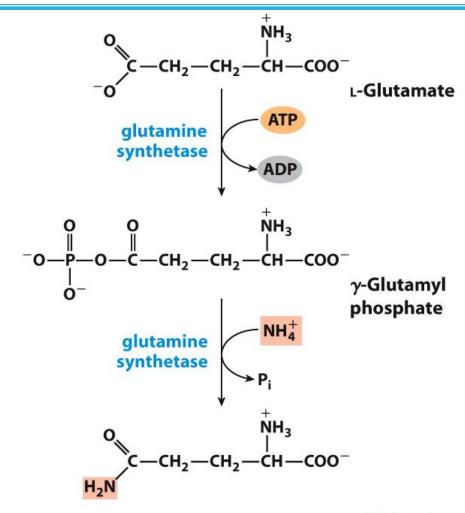

22 | Biosynthesis of Amino Acids, Nucleotides, and Related Molecules

© 2017 W. H. Freeman and Company


Importance of Nitrogen in Biochemistry

- Nitrogen (with H, O, and C) is a major elemental constituent of living organisms.
- Mostly in nucleic acids and proteins
- But also found in:
 - several cofactors (NAD, FAD, biotin ...)
 - many small hormones (epinephrine)
 - many neurotransmitters (serotonin)
 - many pigments (chlorophyll)
 - many defense chemicals (amanitin)

Ammonia Is Incorporated into Biomolecules Through Glu and Gln

 Glutamine is made from Glu by glutamine synthetase in a two-step process.

 Phosphorylation of Glu creates a good leaving group that can be easily displaced by ammonia.

L-Glutamine

Figure 18-8
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Adenylation of Glutamine Synthetase

Adenylylation (attachment of AMP) to Tyr-397 assists in inhibition.

- Increases sensitivity to inhibitors
- Part of complex cascade that is dependent on [Glu], $[\alpha\text{-ketoglutarate}], [\text{ATP}], \text{ and } [P_i]$
- Activity of adenylyltransferase regulated by binding to regulatory protein P_{II}

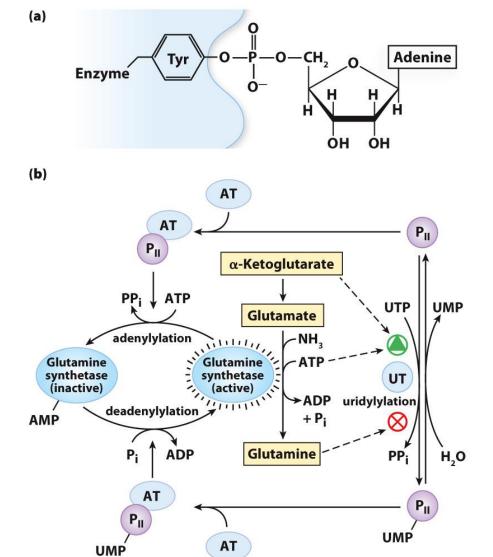
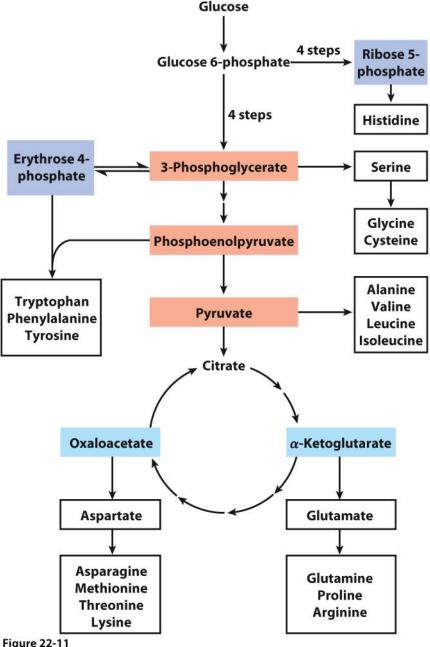


Figure 22-9
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

P_{II} Is Regulated by Uridylylation

(Remember that P_{II} regulates adenylyltransferase, which helps inhibit Gln synthetase.)

- •When P_{II} is uridylylated, adenylyltransferase stimulates deadenylylation of Gln synthetase (increasing the latter's activity).
- •ALSO, uridylylated P_{II} upregulates transcription of Gln synthetase.


Biosynthesis of Amino Acids and Nucleotides — MultipleTransaminations

Transaminations and rearrangements using pyridoxal phosphate (PLP)

- PLP is active form of vitamin B₆
- Catalyzed by amidotransferases
- PLP has aldehyde group that forms Schiff base with Lys of aminotransferase

Amino Acid Synthesis Overview

- Source of N is Glu or Gln
- Derived from intermediates of:
 - glycolysis
 - citric acid cycle
 - pentose phosphate pathway
- Bacteria can synthesize all 20.
- Mammals require some in diet.

