Physics 116C Solutions to Homework Set #3 Fall 2011

1 Boas, problem p.594, 12.16-8

Find the solutions of the followind differential equation in terms of Bessel functions:

y'+ay=0: (1)
This is an equation of the form
1—-2 2,22
Y+ ay' + | (bext™H2 + a4 xzp ¢ y=0 (2)
with
1 —2a=0, (be)? =1, 2(c—1) =1, a2 —p* =0 (3)
or 3 1
1
a:§’ 6257 b:—’ p:§ (4)
Then the solution of () is
y =27, 5(22%?) (5)
The general solution is then
y =210 3(32%) + BNy (32°7)] (6)

2 Boas, problem p.597, 12.17-2

From problem 12.9, Jy /5(z) = \/2/mzsinx. Use the recursion relation L27PJy(2)] = —27PJpi1(2) find
J3/5 and J5 /5 and verify the formulas for the spherical Bessel functions in terms of sinz and cos z:

We have
d 2 d |sinz 2 J|cosx sinz
1/2 —1/2
J3/2——x/%[x /J1/2]_— _ﬂ'w%[ x }__ _7Tx|: r  x2 ] (7)
d 2 d |cosxz sinz 2 sinx coSxT  CoST sinx
3/2 —3/2 /
J5/2 —a® %[x /J3/2] _7Tx3%|: 22 _?} _ﬂ'wg {_ 22 -2 3 3 +3 z }

Now we want to verify that

inle) = VBT ) =" (120 ) " (L22) ®)

x dx x

o) =gt =g e = =4 () ()¢ @
i (z) = L S /gw cosx sinx| [cosz sinx :_wli sinz
J1 T\ 9732 T ox\ 7 . pronl Hl | = — . :
; 77 T |2 sin z cos T sin z sinx coS T sin z
jz(x):\/%J5/2:_\/% ;m?’[— x2 -3 x3 +3 1‘4:|:|:_ x -3 x2 +3 x3:|: (10)
1d\?/(sinz 1d d? sin
— .2
T\ zde “\Trde T a2 11
v ( wdx) < x > ( wdx+dx2>< x > (11)

Formula (8]) is then verified.

So we write down
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3 Boas, problem p.597, 12.17-4

Using I, () = i PJp(ix), Ky(z) = %z’p*le(,l)(ia:) and the results stated in problem 17.2 and 17.3 for J; /

and Y7 /o show that
2 T _.
Iy ja(x) =1/ %smhaj and Ky)(r) = 1/%6 : (12)

We calculate the hyperbolic Bessel functions as

I =i 1/? = \/ \/ — sinh 1

12(x) =17 /2Ty (iw) =i — sin(iz) sm x (13)
_ .32 (1) _

Ky jo(x) 22 H1/2 i) <\/ — sin(ixz) — iy/ — cos(ix ) (14)

7T —x
= —4/ 2x(smh:ﬂ —coshx) = \/%e

after using sinhz = —isin(iz) and cosh z = cos(iz).

4 Boas, problem p.598, 12.17-12
Obtain the following recursion relation for the spherical Bessel function:

X

Jn—1(2) + jns1(z) = 20+ 1) (15)

This follows directly from the definition of the spherical Bessel function and the recursion relation for the
Bessel functions of the first kind:

2
Tyt + Jye1 = L) (16)

1)+ a0 = ) 2 (Tams )+ Jaszs () = o 2 ) = n e 2 )

5 Boas, problem p.600, 12.18-5

Use the recursion relation for J and N and Problem 18.4 to show that

2
I (@) Npg1(2) — Jnt1(2) Ny (z) = I (18)
The quoted result from Problem 18.4 is
J,N,— TN, = = 19
pip = Jpflp = 0 (19)
and we use the recursion relations (holding for both N and J)
Jp—1 = Jpp1 =2J] (20)

We prove it by induction: first we show that it holds for n = 0, then we show that if it holds for n — 1 it
also does for n, completing the proof:
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e Starting from n = 0, we want to prove

2
JoN1 — JiNy = —— (21)

™

This is easy: we have J; = J_; —2J) = —J; —2J) = J; = —J|, so that

2
JoN1 — J1 Ny = —J()N(/) + J(/]NO = _7T_:E (22)

e We assume that 5
In—1(x)Np(x) — Jp () Np—1(z) = — (23)

Then, using (20), we have

Jn(2) Npg1 (@) — Jng1(2) N () = Jn(2) Np—1(z) — 2Jn($)erz($) — Jn—1(2) Ny () + 2J7IL($)Nn(33) =

and the proof is complete.

