Signals and Systems

Quick Review
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Signal Classifications

* Definition: A signal may be defined as a single valued function of time that
conveys information.

* Depending on the feature of interest, we may distinguish four different
classes of signals:
* Periodic and Non-periodic Signals
* Deterministic and Random Signals
* Analog and Digital Signals
* Energy and Power Signals
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Classification of Signals: Periodic and Non-periodic

A periodic signal g(t) is a function of time that
satisfies the condition

g(t) = g(t +Ty), vt.
The smallest value of T, that satisfies this
condition is called the period of g(t).
Example: The sinusoidal signal x(t) =
cos(2m(5)t) is periodic with period Ty = 1/5. 0 0.2 0.4 0.6 0.8 s
The reciprocal of the period is the fundamental t

frequency f, = Ti In this example, fo = 5 Hz.
0

Example: The saw-tooth function shown is
another example of a periodic signal. A

m(t)z%t, b <E<T,

If Ty, = 0.001 sec, then the fundamental

frequency fo = 1000 Hz -Ty 0 Ty
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Non-periodic Signals

* A non-periodic signal g(t) is one for which there does not exist a T, for which
the condition g(t) = g(t + T,) is satisfied, i.e., the signal does not repeat
itselfeach T, .

A Exponential Function
Rectangular Function
A
0 0 0
. ’ 0 1 2 3
g(t) = {A’ 0=t S_T (t) = Aexp(—at), 0<t< o
0, otherwise gt) = 0, t<0
A
2 > A t>0
> ) = 1A
Step Function Au(t) 9(t) {0 t<O0
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Deterministic and Random Signals

* A deterministic signal is one about which there is no uncertainty with respect to its
value at any time. It is a completely specified function of time.

* Deterministic Signal Example: x(t) = Ae % u(t) ; A = 1 and a is a constant.

* Arandom signal is one about which there is some degree of uncertainty before it
actually occurs. (It is a function of a random variable)

 Random Signal Example: x(t) = Ae~%fu(t); ais a constant and A is a random
variable with the following probability density function (two possible realizations shown below)

11 0<ac<l
fala) = {O otherwise

* Random Signal Example: x(t) = cos(2mf.t + ©); f. is a constant and © is a random
variable uniformly distributed over the interval (0, 2rr) with the following probability
density function (pdf).

1 0<@<? 0.723 0.5812
p— = S 4T
fo(8) = {2n |
0 otherwise
x(t) = cos2rf.t +30) x(t) = cos(2rf.t + 63) "o 1 2 3 T o i 2 3
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Analog and Digital Signals

* In an analog signal the amplitude takes on any value within a defined range
of continuous values.

* Example: The sinusoidal signal x(t) = Acos 2mfyt, —co < t < o0, is an
example of an analog signal.

* A digital signal : The values assumed by the signal belong to a finite and
countable set.

* Example: The sequence x[n] shown below is an examples of a digital signal.
The amplitudes are drawn from the finite set {1, 0, 2}.

1 : : X[l“l]

2.0
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Analog and Digital Signals: Continuous Valued and Discrete Valued

Analog & continuous Digital & continuoUs continuous time discrete
) ) * amplitude (PNRZ)
Continuous time -
continuous amplitud
gt ;

010011011100110110

Iy I t —>
Digital & discrete giscrete time discrete
£ amplitude o

Analog & discrete

Discrete time 11

oo |||l RiINNRINE
iill [T 0T

| D 010011011100110110
n String of values
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Average Value of a Signal

* The average value of a signal g(t) over an observation interval of 2T

centered at the origin is:

1 T
Jav =37 J_p9(®) dt

* The average value of a periodic signal g(t) is

A

-Ty 0 Ty

B = TiofoTO g(t) dt; Ty is the period; f; is the fundamental frequency.

