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Chapter 1

Functions

1

1.1 Functions

In this lecture, we review some important functions with their domains,

ranges and graphs.

Definition 1.1.1 A function f is a rule that assigns to each point x

in the domain a unique point y = f(x) in the range of f . We write

f : D → R where D is the domain of f and R is its range.

Remark 1.1.1 The set of x-values at which f(x) is defined forms the

domain of f while the set of y−values (the set of the images of the

x−values) forms the range of f . The domain of x appears on the hor-

izontal axis (the x−axis), while the range of f appears on the vertical

axis (the y−axis).

Now, we give some important basic functions with their domains,

ranges and graphs.
1This part is a review of chapter 1 in the textbook
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4 CHAPTER 1. FUNCTIONS

Example 1.1.1 (a) f(x) = x2, D = (−∞,∞), R = [0,∞). If we let

y = x2 then x ∈ (−∞,∞), y ∈ [0,∞).

(b) f(x) =
√
x, D = R = [0,∞), hence x, y ∈ [0,∞).

Figure 1.1: Graph of y = x2 Figure 1.2: Graph of y =
√
x

(c) The absolute value function f(x) = |x| =
√
x2, D = (−∞,∞),

R = [0,∞). Then, x ∈ (−∞,∞), y ∈ [0,∞).

(d) f(x) =
√
1− x2. The domain of f is the set of values of x such

that 1 − x2 ≥ 0, so we must have x2 ≤ 1. Taking the square root

of both sides, we get
√
x2 ≤ 1 which implies that |x| ≤ 1. The last

inequality is equivalent to −1 ≤ x ≤ 1. We find that x ∈ [−1, 1],

y ∈ [0, 1]. So, D = [−1, 1], R = [0, 1].

Figure 1.3: Graph of y =
√
1− x2 Figure 1.4: Graph of y = |x|

(e) The greatest integer function f(x) = ⌊x⌋, D = (−∞,∞), R =

0,±1,±2, ....
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1.2. TRIGONOMETRIC FUNCTIONS 5

Figure 1.5: Graph of y = ⌊x⌋

1.2 Trigonometric functions

In this section, we review the six trigonometric functions: sinx, cosx, tanx, cotx,

secx and cscx. You are supposed to know the values of these functions

at the main values 0, π6 ,
π
4 ,

π
3 ,

π
2 , ...

(a) y = sinx, D = (−∞,∞), R = [−1, 1].

(b) y = cosx, D = (−∞,∞), R = [−1, 1].

Figure 1.6: Graph of y = sinx Figure 1.7: Graph of y = cosx

Note that

cosx = 0 if x = π
2 ± nπ and sin x = 0 if x = ±nπ, n = 0, 1, 2, ...

(c) y = tan x = sinx
cosx , D = (−∞,∞) \ {π

2 ± nπ}, n = 0, 1, 2, ..., R =

(−∞,∞)
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6 CHAPTER 1. FUNCTIONS

(d) y = cotx = cosx
sinx , D = (−∞,∞) \ {±nπ}, n = 0, 1, 2, ..., R =

(−∞,∞)

Figure 1.8: Graph of y = tanx Figure 1.9: Graph of y = cotx

(e) y = secx = 1
cosx , D = (−∞,∞) \ {π

2 ± nπ}, n = 0, 1, 2, ...,

R = (−∞,−1] ∪ [1,∞)

(f) y = cscx = 1
sinx , D = (−∞,∞) \ {±nπ}, n = 0, 1, 2, ...,

R = (−∞,−1] ∪ [1,∞)

Figure 1.10: Graph of y = secx Figure 1.11: Graph of y = cscx

Remark 1.2.1 We have the following results

� Since sin(x+ 2π) = sin x, cos(x+ 2π) = cos x, sec(x+ 2π) = secx

and csc(x + 2π) = cscx, the functions sinx, cosx, secx and cscx

are called periodic with period 2π.
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1.2. TRIGONOMETRIC FUNCTIONS 7

� Since tan(x + π) = tan x and cot(x + π) = cot x then tanx and

cotx are periodic with period π.

1.2.1 Trigonometric identities

1. sin2 x+ cos2 x = 1.

2. sin(2x) = 2 sinx cosx.

3. cos(2x) = cos2 x− sin2 x.

4. cos2 x = 1+cos(2x)
2 .

5. sin2 x = 1−cos(2x)
2 .

6. sec2 x = 1 + tan2 x.

7. csc2 x = 1 + cot2 x.

8. cos(A+B) = cosA cosB − sinA sinB.

9. sin(A+B) = sinA cosB + cosA sinB.

Example 1.2.1 Using the above identities, we find the following:

(a) sin(x+ π) = sin(x) cos(π)︸ ︷︷ ︸
-1

+cos(x) sin(π)︸ ︷︷ ︸
0

= − sinx,

(b) cos(x+ π) = cos(x) cos(π)︸ ︷︷ ︸
-1

− sin(x) sin(π)︸ ︷︷ ︸
0

= − cosx.

(c) sin(x+ π
2 ) = sin(x) cos(

π

2
)︸ ︷︷ ︸

0

+cos(x) sin(
π

2
)︸ ︷︷ ︸

1

= cosx,

(d) cos(x+ π
2 ) = cos(x) cos(

π

2
)︸ ︷︷ ︸

0

− sin(x) sin(
π

2
)︸ ︷︷ ︸

1

= − sinx
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8 CHAPTER 1. FUNCTIONS

1.3 Even and odd functions

Definition 1.3.1 Let f be a function defined on an interval I = [−a, a],

where a is a positive real number. Then

� f(x) is called even if f(−x) = f(x). If f is even then its graph is

symmetric about the y−axis.

� f(x) is called odd if f(−x) = −f(x). If f is odd then its graph is

symmetric about the origin.

Example 1.3.1 x2, x4, x6, ..., cos x, secx are even functions. x, x3, x5, ...,

sinx, tanx, cscx, cotx are odd functions.

Example 1.3.2 Determine whether the functions f(x) = x2 + |x|,
g(x) = x3 + x5, h(x) = x+ x2 are even, odd or neither.

f(−x) = (−x)2 + | − x| = x2 + |x| = f(x), so f is even

g(−x) = (−x)3+(−x)5 = −x3−x5 = −(x3+x5) = −g(x) so g is odd

h(−x) = (−x)+(−x)2 = −x+x2 then h(−x) ̸= h(x), h(−x) ̸= −h(x)

we conclude that h is neither even nor odd.

Figure 1.12: Graph of y = x2 Figure 1.13: Graph of y = x3
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1.4. EXERCISES 9

1.4 Exercises

(1) Find the domain and the range of the following functions:

(a) f(x) = 1√
x
.

(b) f(x) = tan(πx).

(c) f(x) = 1 + |x|.
(d) f(x) = sec2 x.

(e) g(x) = 1
x2 .

(f) h(x) = 1√
1−x2

.

(2) Sketch the following functions:

(a) y = sin(πx)

(b) y = |x− 1|
(c) y = cos(x) + 1

(3) Determine whether the following functions are even, odd or neither:

(a) f(x) = x2 + 1.

(b) f(x) = x3 + x.

(c) g(t) = 1
t−1 .

(d) h(x) = x
x2−1 .