6 Boas, problem p.600, 12.18-6

For the initial conditions 8 = 6y, § = 0 show that the constants A, B of Boas, page 598, are given by

A= —%U%H()Ng(uo), B = %U%H()Jg(uo) : (25)
where u = bl'/? = 2@11/2.
The solution to the pendulum differential equation is given as
0 = Au=tJy(u) + Bu"'Ny(u) (26)
Differentiating and using the recursion relations, we also have
df -1 -1
e —[Au""Ja(u) + Bu™ " Na(u)] (27)
But for u = ug we have 6 = 6, 6 = 0:
o _dbdt 5 1 _giti—o (28)

du  dtdu  Lpi=1/2

Then, we have

0y = AualJl(’LL(]) + BualNl(’LL(]) A= —BNQ(’LLQ)/JQ(U())
0 = Aug ' Jo(uo) + Bug " Na(up) B = ugboJa(uo)1/[N1(uo)J2(uo) — Na(uo)J1(uo)]
By using ([I8]) for n = 1, we find the constants A and B
rul rul
B = T@QJQ(UQ), A= —TeoNQ(UQ) (30)
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7 Boas, problem p.603, 12.19-1

We are going to prove eq. 19.10, p. 602; given the Bessel function of order p, J,(x) we have
x(xJ)) + (a?x? — p*)Jy(ax) =0 (31)
w(ady) + (8% — p*) Jp(Bz) = 0 (32)
for any value of a, 8. Calling v = J,(ax) and v = J,(Bx), we get

1 1
+ (a? — 62)/ zuvdr =0 (33)
0

(vou’ — uzv’)
0

Now, if we assume that « is a zero of the Bessel function, we have u(1) = J,(a) = 0 and

Jp(B)ad, (o) + (a? — 5?%) /01 ruwwdr =0 = /01 zuv dr = %ﬁé@ (34)
For 8 — «, this is / /
/Ola:uv dx = 5%%&]”@ =17 %() (35)
We can express this result in other forms using the recursion relation:
(@) = =2 0y(@) + Jpr (@) = T Jp(@) = Tpia(a) (36)
As ais a zero, we have Jj(a) = Jp_1(a) = —Jpy1(), and
/01 asuwvde = $J2 (o) = $J2, () (37)

8 Boas, problem p.603, 12.19-6

By problem 19.5, fol Ny jo(ax)Nyjo(Br)dr = 0 if o, B are two different zeros of Nyy(x). We can write
Nijo(z) as
T cos

%Nlﬂ(x) =

- (39)

so that its zeros are oy, = (n + %) 7. So we have

/1 TNy j2(0n®) Ny jo (i) dov = /1 2 cos[(n+3)mz] cos[(m+3)mx]de =0 for n # m (39)
0 0

1 1
T /0 Vam
We have the proved that the functions cos(n + %)THL' are a set of orthogonal functions on (0,1). We can
find the normalization constant using (B35)):
2
x:an]

1 1
2 ! ! 1[d [ [2
/0 TNy jo () Ny jo(anz) d = /0 p— cos[(n + 5)mx] cos[(n + 5)mx] dr = 3 [% < — cos x)
1
m:an] = o (40)

1 [1 < ,
= — |- | sinzvx — cos z——=
T |
The orthonormal functions are then

17)

1 cos[(n + 3)mz]. (41)

V2
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9 Boas, problem p.604, 12.20-6

Evaluate the following limit:

lim 2, (2)yn(z) = lim (ﬁ + 0<w"+2)> (—w + O(wl‘”>> (42)
2n -1 1
T @n+DI T 2n+1 “3)

10 Boas, problem p.606, 12.21-3

Find one solution of the differential equation by series and then find the second solution by the method
of reduction of order :

22y + 2%y — 2y =0 (44)
Inserting the series y(z) = > 7 ap,z™*®, we have
o0 o0 o0
Z(n +8)(n+s—Da,z" ™ + Z(n + 8)apx" Tt — 2 Z anx" 5 =0. (45)
n=0 n=0 n=0

Shifting the index on the second sum, we obtain:

Z[(n +5)(n+s—1)—2a,z"" + Z(n +s—1)ap_12"™* =0. (46)
n=0 n=1

For n = 0 we obtain the indicial equation, s(s —1)ag —2ap = (s+1)(s —2)ag = 0, which yields the indicial
indices s = —1 and s = 2.