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

All Amino Acids Derive from One of Seven Precursors

- CAC:
 - $-\alpha$ -ketoglutarate, oxaloacetate
- Glycolysis
 - pyruvate, 3-phosphoglycerate,
 phosphoenolpyruvate
- Pentose phosphate pathway
 - ribose 5-phosphate, erythrose 4-phosphate

TABLE 22-1

Amino Acid Biosynthetic Families, Grouped by Metabolic Precursor

α-K	eto	glu	tar	ate

Glutamate

Glutamine

Proline

Arginine

3-Phosphoglycerate

Serine

Glycine

Cysteine

Pyruvate

Alanine

Valinea

Leucinea

Isoleucine^a

Phosphoenolpyruvate and

erythrose 4-phosphate

Tryptophana

Phenylalanine^a

Tyrosine^b

Oxaloacetate

Aspartate

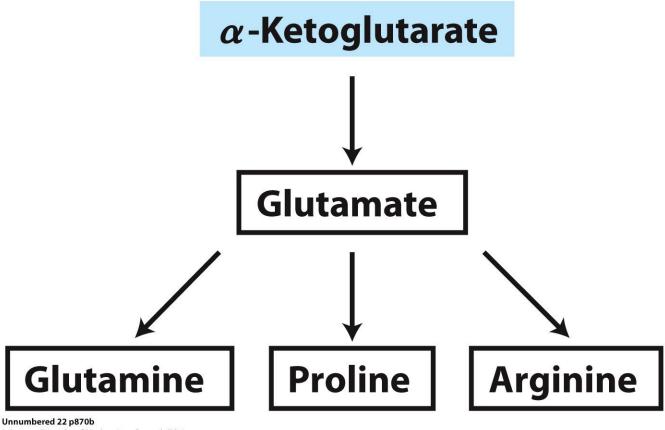
Asparagine

Methioninea

Threonine^a

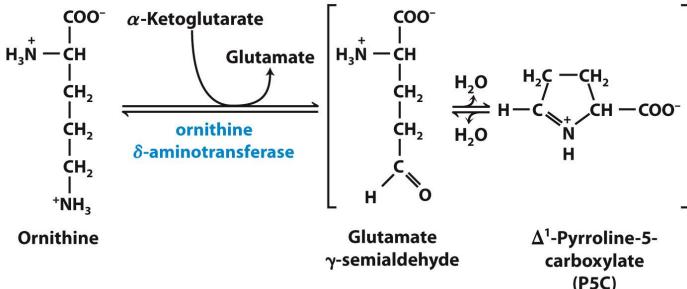
Lysinea

Ribose 5-phosphate


Histidine^a

^aEssential amino acids in mammals.

^bDerived from phenylalanine in mammals.


Proline and Arginine Derive from Glutamate

• Glutamate is derived from transamination of α -ketoglutarate, as seen in Chapter 18.

In Animals, Proline Can ALSO Be Synthesized from Arginine

- Ornithine is derived from the urea cycle or degradation of arginine.
- Ornithine δ -aminotransferase converts ornithine to glutamate γ -semialdehyde that cyclizes and converts to Pro.

Arginine Is Synthesized from Ornithine in Animals

 Ornithine comes from the urea cycle.

In bacteria,
 ornithine has a
 special synthesis
 pathway.

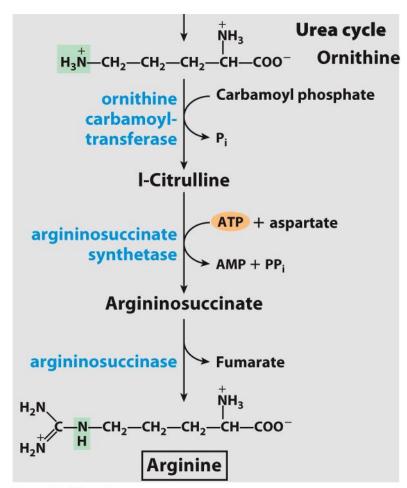


Figure 22-12 part 3

Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Serine Derives from 3-Phosphoglycerate of Glycolysis

- Same pathway in all organisms so far
- Requires Glu as source of NH₂ group
- Oxidation →
 transamination →
 dephosphorylation to
 yield serine

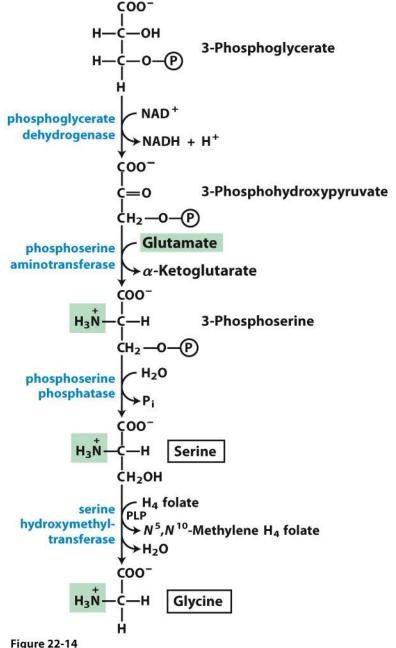
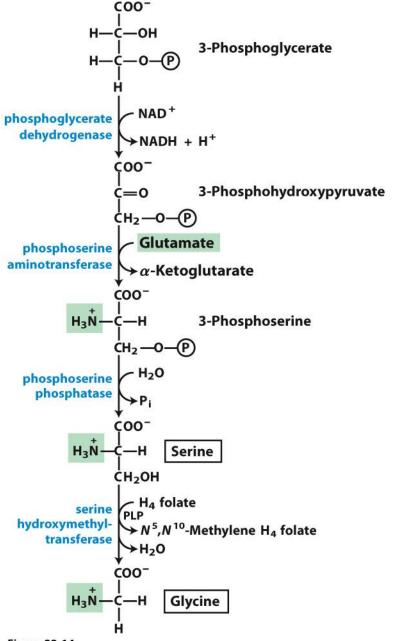