* Example: Find the average value of the sinusoidal signal
* x(t) = Acos 2mfyt , —o0o < t < @

. 1 T,
* Solution: x4, = T—fooAcos 2m fotdt = —
0

//

-T 0

Asin2nfot T,
ZTEfO 0o

g(t)

x(t)
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Energy and Power Signals

* The instantaneous power in a signal g(t) is defined as that power dissipated in a 1-
Q) resistor, i.e.,

p(t) = [g(®)|?
* The average power over an observation interval of 2T centered at the origin is:
.1 (T

Pay = lim — [ ]g(6)|* dt

* The total energy of a signal g(t) is
: T

E = lim [ 19(0)] dt

* Asignal g(t) is classified as energy signal if it has a finite energy, i.e,0 < E < oo,

* A signal g(t) is classified as power signal if it has a finite power, i.e, 0 < P,,< 00,

* The average power in a periodic signal g(t) is

L TiofoTO |lg(t)|* dt ; T, is the period; f; is the fundamental frequency.
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Energy and Power Signals
* Example: Consider the Exponential Pulse

g(t) = Ae *tu(t). Is it an energy or a power signal? A N Exponential Function
Solution: Let us first find the energy in the signal
_ (P a2 p—2at gy _ g2 %o _ A%
E—fer dt=A — 0|—2a.

Since E is finite, then g(t) is an energy signal. —

* Example: Consider the Rectangular Pulse
A
A O0<t<T | .
g(t) = Is it an energy or a power signal?
0, 0.W . .

* Solution: Let us first find the energy in the signal

E = f; A% dt = A®7. This is an energy signal since E is finite.
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Energy and Power Signals
Example: Consider the Periodic Sinusoidal Signal

* g(t) = Acos(2mfyt), —oo <t < oo; Is it an energy or a power signal
* Since g(t) is periodic, then

T, T,
P, = TiofooAz cos® wt dt ——f C’(HCOS 290 =

(_) ( ) :;’Pav__

—
—

—
>

Example: Consider the Periodic Saw-tooth Signal

* Here, P,, is finite. Therefore, g(t) is a power signal. \ /\ /\ /\

& gi(l) = Tit, 0 <t <T,.lsitan energy or a power signal? L
0
* Let us evaluate the average powerin g(t) g(t)
ep —L1(ToA 24 _ 1A T, AT A7 *
Pa”_ Othdt LES 2w  3uf 3"
* Here, Pav is finite. Therefore, g(t) is a power signal.
-T, 0 T,
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Energy and Power Signals
Example: The Unit Step Function g(t) = Au(t)

* This is a non-periodic signal. Let us first try to find its energy
E=["A%dt > o

* Sine E is not finite, then g(t) is not an energy signal. To find the average
power, we employ the definition g(t)

P 5 A
Pov = .Il,l_)rg)ﬁf_rlg(t)l dt,

| T 0 ] |
| |
* where 2T is chosen to be a symmetrical interval about the origin.
. 1 T . A’T A2
. P, =lim— [ A%*dt = lim =
T 2T 70 T 2T 2

* So, even-though g(t) is non-periodic, it turns out that it is a power signal.

* Remark: This is an example where the general rule (periodic signals are
power signals and non-periodic signals are energy signals) fails to hold.
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Fourier Series
Let g(t) be a periodic function of time with period T, = fl such that

0
. : ; oy T,
* The function g(t) is absolutely integrable over one period, i.e.,, foo lg(t)] dt <

* Any discontinuities in g(t) are finite (the amount of jump at points of discontinuity is finite).

» g(t) has only a finite number of discontinuities and only a finite number of maxima and minima in the
period

When these conditions (called the Dirichlet’s conditions) apply, g(t) may be expanded in a
trigonometric Fourier series of the form

gt) ~ay+ Y,-,(a, cosnwyt + b, sinnw,yt), where,

. g = TlofoTog(t) dt ; (dcor average value) : / g(®) /
2 rl y :
. an:T_Ofoog(t)COSleotdt 4 / 0 / ;T t
: 110
* by, = ;—OIOTOQ(t) sinnwgt dt : : : :

* These conditions are sufficient (but not necessary)
* In this representation, we can associate with g(t) a FS. This does not mean equality.
* At points where g(t) is continuous, the FS converges to the function g(t)

* At a point of discontinuity t,, the FS converges to % (g (to —) + g(t, +))
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Coefficients of the Fourier Series
c g(t) ~ap+ 2h-1(a, cosnwot + b,, sinnwyt), (1)

* Orthogonality Relations: You can easily verify the following relations:

;
%, = n=m
* J,° cosnwyt cosmw,t = {2 ,
0 n+m

B .
* J,° sinnw,t sinmw,t

1
r——
N'é‘l
Il
=

0 1 5E

B .
. fo"sm nwyt cosmwyt = 0 for all n and m.

