed () methods
(lines 35-42) can be used to increase and decrease animation speed. The rateProperty ()

13/09/19 8:30 PM

https://students-hub.com

15.12 Case Study: Bouncing Ball 629

method (lines 44—46) returns a binding property value for rate. This binding property will be
useful for binding the rate in future applications in the next chapter.

LisTING 15.19 BounceBallControl.java

1 import javafx.application.Application;
2 import javafx.stage.Stage;
3 import javafx.scene.Scene;
4 import javafx.scene.input.KeyCode;
5
6 public class BounceBallControl extends Application {
7 @Override // Override the start method in the Application class
8 public void start(Stage primaryStage) {
9 BallPane ballPane = new BallPane(); // Create a ball pane
10
11 // Pause and resume animation
12 bal1Pane.setOnMousePressed(e —> ballPane.pause());
13 bal1Pane.setOnMouseReleased(e —> ballPane.play());
14
15 /'l Increase and decrease animation
16 bal1Pane.setOnKeyPressed(e —> {
17 if (e.getCode() == KeyCode.UP) {
18 ballPane.increaseSpeed() ;
19
20 else if (e.getCode() == KeyCode.DOWN) {
21 ball1Pane.decreaseSpeed() ;
22 }
23 1
24
25 /| Create a scene and place it in the stage
26 Scene scene = new Scene(ballPane, 250, 150);
27 primaryStage.setTitle("BounceBallControl™); // Set the stage title
28 primaryStage.setScene(scene); // Place the scene in the stage
29 primaryStage.show(); // Display the stage
30
31 /1 Must request focus after the primary stage is displayed
32 ballPane.requestFocus();
33 }
34}

The BounceBal1Control class is the main JavaFX class that extends Application to
display the ball pane with control functions. The mouse-pressed and mouse-released handlers
are implemented for the ball pane to pause the animation and resume the animation (lines 12
and 13). When the UP arrow key is pressed, the ball pane’s increaseSpeed () method is
invoked to increase the ball’s movement (line 18). When the down arrow key is pressed, the
ball pane’s decreaseSpeed () method is invoked to reduce the ball’s movement (line 21).

Invoking bal1Pane.requestFocus () in line 32 sets the input focus to bal1Pane.

15.12.1 How does the program make the ball appear to be moving?

15.12.2 How does the code in Listing 15.17, BallPane.java, change the direction of the
ball movement?

15.12.3 What does the program do when the mouse is pressed on the ball pane? What
does the program do when the mouse is released on the ball pane?

15.12.4 If line 32 in Listing 15.18, BounceBall.java, is not in the program, what would
happen when you press the up or the down arrow key?

15.12.5 If line 23 is not in Listing 15.17, what would happen?

M15_LIAN9966_12_SE_C15.indd 629 @

STUDENTS-HUB.com

create a ball pane

pause animation
resume animation

increase speed

decrease speed

request focus on pane

ﬁeck
Point

13/09/19 8:30 PM

https://students-hub.com

630 Chapter I5 Event-Driven Programming and Animations

15.13 Case Study: US Map

This section presents a program that draws, colors, and resizes a US map.

Key The program reads the GPS coordinates for each state in the 48 continental United States,
Point and draws a polygon to connect the coordinates and displays all the polygons, as shown in
Figure 15.25.

. ® 06 USMap ' e 06 USMap]

FIGURE 15.25 The program displays, colors, and resizes the US map.

The coordinates are contained in a file at https://liveexample.pearsoncmg.com/data/usmap.txt.
For each state, the file contains the state name (e.g., Alabama) and all the coordinates (latitude
and longitude) for the state. For example, the following is an example for Alabama and Arkansas:

Alabama
35.0041 -88.1955
@@, 34.9918 -85.6068

34.9479 -88.1721

34.9107 -88.1461
Arkansas

33.0225 -94.0416

33.0075 -91.2057

A polygon is displayed in red, blue, or white when the primary, secondary, or middle
mouse button is clicked in the polygon. The map size is increased when the up arrow key is
pressed, and decreased when the down arrow key is pressed. Listing 15.20 gives the code for
this program.