(4) Prove the following:

(a) If f(x) is even and g(x) is odd then (g ◦ f)(x) is even.
(b) If f(x) is even and g(x) is odd then f(x)

g(x) is odd.
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10 CHAPTER 1. FUNCTIONS
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Chapter 2

Limits and continuity

1

2.1 Limits of functions

When a function f approaches a certain limit L as x approaches a, we

write

lim
x→a

f(x) = L

This limit means that the function gets arbitrarily close to L when x

is sufficiently close to a. Notice that a or L or both of them can be

+∞ or −∞. The function f may or may not be defined at x = a. As

you know,

lim
x→a

f(x) = L if and only if lim
x→a+

f(x) = lim
x→a−

f(x) = L

where lim
x→a+

f(x) is the limit of f(x) as x approaches a from the right

(also called the right-hand limit) and lim
x→a−

f(x) is the limit of f(x) as

x approaches a from the left (also called the left-hand limit).

1This is a review of chapter two in the textbook

11
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12 CHAPTER 2. LIMITS AND CONTINUITY

Figure 2.1: Limit of a function Figure 2.2: Example of limits

Example 2.1.1 We can use simple techniques to find the following

limits:

(a) lim
x→1

x−1
x+1 = 0.

(b) lim
x→1

x2−1
x−1 = lim

x→1

���(x−1)(x+1)

���(x−1) = 2.

(c) lim
x→+∞

1
x = 0.

(d) lim
x→0+

1
x = +∞.

(e) lim
x→1

x2+x−2
x2−x = lim

x→1

(x+2)���(x−1)
x���(x−1) = 3.

(f) lim
x→−1

√
x2+8−3
x+1 = lim

x→−1

√
x2+8−3
x+1

√
x2+8+3√
x2+8+3

(
√
x2 + 8−3)(

√
x2 + 8+3) = (

√
x2 + 8)2−3

√
x2 + 8+3

√
x2 + 8−

9 = x2 + 8− 9 = x2 − 1 = (x− 1)(x+ 1)

lim
x→−1

√
x2+8−3
x+1 = lim

x→−1

(x−1)���(x+1)

���(x+1)
√
x2+8+3

= −2
6 = −1

3 .

Theorem 2.1.1 (The Sandwich Theorem) Suppose that

g(x) ≤ f(x) ≤ h(x)

for all x in some open interval containing c, except possibly at x = c

and that

lim
x→c

g(x) = lim
x→c

h(x) = L then lim
x→c

f(x) = L
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2.1. LIMITS OF FUNCTIONS 13

Example 2.1.2 Suppose that f(x) is a function that satisfies

1− x2 ≤ f(x) ≤ 1 + x2

Then lim
x→0

f(x) = 1 since lim
x→0

(1− x2) = lim
x→0

(1 + x2) = 1.

Example 2.1.3 Find lim
x→+∞

sinx
x . Since

−1

x
≤ sinx

x
≤ 1

x

and lim
x→∞

1
x = 0, then, by the sandwich theorem

lim
x→∞

sinx

x
= 0

Remark 2.1.1 Please do not confound the previous limit with lim
x→0

sinx
x =

1.

Example 2.1.4 Consider the function

f(x) =

{
x+ 1 , x ≤ 0

−x , x > 0

Then, lim
x→0+

f(x) = 0 and lim
x→0−

f(x) = 1. So, lim
x→0

f(x) does not exist.

We give another example

Example 2.1.5 Consider the function

g(x) =


x+ 2 , x ≤ −1

x2 , −1 < x ≤ 1

x− 1 , x > 1

Then, lim
x→−1+

g(x) = lim
x→−1−

g(x) = 1, so lim
x→−1

g(x) = 1. While, lim
x→1+

g(x) =

0, lim
x→1−

g(x) = 1, so lim
x→1

g(x) does not exist.
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14 CHAPTER 2. LIMITS AND CONTINUITY

Figure 2.3: Graph of f(x) Figure 2.4: Graph of g(x)

2.2 Continuity

Definition 2.2.1 A function f is continuous at a point x0 if the fol-

lowing conditions are satisfied:

(a) f(x0) exists.

(b) lim
x→x0

f(x) exists.

(c) lim
x→x0

f(x) = f(x0).

Example 2.2.1 The functions sinx, cosx, |x| and all polynomials are

continuous on (−∞,∞).

Example 2.2.2 The rational functions are continuous at all points

except at the zeros of the denominator. For example, the function

f(x) =
x3 + x+ 1

x2 − 1

is continuous on (−∞,∞) \ {−1, 1}.
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2.2. CONTINUITY 15

Example 2.2.3 (a function with removable discontinuity) Con-

sider the function

f(x) =
x2 + 2x− 3

x2 − 1
Then

lim
x→1

x2 + 2x− 3

x2 − 1
= lim

x→1

�����(x− 1)(x+ 3)

�����(x− 1)(x+ 1)
= lim

x→1

x+ 3

x+ 1
= 2

The point x = 1 is called a removable discontinuity of the function

f because we can define f at x = 1 so that we can remove the discon-

tinuity. The following function is called the continuous extension

of f at x = 1

F (x) =

{
f(x) , x ̸= 1

2 , x = 1

Theorem 2.2.1 (The intermediate value theorem) If f is a con-

tinuous function on a closed interval [a, b], and if y0 is any value be-

tween f(a) and f(b), then y0 = f(c) for some c in [a, b].

Figure 2.5: Intermediate Value Theorem Figure 2.6: Graph of g(x)

Recall that a point c is called a root of a function f if f(c) = 0. We

can use the intermediate value theorem to show that a given function

has a root in some interval (Bolzano Theorem).
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16 CHAPTER 2. LIMITS AND CONTINUITY

Example 2.2.4 Consider the function f(x) = x3 − x− 1. Take a = 1

and b = 2. Since f(1) = −1 < 0, f(2) = 5 > 0 and f(1) < 0 < f(2)

then there exists c ∈ [1, 2] such that f(c) = 0. In fact, c ≈ 1.324717957.

Figure 2.7: Graph of y = x3 − x− 1

2.2.1 Asymptotes

In this section, we are dealing mainly with rational functions. A ratio-

nal function is the ratio of two polynomials. Our objective is to

be able to sketch some rational functions using limits and asymptotes.

A method that helps us in finding the limits of a rational function as x

approaches +∞ or −∞, we divide the numerator and denominator by

the highest power in the denominator. Suppose that we want to find

the limits of a rational function

f(x) =
p(x)

q(x)

where p(x) = amx
m + am−1x

m−1 + · · · + a1x + a0 is a polynomial of

degree m and q(x) = bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0 is a polynomial

of degree n. Then, we have the following cases:
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2.2. CONTINUITY 17

(a) if m = n then lim
x→±∞

f(x) = am
bn
. For example, lim

x→±∞
2x3−x+3
3x3+x2+x = 2

3

(b) if m < n then lim
x→±∞

f(x) = 0. For example, lim
x→±∞

x2+1
x3+x = 0

(c) if m > n then lim
x→±∞

f(x) = ±∞. For example, to find lim
x→∞

x2+1
x+1 , we

divide the numerator and denominator by x to get lim
x→∞

x+ 1
x

1+ 1
x

= +∞

Definition 2.2.2 A line y = b is a horizontal asymptote of the graph

of the function y = f(x) if either

lim
x→∞

f(x) = b or lim
x→−∞

f(x) = b

Example 2.2.5 The line y = 0 is a horizontal asymptote for graph of

the function f(x) = x
x2+1 since lim

x→+∞
x

x2+1 = lim
x→−∞

x
x2+1 = 0.