* To get a,, we integrate both sides of (1) with respect to t over one period.
T T & :
. foo g)dt ~ foo a, dt + fOO[ -_1(a,, cosnwyt + b, sinnw,yt)] dt

* Result: qy = TlfOTo g(t) dt ; (dcor average value)
0

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Coefficients of the Fourier Series
c g(t) ~ap+ 2h-1(a, cosnwot + b,, sinnwyt), (1)

* To get a,,, we multiply both sides of (1) by cos mwgt, integrate over one period and use
the orthogonality relations.

* fOTO g(t) cosmwotdt ~ fOTO Ay COS Mwot dt
+ fOTO [2n=1(a, cos nwyt + b, sin nwyt) cos mwyt] dt
2 R
* Result: a, = T—Ofo" g(t) cosnwyt dt

* To get b,,, we multiply both sides of (1) by sin mwt, integrate over one period and use
the orthogonality relations.

. fOTO g(t) sinmwytdt ~ fOTO a, sin mwyt dt
+ fOTO 27 1(a, cos nwyt + b, sinnwyt) sinmw,t] dt

* Result: b, = TiofOT" g(t) sinnwyt dt
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Example: Existence of Fourier Series

* The Dirichlet conditions apply to the waveform given below.

« The function g(t) is absolutely integrable, i.e., fOTO lg(t)| dt < oo.

* The function g(t) is continuous over the period (no discontinuities)

* Has one maximum and one minimum within one period.

* Therefore, the FS exists. Moreover, the FS converges to g(t) at all points. That is,

« g(t) = ag+ X,-1(a, cosnwyt + b,, sinnwyt); Note the equality sign

g(t)
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Example: Existence of Fourier Series

» Let g(t), defined over one period, be given by

_|I-Im(1-0v),0<t<1
g(t)_{l, 1<t <2

. ltin}(g(t)) = —In(l —t) - o
* the function g(t) has a discontinuity. However, this discontinuity is infinite.

* Therefore, the FS does not exists
Function is

unbounded at t=1.
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Example: Fourier Series Coefficient Evaluation

* Example: Find the trigonometric Fourier series of the periodic rectangular signal defined
over one period T as:

9(6) = { 0, otherwise
* Solution: The FSis given as g(t) ~ ay + 2n=1(a, cos nwyt + b, sin nw,t)
_1 (To/2 _1 (To/4 _ Dirichlet conditions apply.
s ap=—) . ,g®)dt=—]""" Adt=A/2 PRy
o Toz ;oﬁ ';'of To/4 — , Therefore, a FS exists
e p = 2 (To ey de = 2 (T 4 sine) dt =
b, = N _To/zg(t) sin( - Lidi= — f_T0/4A sin( = t)dt=0
o e i - 2 rTol4 s
an = - _To/zg(t) cos( = t) dt = - f_To/4A cos( = t)dt
( g(t) .
=, n=1,5,9,.. — = = —
*ad, = < o : : : :
e n=3711,.. - | —_—
0, n=246.. /2o To/2
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Example: Convergence of Fourier Series
* The first four terms in the expansion of g(t) are:

o Hl) = §+ %{cos(anot) — §c05(2n3f0t) + %cos(ZnSfot)}
* The function §(t) along with g(t) are plotted in the figure for —1 <t <1
assumingA=1and f; =1

Fourier series approximation to a square functions

1.2f
N DA A

Comments: As more terms are L |
added to §(t), §(t) becomes & 5o
closer to g(t) and in the limit as S 0.6}
n — oo, g(t) becomes equal to g 0.4
g(t) at all points except at the (;.f:; o2

points of discontinuity. '

0,

0.2 | : i J -

-1 -0.5 0 0.5 1

Time in Seconds
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Convergence of the Fourier Series