For s = —1, the recurrence relation obtained by setting the coefficient of x
is given by:

"t5 to zero forn =1,2,3,. ..

n(n—3)a, = —(n—2)ay—1, forn=1,2,3,... (47)

It follows that aq = —%ao and ag = 0. When we put n = 3 in ({71, we obtain the equation 0 = 0. Thus,
a3 is a free parameter that is not determined by (@T). However, it is a simple matter to check that all

higher coefficients a4, as, ag, ... can be determined from a3. You can easily check that:
6&3(—1)"
= f =0,1,2,3,... 48
an43 (’I’L—F3)(7’L—|—2)’I’L'7 or n y Ly 4y 9, ( )

Thus, the series solution obtained is:

= (1)

2 6a
y(w) = —300 (1_E> 2 (n+3)(n+2)nl" (49)

n=0

Thus, by employing s = —1, we have already obtained two linearly independent solutions—one propor-
tional to ag and one proportional to as.

What would have happened if we had obtained the recurrence relation corresponding to s = 27 It is
straightforward to check that the resulting recurrence relation is:

nn+3)a, = —(n+ 1)ay—1, form=1,2,3,... (50)
which yields .
= f‘;o)((;ﬁ ok forn =0,1,2,3,. .. (51)
)
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Thus, for s = 2 one obtains the series solution

6(10:172 Z (n (_1)";1;n (52)
n=0

+3)(n+2)n!”’

which simply reproduces the second linearly independent solution obtained in ([@9]). This is not surprising,
since the recurrence relation given by (A7) starting from n = 4 is precisely the same relation as ({7)
starting from n = 1 [check this by letting n — n + 3 in ([@7))]. In the class handout on series solutions
to differential equations, this corresponds to case 3 in which the indicial indices differ by an integer, but
neither series solution involves a logarithm.

Boas instructs us to complete this problem as follows. First identify the simpler solution as the one

proportional to ag in ({9,
2

yi(z) =1- e (53)

Instead of finding the second solution by explicitly evaluating the sum that multiplies ag in ({@9]) [or
equivalently, evaluating the sum in (52])], Boas suggests that we make use of the “reduction of order”
method for obtaining the second linearly independent solution. In the class handout on the Wronskian, I
showed that for the differential equation,

ao(x)y" 4 ar(x)y’ + az(x)y =0, (54)
the reduction of order method yields

e dx, (55)

Y2 () = 91(517)/

where the Wronskian is given by Abel’s formula,

W (x) :cexp{— / a(z) dm} (56)

ap(x)

and c is a constant, which we can ignore in this calculation since it can be reabsorbed into the definition
of (). In the present problem, ag(z) = a1(z) = 22, and we immediately obtain W (z) = e~®. Hence,

wr=(1-3) [ (0-2) - (-2) [ 5
- <1_%> <;J_ri>e_w:—<1+§>e—x‘

The indefinite integral above can be computed by the substitution y = x — 2 followed by an integration
by parts. Luckily, the indefinite integral [ dy(e¥/y) drops out of the final answer, and the end result is
rather simple.

For fun, let us check that the same result can be obtained by evaluating the sum proportional to ag
in ([@9). Define the function:

o (_1)n$n+3

f@)=2, (n+3)(n+2)nl"

(57)
Then, taking two derivatives, we obtain:

X 1 \n,n+l
Py =3 E e, (58)
n=0 :
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after recognizing the power series for e~*. We now integrate twice to get back to f(x),
f(z) = / f'(@)de = —(z +1)e™" + C1,

flz) = /f/(x)dx =(x+2)e "+ Ciz+ Cs.

The constants of integration C; and Cy can be determined by noting that the first term in the power
series of f(z) is O(z%). Noting that

(z+2)e " =(z+2) [l —z+ 2> — L2 + O@")| =2 -2+ i2° + O(a?), (59)
it follows that we must take C7 = 1 and Cy = —2. Thus, we conclude that:
fl@)=(x+2)e " +2—2. (60)

Indeed the first term of the power series given by (57 is %az?’ as required. Using this result in ([@9]), we see
that the term proportional to 6ag is

2 2
<1+—>e—x+1——. (61)
x x
Hence, ([@9) can be rewritten as:
1 2 2 —x
y(z) = (6ag — 3ag) (1 — p +6as ( 1+ e (62)

Thus, we again confirm that the two linearly independent solutions are:

yi(z) =1— % and  yo(z) = <1 + %) e . (63)

11 Boas, problem p.606, 12.21-9

Solve the differential equation by Frobenius’ method and then find the second solution using Fuchs’s
theorem:

2%y + (2% — 3z)y + (4 — 2x)y = 0. (64)
We write the solution as a series Y, _, a,2""*; the equation becomes

Z(n +8)(n+s— 1a,z" " + Z(n + 8)(ana" T — 3a, ") + Z(4ana:"+s — 2a,2" 1) = 0(65)