LIsTING 15.20 USMap.java

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.scene.paint.Color;
import javafx.stage.Stage;

import javafx.scene.shape.Polygon;
import javafx.scene.Group;

import javafx.scene.layout.BorderPane;
import javafx.scene.input.*;

import javafx.geometry.Point2D;

10 dmport java.util.*;

©oo~NOO O~ WN=

12 public class USMap extends Application {
13 @Override // Override the start method in the Application class
14 public void start(Stage primaryStage) ({

create a map 15 MapPane map = new MapPane();

M15_LIAN9966_12_SE_C15.indd 630 @ 1310919 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

[5.13 Case Study: US Map 631

16 Scene scene = new Scene(map, 1200, 800);
17 primaryStage.setTitle("USMap"); // Set the stage title
18 primaryStage.setScene(scene); // Place the scene in the stage
19 primaryStage.show(); // Display the stage
20
21 map .setOnKeyPressed (e —> { listen to key event
22 if (e.getCode() == KeyCode.UP) {
23 map.enlarge(); // Enlarge the map enlarge map
24
25 else if (e.getCode() == KeyCode.DOWN) {
26 map.shrink(); // SHrink the map shrink map
27 }
28 1)
29 map .requestFocus () ; request focus
30 }
31
32 class MapPane extends BorderPane { extends BorderPane
33 private Group group = new Group(); create a Group
34
35 MapPane () {
36 /| Load coordinates from a file
37 ArrayList<ArraylList<Point2D>> points = getPoints(); get coordinates for state
38
39 /1 Add points to the polygon 1list
40 for (int i = 0; i < points.size(); i++) {
41 Polygon polygon = new Polygon();
42 /1 Add points to the polygon 1list
43 for (int j = 0; j < points.get(i).size(); j++)
44 polygon.getPoints().addAl1(points.get(i).get(j).getX(), add coordinates
@ 45 —points.get(i).get(j).getY());
46 polygon.setFill(Color.WHITE);
47 polygon.setStroke(Color.BLACK) ;
48 polygon.setStrokeWidth(1 / 14.0); set polygon stroke width
49
50 polygon.setOnMouseClicked (e —> { set listener for mouse click
51 if (e.getButton() == MouseButton.PRIMARY) { color polygon
52 polygon.setFil1(Color.RED);
53
54 else if (e.getButton() == MouseButton.SECONDARY) {
55 polygon.setFil1(Color.BLUE);
56
57 else {
58 polygon.setFil1(Color.WHITE) ;
59 }
60 1)
61
62 group.getChildren().add(polygon); add a polygon to group
63 }
64
65 group.setScaleX(14); scale polygon
66 group.setScaleY(14);
67 this.setCenter(group); center group in the map
68 }
69
70 public void enlarge() { enlarge map
71 group.setScaleX(1.1 * group.getScaleX());
72 group.setScaleY (1.1 * group.getScaleY());
73 }
74
75 public void shrink() { shrink map
M15_LIAN9966_12_SE_C15.indd 631 @ 13/09/19 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

632 Chapter I5

create array list
try-with-resource

open an Internet resource

read a string
start a state
create a state list

read latitude value
read longitude value
add a point to list

return list of points

the Group class

the scaleX property
the scaleY property

the scaleX property
the scaleY property

M15_LIAN9966_12_SE_C15.indd 632

STUDENTS-HUB.com

Event-Driven Programming and Animations

76 group.setScaleX(0.9 * group.getScaleX());

77 group.setScaleY (0.9 * group.getScaleY());

78 }

79

80 private ArrayList<ArrayList<Point2D>> getPoints() {

81 ArrayList<ArraylList<Point2D>> points = new ArraylList<>();
82

83 try (Scanner input = new Scanner(new java.net.URL(

84 "https://1iveexample.pearsoncmg.com/data/usmap.txt")
85 .openStream())) {

86 while (input.hasNext()) {

87 String s = input.nextLine();

88 if (Character.isAlphabetic(s.charAt(0))) {

89 points.add(new ArraylList<>()); // For a new state
90 }

91 else {

92 Scanner scanAString = new Scanner(s); // Scan one point
93 double y = scanAString.nextDouble();

94 double x = scanAString.nextDouble();

95 points.get(points.size() - 1).add(new Point2D(x, y));
96 }

97 }

98 }

99 catch (Exception ex) {

100 ex.printStackTrace();

101 }

102

103 return points;

104 }

105 }

106 }

The program defines MapPane that extends BorderPane to display a map in the center of
the border pane (line 32). The program needs to resize the polygons in the map. An instance of
the Group class is created to hold all the polygons (line 33). Grouping the polygons enables all
polygons to be resized in one operation. Resizing the group will cause all polygons in the group
to resize accordingly. Resizing can be done by applying the scaleX and scaleY properties
in the group (lines 65 and 66).