0, otherwise = Eien oy

The Fourier series of the signal g(t) = {

« g(t) ~ag+ 2y=1(a, cosnwyt + b, sinnwyt). The FS is shown in the figure below
. Cl0=A/2 ,bn = @,
(

i—i, n=15,09, ..
e .. = < 3
S iy n=3711,..
nm
\ 0; n = 2,4’,6

* The FS converges to g(t) at all points where g(t) is continuous

* Converges to A/2, the average value at points of discontinuity. g(t)
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Fourier Cosine and Sine Series
Let g(t) be a periodic function of time with period Ty = fisuch that its FS exists.
0

Fourier Cosine Series:

Let g(t) be an even function of t, then

h. = fT"/ 2g(t) sm(zn—nt) it =0

Ty Toy/2
fT//zg(t) cos(T—Ot) dt =T—0f0 /2 5(8) cos(*’%t) dt

The FS becomes a Fourier cosine series g(t) ~ ag + 2.,—1 @, €COS Nwyt

Fourier Sine Series:
Let g(t) be an odd function of t, then

TO 2 TO ¥
* 1y= T—f Tc{/z (L) 8f =0, d. _T//zg(t) cos(TLOn t)dt =0
2 [To/2 . 2 .
« b, = f 729 sm(TLont) dt =T—0f0 10, sm(%t) dt

* The FS becomes a Fourier sine series g(t) ~ >.,_1 b, sinnwgt
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Complex Form of the Fourier Series
The Fourier series can also be expressed in the complex form:

Co

g(t) — an_oo Cnejnwot
where, C, = TlfOTO glt’} g7t g,
0

* Note that C,, is a complex valued quantity, which can be written as

* il = |Cn|ej9n

* The plot of |C,,| versus frequency is called the Discrete Amplitude Spectrum.
* The plot of 8,, versus frequency is called the Discrete Phase Spectrum.

* The term at f; is referred to as the fundamental frequency. The term at 2f,
is referred to as the second order harmonic, the term at 3f, is referred to as
the third order harmonic and so on.
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Parseval’s Power Theorem
* The average power of a periodic signal g(t) is given by:

1 T oo oo
Py = T_Ofgolg(t)lz dt = En:_oolcnlz = |C0|2 +ZZn:1|Cn|2
1 (0’e]
¢ - |aO|2 +E anl(lan |2 P Ibnlz

* Proof: g(t) = Z:__OO Cpe/™@ot,  where, C, = TifoTog(t) e~ImotdL.
- 0
lg@®12 = g(©Og* ) = (X Caemot) (X" CreImewot)
1 i 1 ' 00 o0 * (n—
7 1o 19Ot = o= [ X7 o0 Vim0 Gy Gy €/ M@0 dE

T, ,n=m

* Orthogonality: fOTO gl b — {O 0 m

i o0 -
.T—Ofoolg(t)lzdt = Zn:—oolcnl2 = |CO|2 +2 Z?’L:llcnlz
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Power Spectral Density
* The plot of |C,,|? versus frequency is called the power spectral density
(PSD).

* |t displays the power content of each frequency (spectral) component of a
signal.

* For a periodic signal, the PSD consists of discrete terms at multiples of the
fundamental frequency.

* The next example demonstrate these properties

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Power Spectral Density

» Example: Find the power spectral density of the g(t) shown in the figure.
* Here, we need to find the complex Fourier series expansion, where the period T, = 271

© g®)= T Cael, Cop Jy” 9 () e/t

A
([ = =1 (
2 A2 _
34 )° =2
8 I W; n= il: is: ig! lC IZ —F. 3A
S R nl” =Y (=>)? n:odd
—_ n=+3+7+11,.. o
In|m i 0, n:even
. 0, =444
S50 =) Il 8(F— nfy)
n=-—:oco
e G )
2A :
% )
3A
. —1 > t I T $Go°
-A T | 2t S -4fe 3o 266 6 0 o 26 3o 4y 5fo
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Fourier Transform

Let g(t) be a function of time t. The Fourier transform maps the function g(t) into another function G(f)
defined into the frequency domain. The Fourier transform is defined as:

G(f) =J"_g®e 2™ dt
The inverse Fourier transform is defined as

g(t) = [~ G(f)el?™t df

Conditions for existence (Dirichlet conditions, which are the same as those for the FS)

* The function g(t) is absolutely integrable, i.e.,, fOTO |g(t)| dt < oo,
* Any discontinuities in g(t) are finite

* g(t) has only a finite number of discontinuities and only a finite number of maxima and minima in any
finite interval.