Z:E"+8 {(n +3s)(n+s—1ay, + (n—1+s)an—1 — 3(n + s)a, + 4a, — 2a,—1| = 0(66)
for n = 0 we find the indicial equation
s(s—1)—35+4=0 = s> —4ds+4=0 = 5=2 (67)
The series starts with a 22 term; for s = 2, the relation between the a,’s becomes
[(n+2)(n+1) = 3(n+2) +4lay, +[(n+1) = 2a,_1 =0 = n%a, + (n—1)a, =0 (68)
for n = 1, we have a1 = 0, implying a,, = 0 ¥n > 1. The first solution is then

Si(z) = apz? (69)
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Because the roots of the indicial equation coincide, by Fuchs’s theorem we expect the other solution to be
of the form

y(z) = S1(z) Inz + So(x). (70)
We now want to find the unknown series S(z) = Z bpx™: plugging ([70) in (64]),
1 1
y':Silnx—l—Slg—l—Sé, =S/ Inz + Sl 51P+S§’ (71)
2257 — 51+ (x — 3)S1 + 3:252 + (2? - 3:13)52 + (4 —2x)Sy = 0. (72)
ZJE [ n(n —1)b, + (n — 1)b,—1 — 3nb, + 4b,, — 2bn_1} = apx? — dagz® — ag(2® — 32%) = —apa®
Here we find the relation
0, n>3
(n* —4n+4)b, + (n — 3)by—1 = Cap, m=3 (73)
We can rewrite the relation as b,, = = 23) bp—1 = %bn_g = .... The first terms of the series
are ) ) )
Sa(x) :—a0x3+a01x4—a03.3'2x5+a0mx6+-~ (74)
Then the general solution to (64]) is a linear combination of the two particular solutions:
1 1 1
y(x) = Az®> 4+ B |2°Inz — 23 + o z® + x® 4. (75)

2.2 3-3! 44!

12 Boas, problem p.618, 12.23-26
Verify Bauer’s formula % = >"0°(2l + 1)i'j;(z) P (w).

We can write the Legendre series, e = >"7° ¢, P;(w). The coefficients ¢; are given by

/ d’UJ ezwal Cm/ del ) 2l i 1C 2l + 1 / d ezwal (76)

We can see ¢ as a functlon of z, y(x) = ¢;. Then we can find y and y”:
20+ 1 20+ 1
v =25 [ e nw, @ =200 [ aw e (77

so that they satisfy spherlcal Bessel’s equation

22y 4 2xy + 22 =11+ 1))y =0: (78)
1 1

/ dw ™" Py(w)[—z*w? + 2izw + (2* — (1 4+ 1))] = / dw ™ Py(w) [z (1 — w?) 4 2izw — 1(1 + 1)]

—1 -1

We look at the first two terms in this expression:
1 1 2 1
. 42 . :
/ dw [#2(1 — w?) + 2izw]|Pe™™ = —/ dw (1 — wz)PZ(w)Fem” —l—/ dw 2izwP e =
w

-1 -1 -1
1

= —(1-w?)P(w )d(fu eim” 1 + /1 dw (—2wP, + (1 — w2)Pl’)dieim” + /_1 dw 2izwPe™ = (79)

/ dw (—2izw) Py(w)e™™ / dw (1 —w dd frw / dw 2izwP e = (80)

- (-] / dwl(1 =) P (51
8
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So that now equation (78] reads

1
/ dw "™ [di[(l —w?)P]] + 11+ 1)P(w)| =0 (82)
-1 w

where the expression is zero because we have Legendre’s equation in the brackets. Because ¢; satisfies the
spherical Bessel equation, it is given by a linear combination of the Bessel functions:

a = Aji(z) + Bry(z) (83)

We can compute the ¢;(x) integral for small values of x by expanding e**%

L L3 (izw)™ itgt 1
ate) =25~ [ (Z( ) Pz(w)> aw =220 [ wlpw) + 06 (s4)

2 =0 n' 2 -1

To calculate the integral, we use Rodrigues’ formula for the Legendre polynomials:

s L LyAETI+D) 2.
/dwal /dww2lz'dl( - 2l/ dww® 1) =5 re+3) @+

(85)
where we integrated by parts as we did in Homework set #1, Problem 9. So we found that
!
— 1T 142
c(z) = (20 + 1) N + O(x"™) (86)

but this is also the expansion of j;(x) for small x; thus, ¢ is not singular at the origin and can be written
in terms of j;(x). Putting everything together, we have found that

:ZQPZ Z (21 + 1)l jy (2) By (w). (87)
1=0

=0
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