The getPoints () method is used to return all the coordinates in an array list (line 80). The
array list consists of sublists. Each sublist contains the coordinates for a state and is added to
the array list (line 89). A Point2D object represents the x- and y-coordinates of the point (line
81). The method creates a Scanner object to read data for the map coordinates from a file
on the Internet (lines 83—85). The program reads lines from the file. For each line, if the first
character is an alphabet, the line is for a new state name (line 88) and a new sublist is created
and added to the points array list (line 89). Otherwise, the line contains the two coordinates.
The latitude becomes the y-coordinate for the point (line 93), and the longitude corresponds
to the x-coordinate of the point (line 94). The program stores the points for a state in a sublist
(line 95). points is an array list that contains 48 sublists.

The constructor of MapPane obtains sublists of the coordinates from the file (line 37). For
each sublist of the points, a polygon is created (line 41). The points are added to the polygon
(lines 43—-45). Since the y-coordinates increase upward in the conventional coordinate system,
but downward in the Java coordinate system, the program changes the sign for the y-coordinates
in line 45. The polygon properties are set in lines 46—48. Note the strokeWidth is set to
1 / 14.0 (line 48) because all the polygons are scaled up 14 times in lines 65 and 66. If the
strokeWidth is not set to this value, the stroke width will be very thick. Since polygons are
very small, applying the setScaleX and setScaleY methods on the group causes all the

13/09/19 8:30 PM

https://students-hub.com

Chapter Summary 633

nodes inside the group to be enlarged (lines 65 and 66). MapPane is a BorderPane. The group
is placed in the center of the border pane (line 67).

The enlarge () and shrink () methods are defined in MapPane (lines 70-78). They can be
called to enlarge or shrink the group to cause all the polygons in the group to scale up or down.

Each polygon is set to listen to mouse-clicked event (lines 50-60). When clicking the
primary/secondary/middle mouse button on a polygon, the polygon is filled red/blue/white.

The program creates an instance of MapPane (line 15) and places it in the scene (line 16). The
map listens to the key-pressed event to enlarge or shrink the map upon pressing the up and down
arrow key (lines 21-28). Since the map is inside the scene, invoking map . requestFocus ()
enables the map to receive key events (line 29).

15.13.1 What would happen if line 29 in Listing 15.20 is removed? ﬁeck
15.13.2 What would happen if map is replaced by scene in line 21 in Listing 15.20? Point
15.13.3 What would happen if map is replaced by primaryStage in line 21 in
Listing 15.20?
KEey TERMS
anonymous inner class 602 functional interface 607
event 596 inner class 599
event-driven programming 596 key code 613
event handler 597 lambda expression 605
event—handler interface 597 observable object 616
event object 596 single abstract method interface 607
@ event source object 596
CHAPTER SUMMARY

I. The root class of the JavaFX event classes is javafx.event .Event, which is a subclass
of java.util.EventObject. The subclasses of Event deal with special types of
events, such as action events, window events, mouse events, and key events. If a node
can fire an event, any subclass of the node can fire the same type of event.

2. The handler object’s class must implement the corresponding event—handler interface.
JavaFX provides a handler interface EventHand1ler<T extends Event> for every event
class T. The handler interface contains the handle (T e) method for handling event e.

3. The handler object must be registered by the source object. Registration methods depend
on the event type. For an action event, the method is setOnAction. For a mouse-pressed
event, the method is setOnMousePressed. For a key-pressed event, the method is
setOnKeyPressed.

4. An inner class, or nested class, is defined within the scope of another class. An inner
class can reference the data and methods defined in the outer class in which it nests, so
you need not pass the reference of the outer class to the constructor of the inner class.