Remarks:
* These conditions are sufficient but not necessary

* A weaker sufficient condition for existence is f_ww lg(t)|% dt < oo (g(t) is an energy signal). This is
the finite-energy condition that is satisfied by all physically realizable waveforms.

* Generally, physical waveforms encountered in engineering practice are Fourier transformable.

* The Fourier transform can be derived from the Fourier series by allowing the period T to go to
infinity, but this will not be covered in this presentation.
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Fourier Transform: Amplitude and Phase Spectrum

Observations: G(f) = f_mm g(t)e 1251t d¢
* G(f) is a complex function of frequency f, which can be expressed as:
G(f) =GP
* The function G (f) is often referred to as the spectrum of g(t).

* |G(f)]|: is the continuous amplitude spectrum of g(t), (an even function of f).
* 8(f):is the continuous phase spectrum of g(t), (an odd function of f).

* Notation:

* To denote that G(f) is the Fourier transform of g(t), we write G(f) = J(g(t))

* To denote that g(t), is the inverse Fourier transform of G (f), we write g(t) =
ITHG()

* Sometimes, the following notation is used for a Fourier transform pair g(t) < G(f).
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Rayleigh Energy Theorem
Rayleigh Energy Theorem: The energy in a signal g(t) is given by:

E=[_lg®)*dt=[__|6(f)*df
* The proof of this result is the same as that for Parseval’s power theorem

* The function |G (f)|? is called the energy spectral density. It depicts the
range of frequencies over which the signal energy extends and the
frequency bands which are significant in terms of their energy contents.

* For a non-period signal energy signal, the energy spectral density is a
continuous function of f.

A General Form of the Rayleigh Energy Theorem
* For two energy functions g(t) and v(t), the following result holds:

[ g®v) dt= [__ GHV(F)" df
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Example: Exponential Pulse

« v(t) = {‘ge'” ttz g A N v(t)

. _ [ 2 a2y [P a2 2Bt g} (A2 :
E=[__lg®)dt= [ A*e~?"'dt= (A%/2b),FT exists
« V(f) = fooov(t)e‘ﬂ”ﬁ dt = fooo Ae bt g—i2mftgs

_ g [P o—brizaf)t gy g EEHT e A
V(f)=A], e dt A—(b+j21rf) 0 ™ b+jomf — ‘ time
A 0 ] ’ i
« V(f) = ! | | T ]
A
* |V(f)| il (D2+(27Tf)2)1/2

AZ
b%2+(2mf)?
Exercise: For the given v(t), verify Rayleigh Energy Theorem:

E=[" [w®Pdt=["_|V(f)I2df

* The energy spectral densityis: S,(f) = |[V(f)|? =

0 frequency
* Remark: The signal v(t) is called a baseband signal since the signal occupies the low
frequency part of the spectrum. That is, the energy in the signal is found around the zero
frequency. When the signal is multiplied by a high frequency carrier, the spectrum becomes
centered around the carrier and the modulated signal is called a bandpass signal.
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Example: The Rectangular Pulse g(t) = Arect(%)

« G(f) = ij{/ZZ Ae—J2nft gt = isinnfT ’ ATsinnfT

f fT
*  |G(P)] = AT |sincfT|

2 AT sincfT

* The maximum of |G(f)| occurs at f = 1= = 1. Also, G(f) =0
X

when sin(mfT) = 0, which occurs at the points that satisfy nfT = nm, =
fT =n,or f = ;,n =+1,42,+3, ...