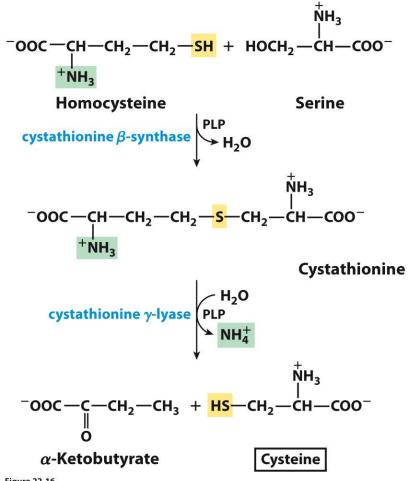
Figure 22-14

Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

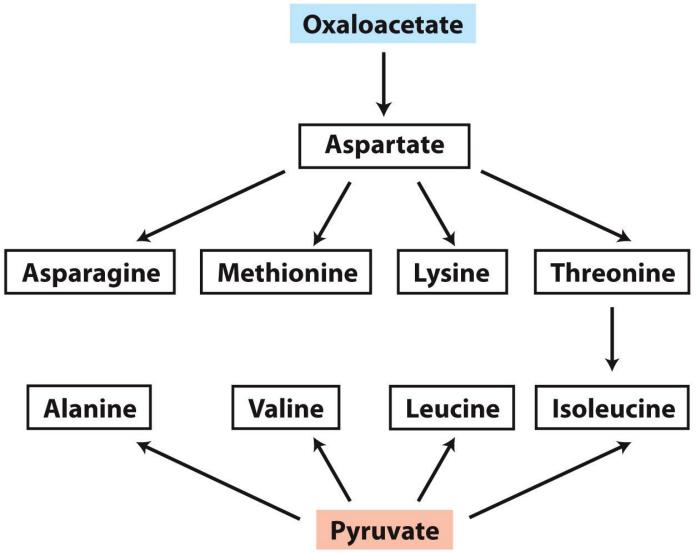
Glycine Derives from Serine

- Carbon removed using tetrahydrofolate (H₄ folate) to accept the C atom and pyridoxal phosphate (PLP)
- Reaction uses serine hydroxymethyltransferase




Figure 22-14

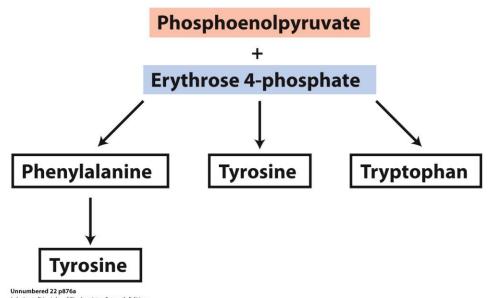
Lehninger Principles of Biochemistry, Seventh Edition

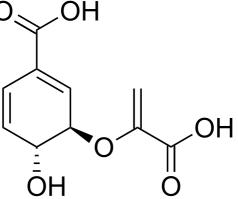

© 2017 W. H. Freeman and Company

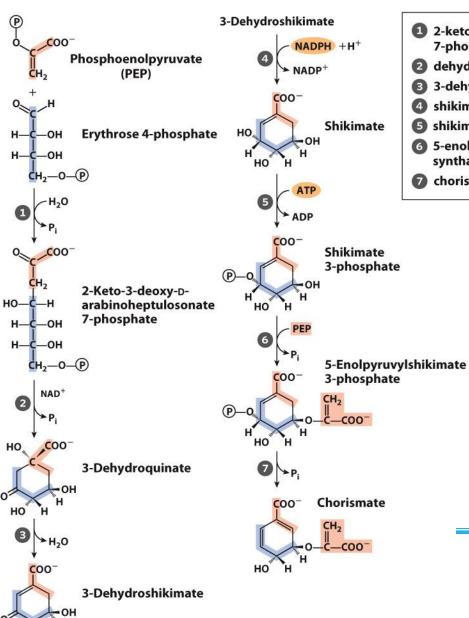
Biosynthesis of Cys from Homocysteine and Ser in Mammals

In mammals, sulfur is recycled from methionine degradation.

Oxaloacetate yields Asp and Pyruvate Yields Ala, Val, Leu, and Ile

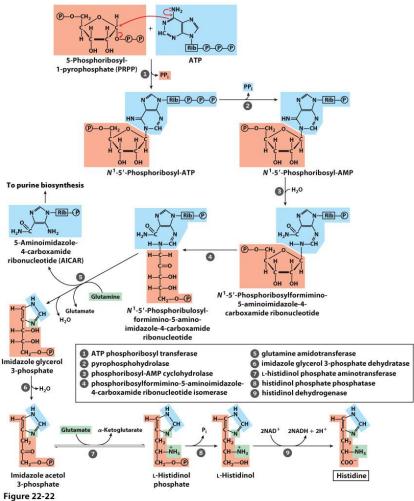



Aromatic Amino Acids Derive from Phosphoenolpyruvate and Erythrose 4-Phosphate


Very complicated chemistry!

 Rings must be synthesized and closed and then oxidized to create double bonds.