5. An anonymous inner class can be used to shorten the code for event handling.
Furthermore, a lambda expression can be used to greatly simplify the event-handling
code for functional interface handlers.

M15_LIAN9966_12_SE_C15.indd 633 @ 1310919 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

634 Chapter I5 Event-Driven Programming and Animations

6. A functional interface is an interface with exactly one abstract method. This is also
known as a single abstract method (SAM) interface.

7. A MouseEvent is fired whenever a mouse button is pressed, released, clicked, moved,
or dragged on a node or a scene. The getButton () method can be used to detect which
mouse button is pressed for the event.

8. A KeyEvent is fired whenever a key is pressed, released, or typed on a node or a scene.
The getCode () method can be used to return the code value for the key.

9. An instance of Observable is known as an observable object, which contains the
add-Listener(InvalidationListener 1istener) method for adding a listener.
Once the value is changed in the property, a listener is notified. The listener class should
implement the InvalidationListener interface, which uses the invalidated
method to handle the property value change.

10. The abstract Animation class provides the core functionalities for animations in
JavaFX. PathTransition, FadeTransition, and Time11ine are specialized classes
for implementing animations.

—0n) Quiz
b—t/

[P

Answer the quiz for this chapter online at the book Companion Website.

MyProgramminglab PROGRAMMING EXERCISES

Sections 15.2-15.7

*15.1 (Pick four cards) Write a program that lets the user click the Refresh button to
display four cards from a deck of 52 cards, as shown in Figure 15.26a. (See the
hint in Programming Exercise 14.3 on how to obtain four random cards.)

® 0 0 Exercise15_01 o5l | ® O O Exercisel5 02 ™ | ® O O Exercisel5_03 ")
3 6 A
F 10 *
s [o0 P’ O
* ¢+ L4

Refresh Rotate Left || Right Up || Down

(a) (b) ()

FIGURE 15.26 (a) Exercise 15.1 displays four cards randomly. Source: Fotolia. (b) Exercise 15.2 rotates the rectangle.
(c) Exercise 15.3 uses the buttons to move the ball.

15.2 (Rotate a rectangle) Write a program that rotates a rectangle 15 degrees to the
right when the Rotate button is clicked, as shown in Figure 15.26b.

*15.3 (Move the ball) Write a program that moves the ball in a pane. You should
define a pane class for displaying the ball and provide the methods for moving
the ball left, right, up, and down, as shown in Figure 15.26¢. Check the bound-
ary to prevent the ball from moving out of sight completely.

VideoNote *15.4 (Create a simple calculator) Write a program to perform addition, subtraction,
Simple calculator multiplication, and division, as shown in Figure 15.27a.
M15_LIAN9966_12_SE_C15.indd 634 @

STUDENTS-HUB.com

13/09/19 8:30 PM

https://students-hub.com

Programming Exercises 635

(NGNS Exercisel5_05 ",
Investment Amount: 10000
Number of Years: 4
® 00 Exercisel5_04 " Annual Interest Rate: 3.25
Number 1: | 4.5 Number2: 3.4 Result: 7.9 Future value: $11386.28
W Subtract || Multiply | Divide

(a) (b)

FIGURE 15.27 (a) Exercise 15.4 performs addition, subtraction, multiplication, and division
on double numbers. (b) The user enters the investment amount, years, and interest rate to
compute future value.

*15.5 (Create an investment-value calculator) Write a program that calculates the
future value of an investment at a given interest rate for a specified number of
years. The formula for the calculation is

futureValue = investmentAmount * (1 + monthlyInterestRate)Years™!2

Use text fields for the investment amount, number of years, and annual interest
rate. Display the future amount in a text field when the user clicks the Calculate
button, as shown in Figure 15.27b.

Sections 15.8 and 15.9

® **15.6 (Alternate two messages) Write a program to display the text Java is fun
and Java 1is powerful alternately with a mouse click.

*15.7 (Change color using a mouse) Write a program that displays the color of a
circle as black when the mouse button is pressed, and as white when the mouse
button is released.

*15.8 (Display the mouse position) Write two programs, such that one displays the
mouse position when the mouse button is clicked (see Figure 15.28a), and the
other displays the mouse position when the mouse button is pressed and ceases
to display it when the mouse button is released.