A g(t) |G(f)]

time

-T/2 0 T/2 BT 2T AT /T 2/T 3/3

frequency
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Properties of the Fourier Transform
e Linearity (superposition)

Let g,(t) « G,(f) and g,(t) « G,(f), then o
€191(L)T€292(t) © ¢1G1(f)+c2G2(f) 5 ¢4, €, are constants ~ G(f) = fg(t)e-iz"ft dt
e Time Scaling “oo
t) e G 1
g(@) < a(f) g(at)Hla—IG(f/a)
e Duality
g(@) < G(f) G() < g(=f)

e Time Shifting

g) e G(f) gt —t,) HG(f)e—jZTrfto

Delay in time domain corresponds to a phase shift in frequency domain
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Properties of the Fourier Transform
e Frequency Shifting

g(t) « G(f) g(®)e?™fet & G(f — f.) ; f. is constant
G(f) G(f-f)
/T\ t Del*met [ /T\
| 8(t)  (y )ele ™ L S
0 fc
ei2mfct 7

G(f) = f g(®)e 7t dt

- 00

Frequency Shifting Property of the Fourier Transfer
e Modulation Property

g) « G(f) 2g(t)cos (27rf0t)§::E S G(f = fo) +G(f + fy): fo is a constant

2G(f)
Low-pass signal —> G(f + fo) G(f - fo) Band-pass signal
0 f 1 0 So U
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Properties of the Fourier Transform

e Area under G(f)
g(t) « G(f) g(t=0)=[" G(f)df

The value g(t = 0) is equal to the area under its Fourier transform function

e Area under g(t)
g(t) < G(f) G(0)=[" g(t)dt

The area under a function g(t) is equal to the value of its Fourier transform G(f) at f=
0, where G (0) implies the presence of a dc component.

co

git) = fG(f)el'ant df G = fg(t)e—jZHft

- 00
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Properties of the Fourier Transform
e Differentiation in the Time Domain
If g(t) and its derivative g'(t) are Fourier transformable, then,
g'(t) « (j2rnf)G(f)
1.e., differentiation in the time domain —=> multiplication by j27f in the frequency domain.

(Differentiation in the time domain enhances high frequency components of a signal)

co

Also, g( o (j2rf)"G(f) () = f G(felz It df

- 00

e Integration in the Time Domain

f_tmg(f)df © %G(f); assuming G(0) = 0

1.e., integration in the time domain corresponds to division by (j27f) in the frequency
domain. This amounts to low pass filtering, where high frequency components are

attenuated due to filtering.

When G(0) # 0, the above result becomes:
t 1 1
. g(@dr & %G(f) +2 G(0)5(f).

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Properties of the Fourier Transform
e Multiplication of two signals in the time domain

91(1) 92(t) & [, 61D G (f = 1A =Gy (f) * G (f)
Multiplication of two signals in the ttme domain 1s transformed into the convolution
of their Fourier transforms 1n the frequency domain.

e Convolution of two signals in the time domain

91(8) * g2(t) & G1(f)G2(f)

Convolution of two signals in the time domain 1s transformed into a multiplication of

their Fourier transforms in the frequency domain
* Multiplication by t in the time domain corresponds to differentiation in the

frequency domain

Jd6(p) -
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Examples: The RF Negative Exponential Pulse
Example: Find the Fourier transform of x(t) = A e P*cos(2nfyt), t>0

Solution: Note that x(t) can be expressed as

X(t) = g(t)COS(ZﬂfOt)’ g(t) - {A e"bt £t>0

A N v(D)

0 t <0
c 60N = (57575) e —————
* Use the modulation property Baseband signal V()
¢ X(F) =5{G(f — fo) + G(f + fo))
= X(f) = %{ 2 + = }; Band-pass signal 0 frequency

b+j2r(f—fo) b+j2n(f+/o)

‘ X(F)|

7 0
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Example: double-sided exponential pulse

* Example: Find the Fourier transform of the double-sided exponential pulse
o(t) = Ae Pl —eo < £ < 00

 Solution: You can easily find that the energy in g(t) is finite, and hence the FT.
exists.