Example 2.2.6 The line y = 1 is a horizontal asymptote for the graph

of the function f(x) = x2

x2+1 since lim
x→+∞

x2

x2+1 = lim
x→−∞

x2

x2+1 = 1.

Figure 2.8: Graph of f(x) = x
x2+1 Figure 2.9: Graph of f(x) = x2

x2+1
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18 CHAPTER 2. LIMITS AND CONTINUITY

Definition 2.2.3 A line x = a is a vertical asymptote of the graph of

the function y = f(x) if either

lim
x→a+

f(x) = ±∞ or lim
x→a−

f(x) = ±∞

Example 2.2.7 The line x = 0 is a vertical asymptote for f(x) = 1
x

since lim
x→0+

1
x = +∞ and lim

x→0−
1
x = −∞.

Example 2.2.8 Consider the function f(x) = x+1
x−1 . Notice that

lim
x→1+

x+ 1

x− 1
= +∞, lim

x→1−

x+ 1

x− 1
= −∞

and

lim
x→+∞

x+ 1

x− 1
= lim

x→−∞
x+ 1

x− 1
= 1

Then the line x = 1 is a vertical asymptote and the line y = 1 is a

horizontal asymptote.

Figure 2.10: Graph of f(x) = 1
x Figure 2.11: Graph of f(x) = x+1

x−1

Consider the following remarks:
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2.2. CONTINUITY 19

Remark 2.2.1 Suppose that f(x) is a rational function

(a) the graph of f(x) can intersect its horizontal asymptote as in ex-

ample (2.2.6).

(b) the graph of f(x) can have horizontal and vertical asymptotes.

(c) the graph of f can have at most one horizontal asymptote.

(d) x = a is a vertical asymptote for the graph of f if x = a is a root of

the denominator of f . But if x = a is a root of the denominator of f

then the graph of f does not have necessarily a vertical asymptote

at x = a. For example, the graph of the function f(x) = x2+2x−3
x2−1

does not have a vertical asymptote at x = 1, see example (2.2.3).

Also, the graph of the function f(x) = sinx
x , which is not a rational

function, does not have a vertical asymptote at x = 0.

Example 2.2.9 The function f(x) = sinx
x has no vertical asymptote

even it is undefined at x = 0 since lim
x→0

sinx
x = 1.

Example 2.2.10 Let f(x) = x2+2x−3
x2−1 , see example(2.2.3)

lim
x→1

x2 + 2x− 3

x2 − 1
= lim

x→1

�����(x− 1)(x+ 3)

�����(x− 1)(x+ 1)
= lim

x→1

x+ 3

x+ 1
= 2

and

lim
x→−1+

f(x) = lim
x→−1+

x+ 3

x+ 1
= +∞

lim
x→−1−

f(x) = lim
x→−1−

x+ 3

x+ 1
= −∞

from the previous limits, we conclude that x = −1 is a vertical asymp-

tote but x = 1 is not a vertical asymptote.
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20 CHAPTER 2. LIMITS AND CONTINUITY

Figure 2.12: Graph of f(x) = sin x
x Figure 2.13: Graph of f(x) = x2+2x−3

x2−1

If the degree of the numerator of a rational function is 1 greater than

the degree of the denominator then the graph of f has an oblique

asymptote.

Example 2.2.11 The graph of the function f(x) = x2

x−1 has an oblique

asymptote since the degree of the numerator is 2 and the degree of the

denominator is one. Using polynomial division, we can write

f(x) = (x+ 1) +
1

x− 1

So, the line y = x + 1 is the oblique asymptote of the graph of f .

Moreover, the line x = 1 is a vertical asymptote for the graph of f

since lim
x→1+

f(x) = +∞ and lim
x→1−

f(x) = −∞. Note that a rational

function cannot have a horizontal and an ablique asymptote at the same

time.
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2.3. EXERCISES 21

Figure 2.14: Graph of y = x2

x−1

2.3 Exercises

1. Find the following limits:

(a) lim
t→−1

t2+3t+2
t2−t−2

(b) lim
x→1

1−√
x

1−x

(c) lim
θ→1

θ4−1
θ3−1

(d) lim
θ→0

sin(2θ)
3θ

(e) lim
θ→0

1−cos θ
sin(2θ)

(f) lim
x→∞

1+
√
x

1−√
x

(g) lim
x→−∞

√
x2+1
x+1

(h) lim
x→−∞

3
√
x− 5

√
x

3
√
x+ 5

√
x

(i) lim
x→∞

(
√
x2 + 1−

√
x2 − x)
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22 CHAPTER 2. LIMITS AND CONTINUITY

(j) lim
t→3+

⌊t⌋
t

(k) lim
x→0

x sin
(
1
x

)
2. Find the asymptotes of the following functions then sketch their

graphs

(a) f(x) = x+1
x−1

(b) y = x3+1
x2

(c) f(x) = x2+1
x−1

(d) f(x) = x3+1
x2−1

3. For what values of a and b is

g(x) =


ax+ 2b , x ≤ 0

x2 + 3a− b , 0 < x ≤ 2

3x− 5 , x > 2

continuous at every x. Then sketch the graph of the function.

4. Find the continuous extension of the function h(t) = t2+3t−10
t−2 .

5. Use the intermediate value theorem to show that the function

f(x) = x3 − 2x2 + 2 has a root.
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Chapter 3

Differentiation

3.1 Definition of derivative

Definition 3.1.1 The derivative of a function f at x0, denoted f ′(x0)

is defined by

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
provided this limit exists.

Figure 3.1: Secant line Figure 3.2: Tangent line

Let z = x0 + h, then h = z − x0. The above limit can be written as

f ′(x0) = lim
z→x0

f(z)− f(x0)

z − x0

If f ′(x0) exists then we say that f is differentiable at x0. We say that

f is differentiable on an open interval (a, b) if it is differentiable at each

23
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24 CHAPTER 3. DIFFERENTIATION

point of (a, b). We can use the above definition to find the derivative

of any differentiable function at any point. The derivative of f at x0
gives the rate of change of f at x0. It is also the slope of the tangent

line to the graph of f at (x0, f(x0)).

Example 3.1.1 Use the definition to find the derivative of the func-

tion f(x) =
√
x.

f ′(x) = lim
h→0

√
x+ h−√

x

h

= lim
h→0

√
x+ h−√

x

h

√
x+ h+

√
x√

x+ h+
√
x

= lim
h→0

��h

��h(
√
x+ h+

√
x)

=
1

2
√
x

When we say that f is differentiable on a closed interval [a, b], we

mean the following

� f ′ exists at all points in the open interval (a, b).

� The right-hand derivative of f at a exists; that is,

f ′
+(a) = lim

h→0+

f(a+ h)− f(a)

h

exists. We denote the right-hand derivative of f at x = a by f ′
+(a).

� The left-hand derivative of f at b exists; that is,

f ′
−(b) = lim

h→0−

f(b+ h)− f(b)

h

exists. We denote the left-hand derivative of f at x = b by f ′
−(b).
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Remark 3.1.1 A function f is differentiable at x = c if and only if

the right-hand derivative and the left-hand derivative both exist and

are equal at x = c.