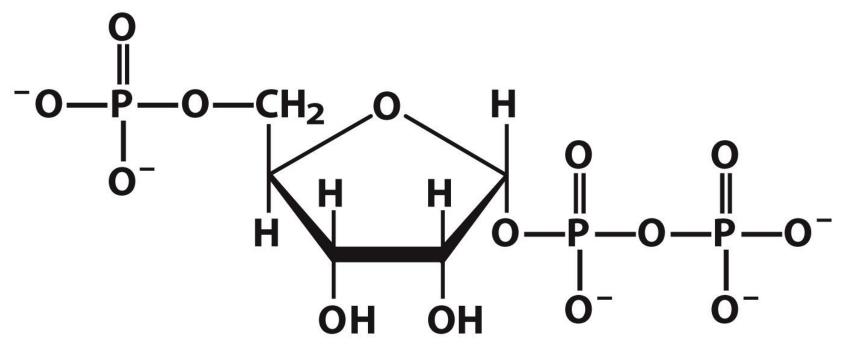
Chorismate is a common intermediate.



- 2-keto-3-deoxy-D-arabinoheptulosonate 7-phosphate synthase
- dehydroquinate synthase
- 3-dehydroquinate dehydratase
- shikimate dehydrogenase
- Shikimate kinase
- 5-enolpyruvylshikimate 3-phosphate synthase
- chorismate synthase

Biosynthesis of
Chorismate, a Key
Intermediate in
Aromatic Amino Acid
Biosynthesis

Figure 22-18


His Derives from PPP Metabolite Ribose 5-Phosphate

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Several Pathways Share 5-Phosphoribosyl-1-Pyrophosphate (PRPP) as an Intermediate

- Synthesized from ribose 5-phosphate of PPP via ribose phosphate pyrophosphokinase
 - a highly regulated allosteric enzyme

Regulation of Amino Acid Biosynthesis

- Multilayered approach: Often, more than one mechanism of regulation is utilized.
 - feedback inhibition of products
 - use of isozymes for regulation of specific pathways

Feedback Inhibition in Ile Synthesis from Thr

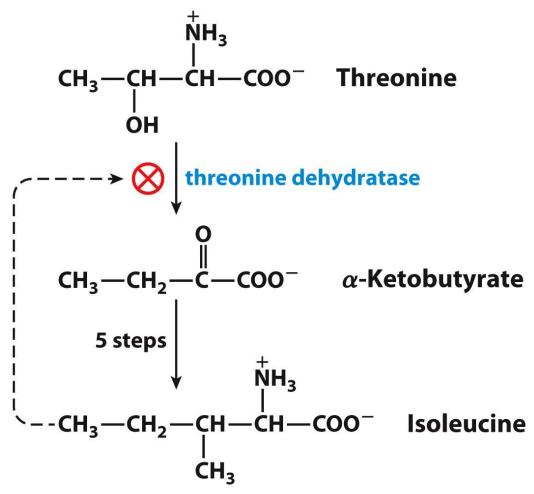


Figure 22-23
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Use of Isozymes Is Another Important Means of Regulation

Example: Asp can lead to Lys, Met, Thr, and Ile. Use of isozymes, all regulated by different effectors, allows *E. coli* to produce the amino acids when needed.

- Example: At step 1, isozyme A1 is inhibited if Ile is high, but not if Met or Thr are high.
- Only the A1 isozyme is inhibited by Ile at this step.

Important Metabolites Are Derived From Amino Acids

- Porphyrin rings (e.g., heme)
- Phosphocreatine
- Glutathione
- Neurotransmitters and signaling molecules
- Cell-wall constituents

Glycine or Glutamate Is the Precursor to Porphyrins

- Porphyrin makes up the heme of hemoglobin, cytochromes, myoglobin.
- In higher animals, porphyrin arises from reaction of glycine with succinyl-CoA.
 - In plants and bacteria, glutamate is the precursor.
- The pathway generates two molecules of the important intermediate δ -aminolevulinate.
- *Porphobilinogen* is another important intermediate.

Synthesis of δ -Aminolevulinate in Higher Eukaryotes

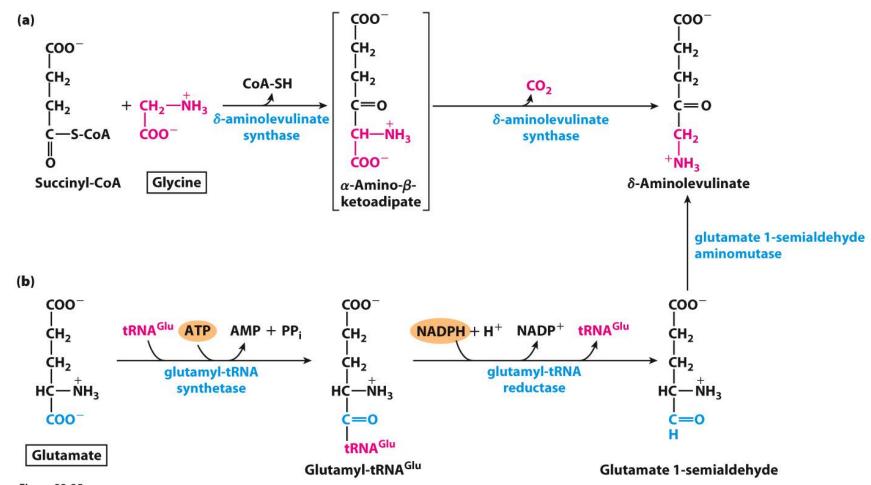
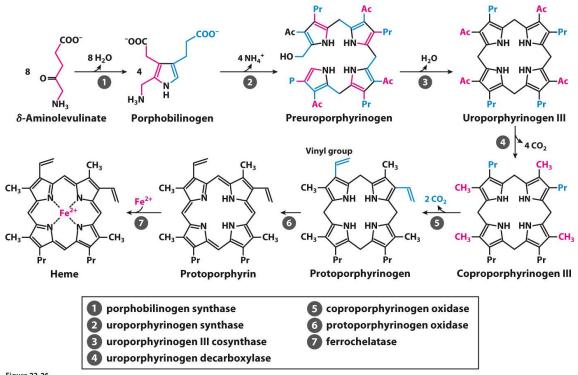



Figure 22-25

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Synthesis of Heme from δ -Aminolevulinate

- 1. Two molecules of δ -aminolevulinate condense to form porphobilinogen.
- 2. Four molecules of porphobilinogen combine to form protoporphyrin.
- 3. Fe ion is inserted into protoporphyrin with the enzyme ferrochelatase.