*15.9 (Draw lines using the arrow keys) Write a program that draws line segments
using the arrow keys. The line starts from (100, 100) in the pane and draws
toward east, north, west, or south when the right-arrow key, up-arrow key,
left-arrow key, or down-arrow key is pressed, as shown in Figure 15.28b.

® O O Exercisel5_08 " ® O O Exercisel5 09 o

L1
gs .0, 70.0) I—_|

—

FIGURE 15.28 (a) Exercise 15.8 displays the mouse position. (b) Exercise 15.9 uses the
arrow keys to draw the lines.

(a) (b)

M15_LIAN9966_12_SE_C15.indd 635 @ 1310919 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

636 Chapter I5 Event-Driven Programming and Animations

**15.10
*15.11
a **15.12
VideoNote
Check mouse-point location
**15.13
6 O 6 Exercisel5_12 el

hkllouse point is inside the circle

(Enter and display a string) Write a program that receives a string from the
keyboard and displays it on a pane. The Enter key signals the end of a string.
Whenever a new string is entered, it is displayed on the pane.

(Move a circle using keys) Write a program that moves a circle up, down, left,
or right using the arrow keys.

(Geometry: inside a circle?) Write a program that draws a fixed circle centered
at (100, 60) with radius 50. Whenever the mouse is moved, display a message
indicating whether the mouse point is inside the circle at the mouse point or
outside of it, as shown in Figure 15.29a.

(Geometry: inside a rectangle?) Write a program that draws a fixed rectangle cen-
tered at (100, 60) with width 100 and height 40. Whenever the mouse is moved,
display a message indicating whether the mouse point is inside the rectangle at the
mouse point or outside of it, as shown in Figure 15.29b. To detect whether a point
is inside a polygon, use the contains method defined in the Node class.

® O O Exercisel5_13 " ® O O Exercisel5_14 v

A

R‘Aouse point is outside the polygon

¥ouse point is outside the rectangle

(a)

(b) ©)

@ FiGure 15.29 Detect whether a point is inside a circle, a rectangle, or a polygon.

**15.14

**15.15

(Geometry: inside a polygon?) Write a program that draws a fixed polygon
with points at (40, 20), (70, 40), (60, 80), (45, 45), and (20, 60). Whenever
the mouse is moved, display a message indicating whether the mouse point
is inside the polygon at the mouse point or outside of it, as shown in Figure
15.29¢c. To detect whether a point is inside a polygon, use the contains
method defined in the Node class.

(Geometry: add and remove points) Write a program that lets the user click on
a pane to dynamically create and remove points (see Figure 15.30a). When the
user left-clicks the mouse (primary button), a point is created and displayed
at the mouse point. The user can remove a point by pointing to it and right-
clicking the mouse (secondary button).

® O O Exercisel5_15 2 8 006 Exercisel5_16 =

O 136

FIGURe 15.30 (a) Exercise 15.15 allows the user to create/remove points dynamically.
(b) Exercise 15.16 displays two vertices and a connecting edge.

M15_LIAN9966_12_SE_C15.indd 636

STUDENTS-HUB.com

13/09/19 8:30 PM

https://students-hub.com

*15.16

**15.17

® 06

Programming Exercises 637

(Two movable vertices and their distances) Write a program that displays two
circles with radius 10 at location (40, 40) and (120, 150) with a line connect-
ing the two circles, as shown in Figure 15.30b. The distance between the circles
is displayed along the line. The user can drag a circle. When that happens, the
circle and its line are moved, and the distance between the circles is updated.

(Geometry: find the bounding rectangle) Write a program that enables the user
to add and remove points in a two-dimensional plane dynamically, as shown
in Figure 15.31a. A minimum bounding rectangle is updated as the points are
added and removed. Assume the radius of each point is 10 pixels.

Exercisel5_17 Y | ® O O Exercisel5_19 l;l‘ ® O O Exercisel5_19

INSTRUCTION
Add: Left Click
Remove: Right Click

Time spent is 58215 milliseconds

© o ©0°o ®
o (@] 5 o
o} o g
(a) (b) ()
FiGure 15.31 (a) Exercise 15.17 enables the user to add/remove points dynamically and displays the bounding

rectangle. (b) When you click a circle, a new circle is displayed at a random location. (c) After 20 circles are clicked,
the time spent is displayed in the pane.