If f is differentiable at x = c then f is continuous at x = c. The con-

verse of this statement is not true, the function f(x) = |x| is continuous
but not differentiable at x = 0.

Example 3.1.2 Let f(x) = |x|. We find the left-hand and right-hand

derivatives of f at x = 0.

f ′
+(0) = lim

h→0+

|0 + h| − |0|
h

= lim
h→0+

h

h
= 1

f ′
−(0) = lim

h→0−

|0 + h| − |0|
h

= lim
h→0−

−h

h
= −1

We conclude that f is not differentiable at x = 0.

Example 3.1.3 Determine whether the following function is differen-

tiable at x = 0

f(x) =

{
x2/3 , x ≥ 0

x1/3 , x < 0

Using the definition of the derivative

f ′
+(0) = lim

h→0+

f(0 + h)− f(0)

h
= lim

h→0+

h2/3

h
= lim

h→0+

1

h1/3
= +∞

f ′
−(0) = lim

h→0−

f(0 + h)− f(0)

h
= lim

h→0−

h1/3

h
= lim

h→0−

1

h2/3
= +∞

So, f is not differentiable at x = 0. The graph of f(x) has a vertical

tangent at x = 0.
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3.2 Differentiation rules

Theorem 3.2.1 Suppose that f(x) and g(x) are differentiable at x, c

is a constant. Then

(1) d
dx(c) = 0

(2) d
dxx

n = nxn−1, where n is a positive integer.

(3) d
dx(cf(x)) = c dfdx

(4) d
dx(f(x)± g(x)) = df

dx ±
dg
dx

(5) d
dx(f(x)g(x)) =

df
dxg(x) + f(x)dgdx

(6) d
dx

(
f(x)
g(x)

)
=

g(x) df
dx−f(x) dgdx
g2(x)

(7) d
dx(f ◦ g)(x) = d

dxf(g(x))
dg
dx(x) (Chain Rule).

Example 3.2.1 Find the derivatives of the functions

(1) d
dx(x

5 + 3x2 + 1) = 5x4 + 6x

(2) d
dx(x

3+ x+10)(x4+ x2− 20) = (3x2+1)(x4+ x2− 20)+ (x3+ x+

10)(4x3 + 2x)

(3) d
dx

x+1
x2+1 =

x2+1−(x+1)(2x)
(x2+1)2 = 1−2x−x2

(x2+1)2

(4) d
dx

1
x2+1 =

−2x
(x2+1)2

(5) d
dx(x

3 + 2x)4 = 4(x3 + 2x)3(3x2 + 2)

Example 3.2.2 Where does the graph of f(x) = x4 − 2x2 + 2 have

horizontal tangent? The curve f(x) has horizontal tangent if f ′(x) = 0.

So, f ′(x) = 4x3 − 4x = 0, then 4x(x2 − 1 = 4x(x− 1)(x+ 1) = 0. We

find that f ′(x) = 0 if x = 0, 1,−1.
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Figure 3.3: Graph of f(x) = x4 − 2x2 + 2

3.3 Derivatives of Trigonometric functions

(1) d
dx(sinx) = cos x.

(2) d
dx(cosx) = − sinx.

(3) d
dx(tanx) = sec2 x.

(4) d
dx(secx) = sec x tanx.

(5) d
dx(cscx) = − cscx cotx.

(6) d
dx(cotx) = − csc2 x.

To prove (1), we need the following

sin(x+ h) = sin x cosh+ cosx sinh

sin2 θ =
1− cos(2θ)

2
, let θ =

h

2
, then sin2

(
h

2

)
=

1− cosh

2

So, we get

1− cosh = 2 sin2
(
h

2

)
⇒ cosh− 1 = −2 sin2

(
h

2

)
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lim
h→0

cosh− 1

h
= lim

h→0
−2

sin2
(
h
2

)
h

= lim
h→0

−2
sin

(
h
2

)
h

sin

(
h

2

)
= −1.0 = 0

We prove (1)

d

dx
sinx = lim

h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cosh+ cosx sinh− sinx

h

= lim
h→0

sinx(cosh− 1) + cos x sinh

h

= lim
h→0

sinx(cosh− 1)

h
+ lim

h→0

cosx sinh

h

= sin x lim
h→0

cosh− 1

h
+ cosx lim

h→0

sinh

h
= sin x.0 + cos x.1

= cos x

Similarly, we prove (2)

d

dx
cosx = lim

h→0

cos(x+ h)− cosx

h

= lim
h→0

cosx cosh− sinx sinh− cosx

h

= lim
h→0

cosx(cosh− 1)− sinx sinh

h

= lim
h→0

cosx(cosh− 1)

h
− lim

h→0

sinx sinh

h

= cos x lim
h→0

cosh− 1

h
− sinx lim

h→0

sinh

h
= sin x.0− sinx.1

= − sinx
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Derivative of other trigonometric functions. The derivative of y = tanx

d

dx
tanx =

d

dx

sinx

cosx

=
(cosx)(cosx)− (sinx)(− sinx)

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x

The derivative y = cotx

d

dx
cotx =

d

dx

cosx

sinx

=
(sinx)(− sinx)− (cosx)(cosx)

sin2 x

= −sin2 x+ cos2 x

sin2 x

= − 1

sin2 x
= − csc2 x

The derivative of y = secx

d

dx
secx =

d

dx

1

cosx

=
−(− sinx)

cos2 x

=
1

cosx

sinx

cosx
= sec x tanx
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Finally, the derivative of y = cscx

d

dx
cscx =

d

dx

1

sinx

=
− cosx

sin2 x

= − 1

sinx

cosx

sinx
= − cscx cotx

Example 3.3.1 Find the derivatives of the following functions:

1. d
dx

1
sinx+cosx = − cosx−sinx

(sinx+cosx)2 =
sinx−cosx

(sinx+cosx)2

2. d
dt

tan t
1+sec t =

(1+sec t) sec2 t−tan t(sec t tan t)
(1+sec t)2

3. d
dx tan(

√
x) = (sec2

√
x) 1

2
√
x
.

4. d
dθ cos(sin θ) = − sin(sin θ) cos θ

5. d
ds cot

(
1
s

)
= − csc2

(
1
s

) (−1
s2

)
= csc2

(
1
s

) (
1
s2

)
6. d

dx(secx tanx) = sec3 x+ secx tan2 x.

Example 3.3.2 Find the equation of the tangent line to the curve

f(x) = secx tanx at x = π
4 .

From the above example, the slope of the tangent line is f ′(π4 ) =

sec3(π/4)+sec(π/4) tan(π/4) = 3
√
2 and f(π4 ) =

√
2, so the line passes

through the point
(
π
4 ,
√
2
)
. Then, the equation of the tangent line to

the curve f(x) at the point
(
π
4 ,
√
2
)
is

y −
√
2 = 3

√
2(x− π

4
)

We can find higher order derivatives, for example, if y = x3 + x2 then

y′ = 3x2 + 2x, y′′ = 6x+ 2, y′′′ = 6.
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3.4 Implicit differentiation

In this section, we consider equations that define relation between x

and y. We will learn how to find dy
dx using implicit differentiation. Let

us consider some examples:

Example 3.4.1 The equation x2 + y2 = 1 defines the unit circle (the

circle with center (0, 0) and radius one). To find y′, we differentiate

both sides with respect to x to get 2x+ 2yy′ = 0, from which we find

that y′ = −x/y.