Defects in Heme Biosynthesis

- Most animals synthesize their own heme.
- Mutations or misregulaton of enzymes in the heme biosynthesis pathway lead to porphyrias.
 - Precursors accumulate in red blood cells, body fluids, and liver.
- Accumulation of precursor uroporphyrinogen I
 - Urine becomes discolored (pink to dark purplish depending on light, heat exposure).
 - Teeth may show red fluorescence under UV light.
 - Skin is sensitive to UV light.
 - There is a craving for heme.
- Explored as possible biochemical basis for vampire myths

Heme Is the Source of Bile Pigments

- Heme from degradation of erythrocytes is degraded to bilirubin in two steps:
 - Heme oxygenase linearizes heme to create biliverdin, a green compound (seen in a bruise).
 - Biliverdin reductase converts biliverdin to bilirubin, a yellow compound that travels bound to serum albumin in the bloodstream.
 - major pigment of urine (degradation to urobilin)
 - further degraded by intestinal microbiota to stercobilin

Formation and Breakdown of Bilirubin

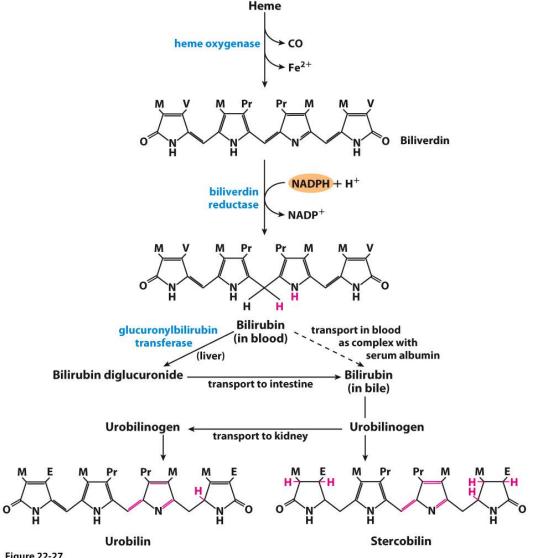


Figure 22-27
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Jaundice Is Caused by Bilirubin Accumulation

- Jaundice (yellowish pigmentation of skin, whites of eyes, etc.) can result from:
 - impaired liver (in liver cancer, hepatitis)
 - blocked bile secretion (due to gallstones, pancreatic cancer)
 - insufficient glucouronyl bilirubin transferase to process bilirubin (occurs in infants)
 - treated with UV to cause photochemical breakdown of bilirubin

Gly and Arg Are Precursors of Creatine and Phosphocreatine

 Phosphocreatine is hydrolyzed for energy in muscle.

COO CH₂
H₂
H₂
CH₂
H₂
H₂
CH₂
H₂
H₂
CH₂
H₂
CH₂
H₂
CH₂
CH₂
H₂
CH₂
CH₂
Fesonance stabilization
C=N-CH
NH₂
Phosphocreatine

Creatine

Phosphocreatine
$$^{2-}$$
 + H₂O \longrightarrow creatine + HPO $^{2-}$

$$\Delta G'^{\circ} = -43.0 \text{ kJ/mol}$$
Figure 13-15

Figure 13-15

Lehninger Principles of Biochemistry, Seventh Edition

© 2017 W. H. Freeman and Company

 Gly and Arg combine, then S-adenosylmethionine (Ado-Met) acts as a methyl donor.

Biosynthesis of Creatine and Phosphocreatine

Requires glycine, arginine, and S-adenosyl-methionine

Phosphocreatine can be phosphorylated by ATP for use as a stored energy source.

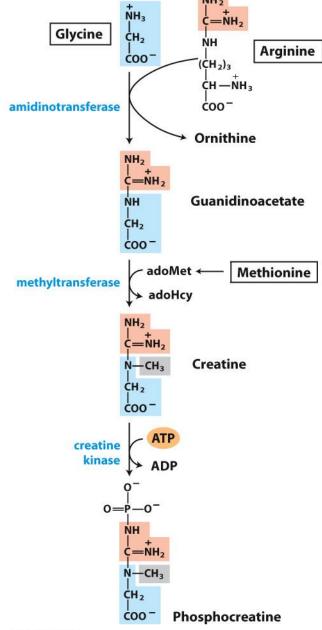
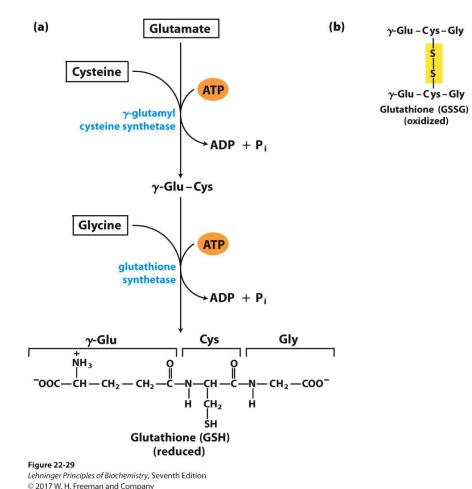