**15.18
@

**15.19

**15.20

® O O Exercisel5 20 " 806 Exercisel5_21 2

(Move a rectangle using mouse) Write a program that displays a rectangle.
You can point the mouse inside the rectangle and drag (i.e., move with mouse
pressed) the rectangle wherever the mouse goes. The mouse point becomes the
center of the rectangle.

(Game: eye—hand coordination) Write a program that displays a circle of
radius 10 pixels filled with a random color at a random location on a pane, as
shown in Figure 15.31b. When you click the circle, it disappears and a new
random-color circle is displayed at another random location. After 20 circles
are clicked, display the time spent in the pane, as shown in Figure 15.31c.

(Geometry: display angles) Write a program that enables the user to drag the
vertices of a triangle and displays the angles dynamically as the triangle shape
changes, as shown in Figure 15.32a. The formula to compute angles is given in
Listing 4.1.

61.73

8.69 1.34

.97

(a) (b)

FIGURE 15.32 (a) Exercise 15.20 enables the user to drag vertices and display the angles
dynamically. (b) Exercise 15.21 enables the user to drag vertices and display the angles in
the triangle dynamically.

M15_LIAN9966_12_SE_C15.indd 637

STUDENTS-HUB.com

13/09/19 8:30 PM

https://students-hub.com

638 Chapter I5 Event-Driven Programming and Animations

*15.21 (Drag points) Draw a circle with three random points on the circle. Connect
the points to form a triangle. Display the angles in the triangle. Use the mouse
to drag a point along the perimeter of the circle. As you drag it, the triangle and
angles are redisplayed dynamically, as shown in Figure 15.32b. For computing
angles in a triangle, see Listing 4.1.

Section 15.10

*15.22 (Auto resize cylinder) Rewrite Programming Exercise 14.10 so the cylinder’s
width and height are automatically resized when the window is resized.

*15.23 (Auto resize stop sign) Rewrite Programming Exercise 14.15 so the stop sign’s
width and height are automatically resized when the window is resized.
Section 15.11

*%15.24 (Animation: pendulum swing) Write a program that animates a pendulum
swing, as shown in Figure 15.33. Press/release the mouse to pause/resume the
animation.

® O O Exercisel5_24 ™ ® O O Exercisel5_24 " ® O O Exercisel5 24

FiGure 15.33 The program animates a pendulum swing.

*%15.25 (Animation: ball on curve) Write a program that animates a ball moving along
a sine curve, as shown in Figure 15.34. When the ball gets to the right border,
it starts over from the left. Enable the user to resume/pause the animation with
a click on the left/right mouse button.

® 006 Exercisel5_25 Bl e 06 Exercisel5_25 |
Y

WA AR I AWAN ALY
SAVAVAURVAVAYA

FiIGUre 15.34 The program animates a ball traveling along a sine curve.

*15.26 (Change opacity) Rewrite Programming Exercise 15.24 so the ball’s opacity is
changed as it swings.

*15.27 (Control a moving text) Write a program that displays a moving text, as shown
in Figures 15.35a and b. The text moves from left to right circularly. When it
disappears in the right, it reappears from the left. The text freezes when the
mouse is pressed, and moves again when the button is released.

M15_LIAN9966_12_SE_C15.indd 638 @ 1310919 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 639

® O O Exercisel5_28 e

® O O Exercisel5 27 " ® O O Exercisel5 27

rogramming is fun Programming is fi

Pause Resume Reverse

(a) (b (©)
FIGURE 15.35 (a and b) A text is moving from left to right circularly. (c) The program simulates a fan running.

*%15.28 (Display a running fan) Write a program that displays a running fan, as shown
in Figure 15.35c. Use the Pause, Resume, and Reverse buttons to pause,
resume, and reverse fan running.