We can differentiate again to find the second order derivative y′′.

y′′ =
d2y

dx2
=

−y + xy′

y2
=

−y + x(−x
y )

y2
= −x2 + y2

y3
=

−1

y3

Example 3.4.2 Consider the implicit equation xy = cot(xy). Differ-

entiate both sides with respect to x. Then

y+x
dy

dx
= − csc2(xy)(y+x

dy

dx
) ⇒ (x+csc2(xy))

dy

dx
= −y−y csc2(xy)

From which we find that

dy

dx
=

−y − y csc2(xy)

x+ x csc2(xy)
=

−y(((((((((
(1 + csc2(xy))

x(((((((((
(1 + csc2(xy))

= −y

x

Example 3.4.3 The point (1, 1) lies on the curve x3 + y3 − 2xy = 0.

Then find the tangent and normal to the curve there. Differentiating

implicitly, we get

3x2 + 3y2
dy

dx
− 2y − 2x

dy

dx
= 0 ⇒ 3x2 − 2y + (3y2 − 2x)

dy

dx
= 0

from which we get
dy

dx
= −3x2 − 2y

3y2 − 2x
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The slope of the tangent line at (1, 1) equals −1 and the slope of the

normal line equals 1. So, the equation of the tangent line and normal

line are

Tangent line y − 1 = −(x− 1), normal line y − 1 = x− 1

So, the equation of the tangent line is y = 2 − x and the equation of

the normal line is y = x.

Figure 3.4: Plot of x3 + y3 − 2xy = 0 and its

tangent and normal lines at (1, 1)

Example 3.4.4 Find the two points where the curve x2+xy+ y2 = 7

crosses the x−axis and show that the tangents to the curve at these

points are parallel. The curve crosses the x−axis when y = 0, so we get

x2 = 7 and x = ±
√
7. Then, the curve crosses the x−axis at (±

√
7, 0).

Now, we find y′.

2x+y+x
dy

dx
+2y

dy

dx
= 0 ⇒ (2x+y)+(x+2y)

dy

dx
= 0 ⇒ dy

dx
=

−2x− y

x+ 2y

when y = 0, we get
dy

dx
=

−2x

x
= −2
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3.5 Linearization and Differentials

Sometimes, we need to approximate a given nonlinear function with a

linear function at some point near (a, f(a)). The best linear function

that approximates f(x) near x = a, provided that f is differentiable

at x = a, is its tangent line whose equation is given by

L(x) = f(a) + f ′(a)(x− a)

L(x) is called the linearization of f(x) at x = a and the approxima-

tion f(x) ≈ L(x) is called the standard linear approximation of f

at a.

Example 3.5.1 Find the linearization of the function f(x) =
√
1 + x

at x = 0. We find that f(0) = 1 and f ′(x) = 1
2(1+x)−1/2, so f ′(0) = 1

2 .

The linearization of f at x = 0 is L(x) = 1 + 1
2x.

Figure 3.5: Plot of f(x) =
√
1 + x and its

linearization L(x) = 1 + x
2

We can use the linearization to approximate the values of f near

x = 0. Of course, the closer is x to 0, the better is the approximation.
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x Approximation True value |True value-Approx.|
0.2

√
1.2 ≈ 1 + 0.2

2 = 1.1 1.095445 < 10−2

0.05
√
1.05 ≈ 1 + 0.05

2 = 1.025 1.024695 < 10−3

0.005
√
1.005 ≈ 1 + 0.005

2 = 1.00250 1.002497 < 10−5

Example 3.5.2 Find the linearization of the function f(x) =
√
1 + x

at x = 3. Note that f(3) = 2, f ′(x) = 1
2(1 + x)−1/2, so f ′(3) = 1

4 . The

linearization of f(x) at x = 3 is given by

L(x) = 2 +
1

4
(x− 3)

We plot the graph of f(x) with its linearizations at x = 0 and x = 3.

Figure 3.6: The graph of f(x) with its lin-

earizations

Example 3.5.3 Find the linearization of the function f(x) = secx at

x = π
4 . We need to find f(π4 ) and f ′(π4 ). Now, f ′(x) = secx tanx, so

f ′(π4 ) =
√
2 and f(π4 ) =

√
2. Then the linearization is

L(x) =
√
2 +

√
2(x− π

4
)

Now, suppose that we move from a point x = a to a nearby point

a+ dx. The change in f is

∆f = f(a+ dx)− f(a)
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while the change in L is

∆L = L(a+ dx)− L(a)

= ���f(a) + f ′(a)(�a + dx− �a)− ���f(a)

= f ′(a)dx

Now, near x = a, we have

f ≈ L then ∆f ≈ ∆L = f ′(a)dx

Therefore, f ′(a)dx gives an approximation for ∆f . The quantity f ′(a)dx

is called the differential of f at x = a. So, we get

∆f ≈ df

Example 3.5.4 Find the differentials of the following functions

(1) f(x) = tan2 x, then df(x) = 2 tanx sec2 x dx

(2) g(x) = 1
x then df(x) = −dx

x2

Example 3.5.5 The radius r of a circle increases from 10 to 10.1 m.

Use dA to estimate the increase in the circle’s area A. Estimate the

area of the enlarged circle and compare your estimate to the true area

found by direct calculations.

Solution: The area of the circle is A(r) = πr2. Then dA = 2πrdr.

The estimated increase in the area of the circle is

dA = 2π(10)0.1 = 2π

The exact change in the area of the circle is

∆A = A(10.1)− A(10) = 102.01π − 100π = 2.02π

The estimate area of the enlarged circle is

A(10.1) ≈ A(10) + dA = 100π + 2π = 102π
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The exact value of the area of the enlarged circle isA(10.1) = π(10.1)2 =

102.01π. The error in this estimation is |102.01π − 102π| = 0.01π.

3.6 Exercises

1. Find the derivatives of the following functions:

(a) f(s) =
√
s−1√
s+1

(b) f(x) = ( 1x − x)(x2 + 1)

(c) g(x) = sec(2x+ 1) cot(x2)

(d) s(t) = 1+csc t
1−csc t

(e) f(x) = x3 sinx cosx.

(f) x1/2 + y1/2 = 1.

2. Find dy
dx for the following:

(i) y = cot2 x

(ii) x2 + y2 = x.

(iii) y = sinx
1−cosx .

3. Find the points on the curve y = 2x3 − 3x2 − 12x + 20 where the

tangent is parallel to the x−axis.

4. For what values of the constant a, if any, is

f(x) =

{
sin(2x) , x ≤ 0

ax , x > 0

(i) continuous at x = 0?

(ii) Differentiable at x = 0.
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5. Find the normals to the curve xy+2x− y = 0 that are parallel to

the line 2x+ y = 0.

6. Find the linearization of the following functions at the given points

(a) f(x) = tan x, x = π/4.

(b) g(x) = 1
x , x = 1.

(c) h(x) = x2

x2+1 , x = 0.

(d) f(x) = 1 + cos θ, θ = π
3 .

7. The radius of a circle is increased from 2 to 2.02 m.

(a) Estimate the resulting change in area.

(b) Express the estimate as a percentage of the circle’s original

area.
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Chapter 4

Applications of derivatives

In this chapter, we show how can we use derivatives to find the periods

in which a given function f(x) is increasing or decreasing and the

periods in which f is concave up or concave down. Moreover, we use

derivatives to find the extreme values of f(x).