Figure 22-28
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Glutathione (GSH) Derives from Glu, Cys, and Gly

- GSH is present in most cells at high amounts.
- Reducing agent/antioxidant
 - keeps proteins, metal cations reduced
 - keeps redox enzymes in reduced state
 - removes toxic peroxides
- Oxidized to a dimer using disulfide bond (GSSG)

Some Neurotransmitters Are Derived from Amino Acids

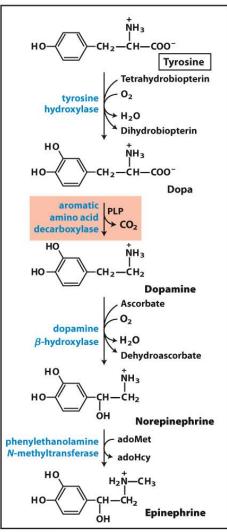
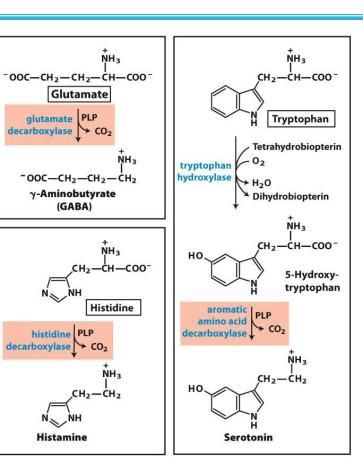



Figure 22-31
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

All are decarboxylated using PLP dependent enzymes.

Nucleotide Biosynthesis

- Nucleotides can be synthesized de novo ("from the beginning") from amino acids, ribose-5-phosphate, CO₂, and NH₃.
- Nucleotides can be salvaged from RNA, DNA, and cofactor degradation.
- Many parasites (e.g., malaria) lack de novo biosynthesis pathways and rely exclusively on salvage.
 - Compounds that inhibit salvage pathways are promising antiparasite drugs.

De Novo Biosynthesis of Nucleotides

- Approximately the same in all organisms studied
- Bases synthesized while attached to ribose
- Glu provides most amino groups.
- Gly is precursor for purines
- Asp is precursor for pyrimidines
- Nucleotide pools are kept low, so cells must continually synthesize them.
 - This synthesis may actually limit rates of transcription and replication.

Origin of Ring Atoms in Purines

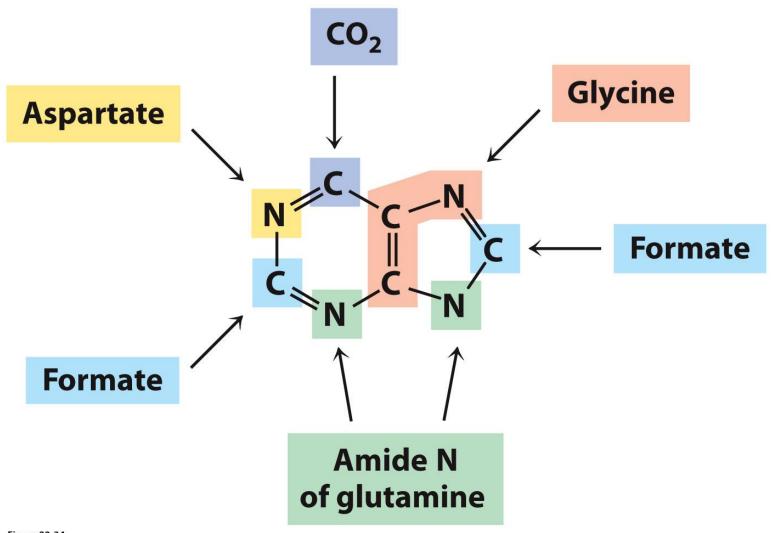


Figure 22-34
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

De Novo Biosynthesis of Purines Begins with PRPP

- Adenine and guanine are synthesized as AMP and GMP.
- Synthesis begins with reaction of 5-phosphoribosyl 1pyrophosphate (PRPP) with Glu.
- Purine ring builds up following the addition of three carbons from glycine.

• The first intermediate with a full purine ring is inosinate (IMP). ♀

Regulation of Purine Biosynthesis in *E. coli*Largely Consists of Feedback Inhibition

Four Major Mechanisms

- Glutamine-PRPP
 amidotransferase is inhibited by
 end-products IMP, AMP, and
 GMP.
- 2. Excess GMP inhibits formation of xanthylate from inosinate by *IMP* dehydrogenase.
- 3. GMP and AMP concentrations inhibit phosphorylation steps.
- 4. PRPP synthesis is inhibited by ADP and GDP.