*%15.29 (Racing car) Write a program that simulates car racing, as shown in
Figure 15.36a. The car moves from left to right. When it hits the right end, it
restarts from the left and continues the same process. You can use a timer to
control animation. Redraw the car with new base coordinates (x, y), as shown in
Figure 15.36b. Also let the user pause/resume the animation with a button
press/release and increase/decrease the car speed by pressing the up and down

@ arrow keys.

VideoNote
Display a running fan

X x+20 x+40

® O O Exercisel5_29 " O O O Exercisel5_29 ™ | |]

FIGURE 15.36 (a) The program displays a moving car. (b) You can redraw a car with a new base point.

(a)

*%15.30 (Slide show) Twenty-five slides are stored as image files (slide0.jpg, slidel.
jpg, . . ., slide24.jpg) in the image directory downloadable along with the
source code in the book. The size of each image is 800 X 600. Write a program
that automatically displays the slides repeatedly. Each slide is shown for two
seconds. The slides are displayed in order. When the last slide finishes, the
first slide is redisplayed, and so on. Click to pause if the animation is currently
playing. Click to resume if the animation is currently paused.

**15.31 (Geometry: pendulum) Write a program that animates a pendulum swinging,
as shown in Figure 15.37. Press the up arrow key to increase the speed, and the
down arrow key to decrease it. Press the S key to stop animation of and the R
key to resume it.

M15_LIAN9966_12_SE_C15.indd 639 @ 1310919 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

640 Chapter I5 Event-Driven Programming and Animations

® 0 0 Exercisel5_31 " ® 00 Exercisel5_31 " ® 00 Exercisel5_31 %)

FIGURe 15.37 Exercise 15.31 animates a pendulum swinging.

*15.32 (Control a clock) Modify Listing 14.21, ClockPane.java, to add the animation
into this class and add two methods start () and stop () to start and stop the
clock, respectively. Write a program that lets the user control the clock with the
Start and Stop buttons, as shown in Figure 15.38a.

*%%15.33 (Game: bean-machine animation) Write a program that animates the bean
machine introduced in Programming Exercise 7.37. The animation terminates
after 10 balls are dropped, as shown in Figures 15.38b and c.

® O O Exercisel5_32 ® O O Exercisel5 33 al ® O O Exercisel5_33 =)

Stop || Start

(a) (b) (c)

FiGure 15.38 (a) Exercise 15.32 allows the user to start and stop a clock. (b and c¢) The
balls are dropped into the bean machine.

006 Exercisel5_34 ") 806 Exercisel5_34 " 806 Exercisel5_35 Pl 006 Exercise15_35)

aiEe Eies

(5] (5]
(a) (b) (c) (d)

FIGURE 15.39 (a) A path ends at a boundary point. (b) A path ends at dead-end point. (c and d) Animation shows the
progress of a path step by step.

M15_LIAN9966_12_SE_C15.indd 640 @ 1310919 8:30 PM

STUDENTS-HUB.com

https://students-hub.com

**%15.34

**%15.35

**15.36

Programming Exercises 641

(Simulation: self-avoiding random walk) A self-avoiding walk in a lattice
is a path from one point to another that does not visit the same point twice.
Self-avoiding walks have applications in physics, chemistry, and mathematics.
They can be used to model chain-like entities such as solvents and polymers.
Write a program that displays a random path that starts from the center and
ends at a point on the boundary, as shown in Figure 15.39a, or ends at a dead-
end point (i.e., surrounded by four points that have already been visited), as
shown in Figure 15.39b. Assume the size of the lattice is 16 by 16.

(Animation: self-avoiding random walk) Revise the preceding exercise to dis-
play the walk step by step in an animation, as shown in Figures 15.39¢ and d.

(Simulation: self-avoiding random walk) Write a simulation program to show
that the chance of getting dead-end paths increases as the grid size increases.
Your program simulates lattices with size from 10 to 80 with increments of 5.
For each lattice size, simulate a self-avoiding random walk 10,000 times
and display the probability of the dead-end paths, as shown in the following
sample output:

For a lattice of size 10, the probability of dead-end paths is 10.6%
For a lattice of size 15, the probability of dead-end paths is 14.0%

For a lattice of size 80, the probability of dead-end paths is 99.5%

M15_LIAN9966_12_SE_C15.indd 641

STUDENTS-HUB.com

13/09/19 8:30 PM

https://students-hub.com