4.1 Increasing and decreasing functions

Definition 4.1.1 Let f(x) be a function defined on an interval I.

Then,

(a) f is increasing on I if whenever x2 > x1 then f(x2) > f(x1), for

all x1, x2 in I.

(b) f is decreasing on I if whenever x2 > x1 then f(x2) < f(x1), for

all x1, x2 in I.

For example, the functions x, x3,
√
x are increasing functions, while the

functions 1−x,−x3 and 1
x , x > 0 are all decreasing. In general, it may

be not easy to find the intervals over a given function is increasing or

decreasing. We use the first derivative to find these intervals as in the

following theorem

39
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Theorem 4.1.1 Suppose that f is continuous on [a, b] and differen-

tiable on (a, b) then

(a) If f ′(x) > 0, for all x ∈ (a, b) then f is increasing on [a, b].

(b) If f ′(x) < 0, for all x ∈ (a, b), then f is decreasing on [a, b].

Example 4.1.1 Let f(x) = x3 − 12x− 5. Then

f ′(x) = 3x2 − 12 = 3(x− 2)(x+ 2)

Note that f ′(x) > 0 for all x ∈ (−∞,−2)∪ (2,∞) and f ′(x) < 0 for all

x ∈ (−2, 2). So, f is increasing on (−∞,−2] ∪ [2,∞) and decreasing

on [−2, 2].

Example 4.1.2 Let g(x) = x3 + x2 − x+ 1 then

g′(x) = 3x2 + 2x− 1 = (3x− 1)(x+ 1)

Then, g′(x) > 0 for all x ∈ (−∞,−1) ∪ (13 ,∞) and g′(x) < 0 for all

x ∈ (−1, 13). So, g is increasing on (−∞,−1]∪ [13 ,∞) and is decreasing

on [−1, 13 ].

Figure 4.1: Limit of a function Figure 4.2: Example of limits
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4.2 Extreme values of functions

Definition 4.2.1 Let f be a function with domain D. Then,

(a) f has an absolute maximum value on D at a point c if f(x) ≤
f(c), for all x ∈ D.

(b) f has an absolute minimum value on D at a point c if f(x) ≥
f(c), for all x ∈ D.

f(c) is called local maximum (resp. local minimum) if the inequality

in (a) (resp. (b)) holds in a small interval around x = c.

Example 4.2.1 The function f(x) = x3, D = [−1, 1] has absolute

minimum value f(−1) = −1 and absolute maximum value f(1) = 1.

Similarly, the function f(x) = x2 on [−1, 1] has absolute maximum

at x = ±1 and absolute minimum at x = 0. But if we consider the

functions x2 and x3 over the open interval (−1, 1) then x3 has neither

maximum nor minimum on (−1, 1) and x2 has absolute minimum at

x = 0.

Figure 4.3: The graph of f(x) = x3 on [−1, 1] Figure 4.4: The graph of f(x) = x2 on [−1, 1]
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Theorem 4.2.1 If f is continuous on a closed interval [a, b] then f

has both an absolute maximum value and an absolute minimum value.

To find the extreme values of a function f on a closed interval, we look

for these values at the endpoints of the interval and at the interior

points where f ′ = 0 or undefined (critical points).

Definition 4.2.2 An interior point where f ′ equals zero or undefined

is called a critical point of f .

Example 4.2.2 Let f(x) = x
√
1− x2. The domain of this function is

D = [−1, 1] and f is differentiable on (−1, 1) with derivative

f ′(x) =
√
1− x2 + x

−��2x

��2
√
1− x2

=
1− 2x2√
1− x2

Then, f ′(x) = 0 when 1 − 2x2 = 0 and f has two critical points

x = ± 1√
2
·

Example 4.2.3 Let f(x) = x2/3, D = [−1, 8]. The derivative of f is

f ′(x) = 2
3x1/3 . Then f ′(0) is undefined. To find the extreme values of

f , we evaluate f at the endpoints x = −1, x = 8 and at the critical

point x = 0. Since f(−1) = 1, f(0) = 0, f(8) = 4, then f(0) = 0 is an

absolute minimum and f(8) = 4 is an absolute maximum.

Theorem 4.2.2 If f is differentiable and has an extreme value at an

interior point c then f ′(c) = 0.

If f ′(c) = 0, this does not mean that f has an extreme value (maximum

or minimum) at x = c. For example, x = 0 is a critical point of

f(x) = x3 but f(0) is neither maximum nor minimum for y = x3.

To classify the critical as maximum or minimum, we can use either

the first derivative test or the second derivative test which we state

now.
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Figure 4.5: Graph of f(x) = x2/3 Figure 4.6: Graph of f(x) = x
√
1− x2

Theorem 4.2.3 (First derivative test) Suppose that f has a crit-

ical point at x = c and that f ′(x) exists in an open interval containing

x = c. Then

(a) If f ′ changes sign from positive to negative at x = c then f(c) is a

local maximum.

(b) If f ′ changes sign from negative to positive at x = c then f(c) is a

local minimum.

(c) If f ′ does not change sign at x = c then f does not have an extreme

value at x = c.

Example 4.2.4 Consider the function f(x) = x
√
1− x2 from example

(4.2.2) whose derivative is

f ′(x) =
1− 2x2√
1− x2

f has two critical point x = ± 1√
2
, the sign of f ′ is

−−−−−−1√
2
+ + +++

1√
2
−−−−−
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So, f has a local minimum at x = − 1√
2
and local maximum at x = 1√

2
.

Its maximum value is f
(

1√
2

)
= 1

2 and its minimum value is f
(

−1√
2

)
=

−1
2 . In fact, as it is clear from figure (4.6) these extreme values are

absolute.

Theorem 4.2.4 (Second derivative test) Suppose that f ′(c) = 0

and that f ′′ is continuous in an open interval containing c. Then

(a) If f ′′(c) < 0 then f(c) is a local maximum.

(b) If f ′′(c) > 0 then f(c) is a local minimum.

(c) If f ′′(c) = 0 then the test fails.

If f ′′(x) ≥ 0 for all x in an interval I then f is concave up on I. If

f ′′(x) ≤ 0 for all x in an interval I then f is concave down on I.

Definition 4.2.3 A point where f has tangent line and changes con-

cavity is called an inflection point of f .

Example 4.2.5 Find the intervals at which the function

f(x) = x4 − 4x3 + 10

is increasing, decreasing, concave up and concave down. Then, find

the extreme values of f .

Solution: The first and second derivatives of f are given by

f ′(x) = 4x2(x− 3) and f ′′(x) = 12x(x− 2)

We find that f ′(x) = 0 at x = 0 and x = 3, f ′′(x) = 0 at x = 0 and

x = 2, so f has two critical points x = 0 and x = 3. The signs of f ′

and f ′′ are found to be as

f ′ −−−−−−− 0−−−−−−− 3 + + +++++
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f ′′ +++++++ 0−−−−− 2 + + +++++

Hence, f ′(x) < 0 for all x ∈ (−∞, 0) ∪ (0, 3) and f ′(x) > 0 for all x ∈
(3,∞). We conclude that f is decreasing on (−∞, 3] and f is increasing

on [3,∞). It follows that f(3) = −17 is an absolute minimum.