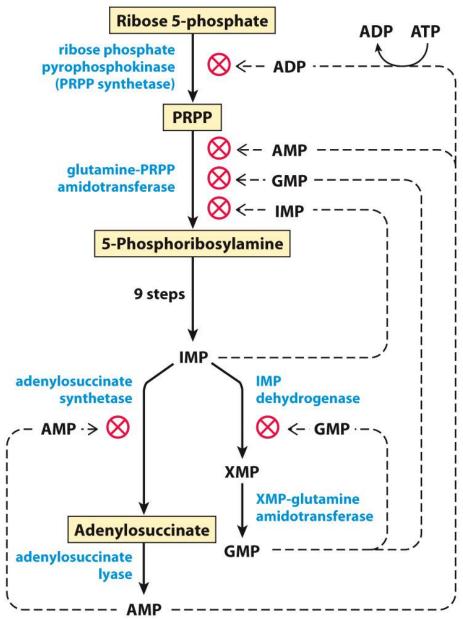


Figure 22-37

Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

De Novo Synthesis of Pyrimidine Nucleotides (1)

Unlike purine synthesis, pyrimidine synthesis proceeds by first making the pyrimidine ring (in the form of orotate) and then attaching it to ribose 5-phosphate.

Aspartate and carbamoyl phosphate provide the atoms for the ring structure.

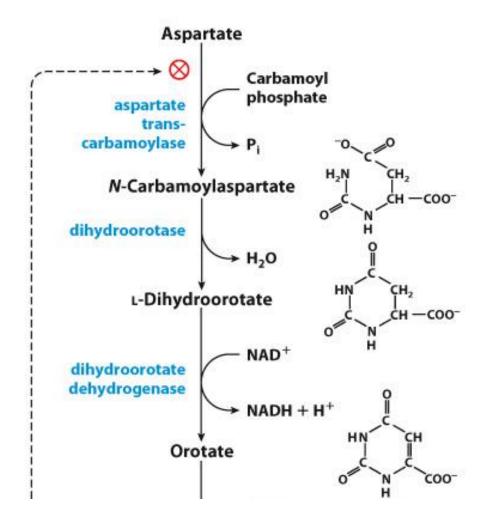


Figure 22-38
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

De Novo Synthesis of Pyrimidine Nucleotides (2)

After addition of ribose-5phosphate via PRPP, the resulting nucleotide (orotidylate) is decarboxylated to form uridylate (UMP), the first possible pyrimidine.

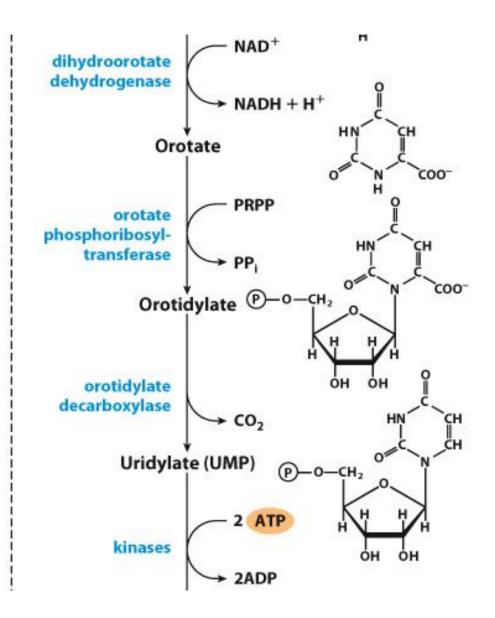


Figure 22-38
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

De Novo Synthesis of Pyrimidine Nucleotides (3)

UMP is phosphorylated to UTP.

After formation of UTP, amination can convert UTP to CTP.

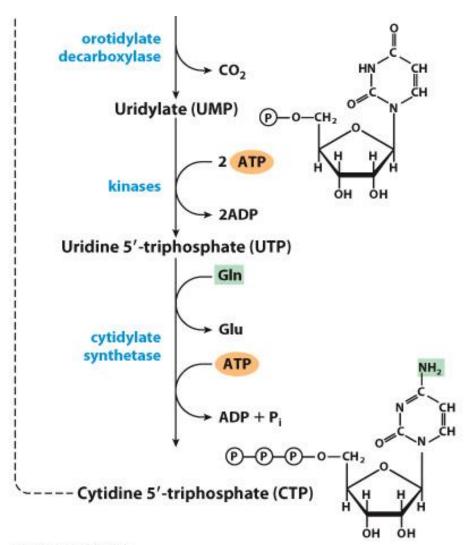
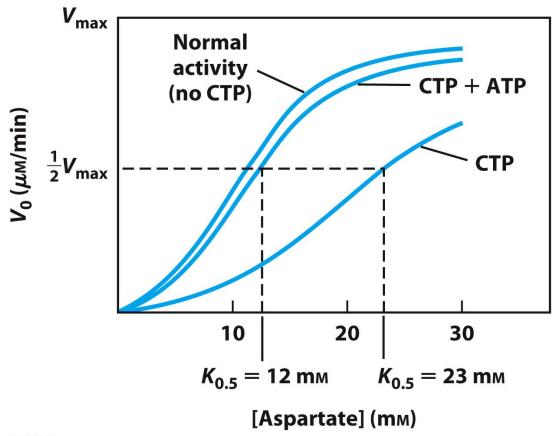



Figure 22-38

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Regulation of Pyrimidine Biosynthesis Is Also via Feedback Inhibition

 ATCase is inhibited by end-product CTP and is accelerated by ATP.

Ribonucleotides Are Precursors to Deoxyribonucleotides

- 2'C-OH bond is directly reduced to 2'-H bond... without activating the carbon!
 - catalyzed by ribonucleotide reductase
- Mechanism: Two H atoms are donated by NADPH and carried by proteins thioredoxin or glutaredoxin.