- G(f) = f_ooerbte‘fz’Tft dt + fOOOAe_bte‘fZ”ftdt

A A 2bA | [ ]
G(f)_b—jznf b+j2nf  b2+(2mf)>2 | A
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Examples: Fourier Transform of an RF Pulse
Find the Fourier transform of the RF pulse x(t) = cos(2mfpt);1 <t <1,

Solution: x(t) can be viewed as a product of the rectangular pulse and the
cosine function x(t) = g(t)cos(2mf,t) , where

gt)=ult+1)—u(t+1) = rect(g) ﬁo%%%%%%ﬂﬁ_
G(f) = AT sincfT = 2sinc(2f) ;

*X() = (XU = fo) + X(F + fo)}

« X(f) = —{Zsmc(Z(f fo)) + 2sinc(2(f + fo))}

A 8) cos(2mfyt)

AN
U

U

-T/2 0 T/2
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Examples: Fourier Transform of the doublet pulse

Find the Fourier transform of the pulse x(t) shown in the figure
Solution: x(t) can be expressed in terms of the rectangular pulse g(t) as

x(t)=9(t—-T/2)—g(t—3T/2) x(t)
_j2nfT _j2mf3T A
X(f)=G6(fle 2 —G(fle =
. ZrfT _j2rnfT
*X(F)=G(fle?T(e 2 —e 2 ) 0 2T
; |
© X(f) = G(fe 2T (j2)sin (L)
* Remark: Note that in this example, we have made use -A
of the linearity and time shifting properties. A |8t

T/2 0 T/2
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Examples: Fourier Transform of the triangular pulse

Find the Fourier transform of the pulse y(t) shown in the figure

Solution: If we differentiate y(t), we get x(t) of the previous example

dy(t . :
J;(t ) = x(t). Taking the ET of both sides,
i2nfY(f) = X(f)
Y(f) = Xy G (fe~J2mf T(JZ)sm(znf 0)
jemf j2mf
TG(f)e /2™ Tsin(2nfT .
G(f) = /) (2nfT) = AT (sl T) gy
fT
" g(t) Same result can be obtained by
) realizing that y(t)=g(t)*g(t) and
o — i 2 AT sincfT using the convolution property
= Y(f)=G(f).G(f) and then using
T/2 0 /2 the time shifting property

STUDENTS-HUB.com
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y(t)

LN

o

xt) T 2T

A\

2T
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* The Fourier transform maps the function g(t) into another function
G(f) defined into the frequency domain. In this lecture, we define the
Fourier transform, present its properties and solve many examples
illustrating the use of these properties. We also present Rayleigh
energy theorem.
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Fourier Transform of Power Signals
* For a non-periodic (energy) signal g(t), the Fourier transform exists when

. E = f_oooo |g(t)|? dt < oo (sufficient condition for existence)
@ — w0 —j2 F .
so that G(f)= J__ g(t)e™ mftdt  exists
* For power signals, the integral f_oooo g(t)e 7?™tdt does not exist.

* However, one can still finds the Fourier transform of power signals by employing the delta

function. This function is defined next. (1) g(0)
* Dirac — Delta Function (Impulse Function)
This function is defined as 6(t)
g =1 > U t
g(l) =
2 {0 t# 0 °

+ suchthat: [ §()dt =1 and [~ g(t)s(t)dt = g(0)

* Here, g(t) is a continuous function of time. The second property, known as the sifting
property, shows that the delta function samples the function g(t) at the time of its
occurrence.
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Some Properties of the Delta Function

c g()S(t — ty) = g(ty)d(t — ty); (Multiplication)

. f_oooo g(t)s(t —ty)dt = g(ty) ; (Sifting or sampling property)

- 5(at) = l;ll6(t) g(®) |
£ 8(6) * g(t) = g(©) \
du(t) t
» 8(8) =—; =>u(t) =J__s(t)dt ; 1 : :
« §5(t) = §(—t); an even function of its argument. Bl — %)
* Fourier transform: 3{6(t)} = 1 ‘
Lo

 S(8(t — o)} = eI

I g(to)d(t — to)
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Applications of the Delta Function

* Fourier transform of the delta function
* 3{6(0)} = f_oooo §(t)e /2™ftdt = 1. This follows from the sifting property
17, g@®)s()dt = g(0) = 1
« J{S(t —ty)} = e /2™ to; (using the time delay property I{g(t — ty)} = G(f)e /2™ to

* DC or a Constant Signal g(t) & G()

* Since J3{6(t)} = 1, then by the duality property 3{1} = §(f) G(t) & g(—=f)