Moreover, f ′′(x) > 0 for all x ∈ (−∞, 0) ∪ (2,∞) and f ′′(x) < 0 for

all x ∈ (0, 2). We conclude that f is concave up on (−∞, 0] ∪ [2,∞)

and f is concave down on [0, 2]. Finally, f has inflection points at

(0, 10) and (2,−6).

Figure 4.7: Graph of y = x4 − 4x3 + 10
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Example 4.2.6 Consider the function

f(x) =
x2

x+ 1
= x− 1 +

1

x+ 1

Then,

f ′(x) =
(x+ 1)2x− x2

(x+ 1)2
=

x2 + 2x

(x+ 1)2
=

x(x+ 2)

(x+ 1)2

and

f ′′(x) =
(x+ 1)2(2x+ 2)− (x2 + 2x)(2)(x+ 1)

(x+ 1)4

=
2(x+ 1)2 − 2(x2 + 2x)

(x+ 1)3

=
2x2 + 4x+ 2− 2x2 − 4x

(x+ 1)3

=
2

(x+ 1)3

(1) Domain of f : (−∞,∞)\{−1}
(2) lim

x→+∞
x2

x+1 = lim
x→+∞

x
1+ 1

x

= +∞

(3) lim
x→−∞

x2

x+1 = lim
x→−∞

x
1+ 1

x

= −∞

(4) Horizontal asymptotes: None

(5) lim
x→−1+

x2

x+1 = +∞

(6) lim
x→−1−

x2

x+1 = −∞

(7) Vertical asymptote: x = −1

(8) Oblique asymptote y = x− 1

(9) Critical points x = 0,−2 since f ′(x) = 0 at x = 0, x = −2
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(10) f ′ +++++(−2)−−−(−1)−−−0+++++, so f is increasing

on (−∞,−2] ∪ [0,∞) and decreasing on [−2,−1) ∪ (−1, 0]

(11) f(−2) = −4 is a local maximum.

(12) f(0) = 0 is a local minimum.

(13) f ′′ −−−−− (−1)+++++, so f is concave down on (−∞,−1)

and concave up on (−1,∞)

(14) Absolute maximum and absolute minimum values: None.

(15) Inflection points: None.

(16) Range of f : (−∞,−4] ∪ [0,∞)

Figure 4.8: Graph of f(x) = x2

x+1 and its

asymptotes
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Example 4.2.7 Consider the function

f(x) =
x2

x2 − 1

Then

f ′(x) =
(x2 − 1)(2x)− x2(2x)

(x2 − 1)2
=

2x3 − 2x− 2x3

(x2 − 1)2
=

−2x

(x2 − 1)2

and

f ′′(x) =
(x2 − 1)2(−2) + 2x(2)(2x)(x2 − 1)

(x2 − 1)4

=
−2(x2 − 1) + 8x2

(x2 − 1)3

=
6x2 + 2

(x2 − 1)3

(1) Domain (−∞,∞)\{±1}

(2) lim
x→±∞

x2

x2−1 = 1

(3) Horizontal asymptote y = 1

(4) lim
x→1+

x2

x2−1 = +∞

(5) lim
x→1−

x2

x2−1 = −∞

(6) lim
x→−1+

x2

x2−1 = −∞

(7) lim
x→−1−

x2

x2−1 = +∞

(8) Vertical asymptotes: x = 1 and x = −1

(9) Critical point x = 0 since f ′(0) = 0

Uploaded By: Malak ObaidSTUDENTS-HUB.com



4.2. EXTREME VALUES OF FUNCTIONS 49

(10) f ′ +++++(−1)+++++0−−−−−1−−−−−, so f is increasing

on (−∞,−1) ∪ (−1, 0] and f is decreasing on [0, 1) ∪ (1,∞)

(11) f(0) = 0 is a local maximum.

(12) Local minimum: None

(13) Absolute maximum and absolute minimum: None

(14) f ′′ + + + + + (−1)−−−−− 1 + + + ++, so f is concave up

on (−∞,−1) ∪ (1,∞) and concave down on (−1, 1).

(15) Inflection points: None.

(16) Range of f : (−∞, 0] ∪ (1,∞)

Figure 4.9: Graph of f(x) = x2

x2−1 and its

asymptotes
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Example 4.2.8 Consider the function

f(x) =
x

x2 + 1

Then

f ′(x) =
(x2 + 1)− x(2x)

(x2 + 1)2
=

1− x2

(x2 + 1)2

f ′′(x) =
(x2 + 1)2(−2x)− (1− x2)(2)(1 + x2)(2x)

(x2 + 1)2

=
−2x(x2 + 1)− 4x(1− x2)

(x2 + 1)3

=
2x3 − 6x

(x2 + 1)3

=
2x(x2 − 3)

(x2 + 1)3

(1) Domain: (−∞,∞)

(2) lim
x→±∞

x
x2+1 = 0

(3) Horizontal asymptote: y = 0

(4) Vertical asymptote: None

(5) Oblique asymptote: None

(6) Critical points: x = 1 and x = −1 since f ′(±1) = 0

(7) f ′ −−−−− (−1) +++++ 1−−−−−, so f is increasing on

[−1, 1] and f is decreasing on (−∞,−1] ∪ [1,∞)

(8) Local maximum f(1) = 1
2

(9) Local minimum f(−1) = −1
2
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(10) Absolute maximum f(1) = 1
2

(11) Absolute minimum f(−1) = −1
2

(12) f ′′ −−−−− (−
√
3) + ++++ 0−−−−−

√
3 + ++++, so

f is concave up on [−
√
3, 0] ∪ [

√
3,∞) and f is concave down on

(−∞,−
√
3] ∪ [0,

√
3]

(13) Inflection points (−
√
3, −

√
3

4 ), (0, 0), (
√
3,

√
3
4 )

(14) Range of f : [−1
2 ,

1
2 ]

Figure 4.10: Graph of f(x) = x
x2+1
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4.3 The Mean Value Theorem

Theorem 4.3.1 Rolle’s Theorem If y = f(x) is continuous on the

closed interval [a, b] and differentiable on (a, b) and f(a) = f(b), then

there is at least one point c in (a, b) such that f ′(c) = 0.

Theorem 4.3.2 The Mean Values Theorem If y = f(x) is con-

tinuous on the closed interval [a, b] and differentiable on (a, b), then

there is at least one point c in (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

Figure 4.11: Graph of f(x) = x2

x2−1 and its asymptotes

The mean value theorem means that, at some point c in the interval

[a, b], the slope of the tangent line at (c, f(c)) equals the slope of the

secant line through the points (a, f(a)) and (b, f(b)).

Example 4.3.1 Let f(x) = x2, x ∈ [1, 4]. Find the point c in the

conclusion of the mean value theorem. Note that f is continuous on
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[1, 4] and differentiab le on (1, 4). Then,

f(4)− f(1)

4− 1
=

16− 1

4− 1
=

15

3
= 5, f ′(c) = 2c ⇒ 5 = 2c ⇒ c =

5

2

4.4 Exercises

1. Find the intervals in which the following functions are increasing,

decreasing, concave up and concave down. Then, find the extreme

values and inflection points and sketch their graphs:

(a) y = 1− (x+ 1)3

(b) y = x2+1
x

(c) y = x4 − 2x2

(d) y = x2−3
x−2

(e) y = 3
√
x3 + 1

(f) y = x
x2−1

(g) y = x
√
8− x2

2. Find the value of c in the conclusion of the mean value theorem

for the function f(x) =
√
x on the interval [a, b], a > 0.