Folic Acid Deficiency Leads to Reduced Thymidylate Synthesis

- Folic acid deficiency is widespread, especially in nutritionally poor populations.
- Reduced thymidylate synthesis causes uracil to be incorporated into DNA.
- Repair mechanisms remove the uracil by creating strand breaks that affect the structure and function of DNA.
 - associated with cancer, heart disease, neurological impairment

Catabolism of Purines

- 1. Dephosphorylation (via 5'-nucleotidase)
- 2. Deamination and hydrolysis of ribose lead to production of xanthine.
- 3. Hypoxanthine and xanthine are then oxidized into uric acid by **xanthine oxidase.**

Spiders and other arachnids lack xanthine oxidase.

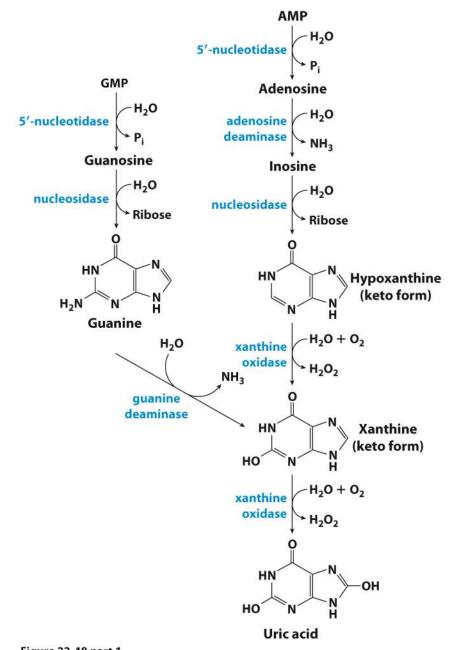


Figure 22-48 part 1

Lehninger Principles of Biochemistry, Seventh Edition

© 2017 W. H. Freeman and Company

Conversion of Uric Acid to Allantoin, Allantoate, and Urea

Degree of further oxidation of uric acid is organism dependent.

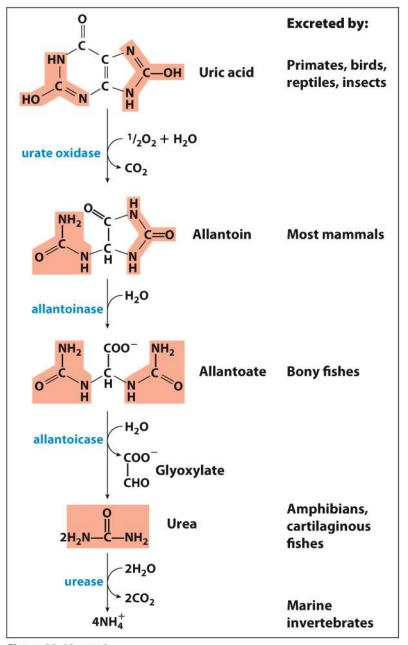


Figure 22-48 part 2

Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Excess Uric Acid Seen in Gout

- Painful joints (often in toes) due to deposits of sodium urate crystals
- Primarily affects males
- May involve genetic under-excretion of urate and/or may involve overconsumption of fructose
- Treated with avoidance of purine-rich foods (seafood, liver) or avoidance of fructose
- Also treated with xanthine oxidase inhibitor allopurinol

Allopurinol Inhibits Xanthine Oxidase

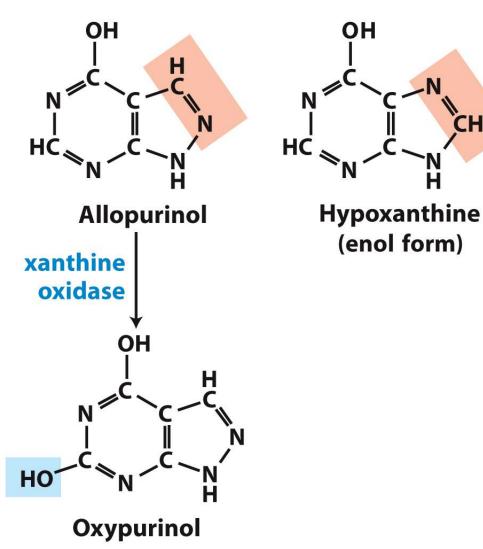


Figure 22-50

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Catabolism of Pyrimidines

- Leads to NH₄⁺ and urea
- Can produce intermediates of CAC
 - Example: Thymine is degraded to succinyl-CoA.

Figure 22-49
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Purine and Pyrimidine Bases Are Recycled by Salvage Pathways

- Free bases, released in metabolism, are reused.
 - Example: Adenine reacts with PRPP to form the adenine nucleotide AMP.
 - catalyzed by adenosine phosphoribosyltransferase
- The brain is especially dependent on salvage pathways.
- The lack of hypoxanthine-guanine phosphoribosyltransferase leads to Lesch-Nyhan syndrome with neurological impairment and fingerand-toe-biting behavior.

Many Chemotherapeutic Agents Target Nucleotide Biosynthesis

- Glutamine analogs: azaserine, acivicin
 - inhibit glutamine amidotransferases
- Fluorouracil
 - converted by salvage pathway into FdUMP, which inhibits thymidylate synthase
- Methotrexate and aminopterin
 - inhibit dihydrofolate reductase (competitive inhibitors)

Antibiotics Also Target Nucleotide Biosynthesis

- Allopurinol, and so on
 - studied against African sleeping sickness (trypanosomiasis)
 because the trypanosomes lack enzymes for de novo nucleotide synthesis
- Trimethoprim
 - inhibits bacterial dihydrofolate reductase but binds human enzyme several orders of magnitude less strongly