* Note how the time-bandwidth 5(t) F{8(t)}
relationship holds for this pair. A narrow ‘ D l
pulse in time extends over a large { < 7
frequency spectrum). A g0) AS(f)

* Also, the transform of a dc signal is an
impulse at f =0. ° 0 g ) o f
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* Complex Exponential Function

Applications of the Delta Function

- 3{Ae/2mIet} = AS(f - f)
« follows from the duality property, since J{5(t — ty)} = e /2™t g - 6(f)

 Sinusoidal Functions
e 3{cos 2 fyt} = S%{Aejznfct + Ae /2mfct} = % {(6(f = fo) +6(f + fo)}
» 3{sin 2mfyt} = i‘sjiz{AefZ”fct — Ae /2t } = % {6(f = fo) =6(f + fo)}

’

g(t) = cos(2mfyt) G(f)

AN

|

|

ﬂ

m

|

|

!\

I

| I 1/2T

ouu
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Applications of the Delta Function

* Signum Function

¢ 1 t>0
sgn(t) =50 t=0
-1 t<0

* Unit Step Function

1 t>0
u(t) = % t =
0 t<0
sgn(t)

STUDENTS-HUB.com

—bt
1.2>0
v(t)={°€
© {—ebtt<0

1
S{sgn(t)} = — 1 1 —j(2)2nf

jT[f G(f) = b+j2nf  b—j2nf  b2+(2mf)?
1
logb—>0 G(f) = H
sgn(t) = 2u(t) — 1
u(t) = %{sgn(t) + 1}

Su®)} =——=+ 3 5(f)
u(t)

0.5%

- : t +——+ t
-0.5 05 1 15 2

[ =]

d
Lol
o
—
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Applications of the Delta Function
* Periodic Signals: A periodic signal g(t) is expanded in the complex Fourier Series form as:

cg() =" C,emt > Jgt) =YY" C,8(f—nfo)

Example: Consider the following train of impulses g(t) = Zm:—oo 6(t — mTy)

Solution: The Fourier coefficients are obtained by integrating over one period of g(t).
o . — ;—ff;g/zzg(t) e In0et gy — Ti = fo ; Note that the sifting property has been used.
0 0

* Therefore, the complex Fourier series of g(t) is
o0

* 9(0) = IR0 €M 2 30} = o SN = N6~ 1)

* S Y, 8t—mTo) == T " 8(f —nfo).

Remark 1: Note that the signal is periodic in the

g(t) G(f) time domain and its Fourier transform is periodic in
the frequency domain.
T T T T T T T T «+ Remark 2: This sequence will be found useful when
> » the sampling theorem is considered later in the
2T, -Ty, 0 T 2T, ¢ =2fo—fo 0 fo 2fy, f FOIEE
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Examples
. Ae% F%ip g(0) |

e letg(t) b : BlL) = .
et g(t) be given as: g(t) {O e i
* The Fourier transf ft'-G()—(A) |
e Fourier transform of g(t) is: G(f) = e

 Evaluate the following
> g(t)6(t—0.5) =g(t =0.5)8(t—0.5) = Ae %P§(t — 0.5).

» g)st+1)=glt=-1)6(t+1)=(0)6(t+1)=0.

Ae Pt~ >1
> g()*x6(t—-1D=g(t-1) =
g(t) * o( ) = g( ) { e §

> (8 + 80} = 60N6() = () (5rams) = ()
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Examples
Ae % F% g(t)

* Let g(t) be gi : g(t) = : |
et g(t) be given as: g(t) {0 e i

. . A |
* The Fourier transform of g(t) is: G(f) = (b+j21rf) |
* Evaluate the following

> f_Zg(t)@(t —1)dt = g(t = 1) = A e ?; (sifting property)

> S{g(0) — gt — D} = 6(f) — G(Ne /> = —L— (1~ e7/2")

Ate™t t>0
» 3{te(t)} =
{tg(t)} {0 g

N _J d6(f) _ j _(jem_ _ !
»3{tg(t)} = 2 df 2w (b+j2mf)?2  (b+j2mf)?

»Note: Prove that 3{tg(t)} = (213'@) dz;f) and {di(tt)} = (J2nf)G(f)
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