3. For what values of a,m and b does the function

f(x) =


3 , x = 0

−x2 + 3x+ a , 0 < x < 1

mx+ b , 1 ≤ x ≤ 2

satisfy the hypotheses of the mean value theorem on the interval

[0, 2].
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Chapter 5

Integration

5.1 Antiderivative and integration

Definition 5.1.1 A function F is called an antiderivative of a func-

tion f on an interval I if F ′(x) = f(x), for all x in I. The set of all

antiderivatives of f is called the indefinite integral of f and is de-

noted by
∫
f(x)dx.

Example 5.1.1 An antiderivative of the function f(x) = 2x is F (x) =

x2 since F ′(x) = 2x = f(x). All antiderivatives of f(x) = x2 are given

by F (x) = x2 + C, for any constant C.

Example 5.1.2 In this example, we give the indefinite integrals of

some important functions

(a)
∫
xndx = xn+1

n+1 + C, n ̸= −1

(b)
∫
sinxdx = − cosx+ C

(c)
∫
cosxdx = sinx+ C

(d)
∫
sec2 xdx = tanx+ C

(e)
∫
secx tanxdx = secx+ C

55
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56 CHAPTER 5. INTEGRATION

(f)
∫
cscx cotxdx = − cscx+ C

(g)
∫
csc2 xdx = − cotx+ C

Example 5.1.3 Consider the following examples:

(a)
∫
(x−2 − x2 + 1)dx = − 1

x − 1
3x

3 + x+ C

(b)
∫
cos2 θdθ =

∫ 1+cos(2θ)
2 dθ = 1

2

∫
(1 + cos(2θ))dθ = 1

2(θ +
sin(2θ)

2 ) + C

(c)
∫
sin2 x dx =

∫ 1−cos(2x)
2 dx = 1

2

∫
(1−cos(2x))dx = 1

2(x−
sin(2x)

2 )+C

(d)
∫
cot2 x dx =

∫
(csc2 x− 1)dx = − cotx− x+ C

5.2 Definite integrals and areas

Sometimes, we evaluate integrals on given intervals. Such integrals are

called definite integrals and take the form∫ b

a

f(x)dx

We can solve definite integrals using the fundamental theorem of cal-

culus:

Theorem 5.2.1 Fundamental Theorem of Calculus

(I) Suppose that f is continuous on [a, b] and F is an is an an-

tiderivative of f on [a, b] then∫ b

a

f(x)dx = F (b)− F (a)

(II) Suppose that f is continuous on [a, b] and F (x) =
∫ x

a f(t)dt then

F is continuous on [a, b] and differentiable on (a, b) and F ′(x) =

f(x).
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If f(x) ≥ 0 is an integrable function on [a, b] then
∫ b

a f(x)dx is the area

enclosed between the curve f(x) and the x−axis.

Example 5.2.1 Find the derivatives of the following functions

(a) d
dx

∫ x

0 sin tdt = sinx.

(b) d
dx

∫ x2

1
dt

1+t2 =
2x

1+x4

(c) d
dx

∫ 1

sinx
dt
t = d

dx

(
−
∫ sinx

1
dt
t

)
= −cosx

sinx = − cotx

(d) d
dx

∫ x3

x2 sin t dt = sin(x3)(3x2)− sin(x2)(2x)

Example 5.2.2 Find the area enclosed between the following curves

and the x−axis in the given intervals

(a) f(x) = 2x
√
x2 + 1, x ∈ [0, 1]. The area is given by the following

integral

A =

∫ 1

0

2x
√

x2 + 1dx

using substitution u = x2 + 1, du = 2xdx. The integral can be

written as

A =

∫ 2

1

u1/2du =
2

3
u3/2

∣∣∣∣2
1

=
2

3
(2
√
2− 1)

We can find the area enclosed between two functions f(x) and g(x) in

some interval [a, b] where f(x) ≥ g(x), using the formula

A =

∫ b

a

(f(x)− g(x))dx

Sometimes, the functions are expressed in terms of y in some interval

[c, d], so the area in this case is

A =

∫ d

c

(f(y)− g(y))dy
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The next examples explain both cases.

Example 5.2.3 Find the area enclosed between the curves f(x) =

2− x2 and y = −x.

Figure 5.1: Plot of f(x) = 2−x2, g(x) = −x

Solution We first find the points at which the two curves intersect by

equating the functions

−x = 2− x2 which is equivalent to x2 − x− 2 = 0

The last equation can be factorized as (x + 1)(x − 2) = 0. Thus, the

two curves intersect at x = −1 and x = 2. So, the area is given by

A =

∫ 2

−1

(2− x2 + x)dx

=

(
2x− x3

3
+

x2

2

∣∣∣∣2
−1

= 4− 8

3
+ 2 + 2− 1

3
− 1

2

=
9

2
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Example 5.2.4 Find the area enclosed between the curves y =
√
x,

the x−axis and the line y = x− 2. It is easier to write x as a function

of y and to integrate with respect to y. In this case, we have x = y2

and x = y + 2. The two curves intersect at the point y = 2. The area

is given by the integral

A =

∫ 2

0

(y + 2− y2)dy

=

(
y2

2
+ 2y − y3

3

∣∣∣∣2
0

= 2 + 4− 8

3

=
10

3

integrating with respect to x,

A =

∫ 2

0

√
xdx+

∫ 4

2

(
√
x− (x− 2))dx =

10

3
(check!!!)

Figure 5.2: Plot of y =
√
x and y = x− 2
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5.3 Additional Examples

Example 5.3.1 Solve
∫ √

x4

x3−1dx∫ √
x4

x3 − 1
dx =

∫
x2√
x3 − 1

dx

using the substitution u = x3 − 1, du = 3x2dx, the integral becomes

1

3

∫
du

u1/2
=

1

3

∫
u−1/2du =

2

3

√
u =

2

3

√
x3 − 1 + C

Example 5.3.2 Find the area enclosed between the curve f(x) =

x1/3 − x and the x−axis in the interval [−1, 8]. Notice that f(x) = 0

at x = −1, 0, 1, and its graph lies below the x−axis in the intervals

[−1, 0], [1, 8] and above the x−axis in the interval [0, 1]. So,

A =

∣∣∣∣∫ 0

−1

(x1/3 − x)dx

∣∣∣∣+ ∫ 1

0

(x1/3 − x)dx+

∣∣∣∣∫ 8

1

(x1/3 − x)dx

∣∣∣∣
=

∣∣∣∣34x4/3 − x2

2

∣∣∣∣0
−1

∣∣∣∣∣+
(
3

4
x4/3 − x2

2

∣∣∣∣1
0

+

∣∣∣∣34x4/3 − x2

2

∣∣∣∣8
1

∣∣∣∣∣
=

∣∣∣∣−3

4
+

1

2

∣∣∣∣+ (
3

4
− 1

2

)
+

∣∣∣∣12− 32− 3

4
+

1

2

∣∣∣∣
=

1

4
+

1

4
+

81

4

=
83

4
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Figure 5.3: Plot of f(x) = x1/3 − x

5.4 Exercises

1. Solve the following integrals:

(a)
∫
sin(5x)dx

(b)
∫
tan2 xdx

(c)
∫
(1 + cot2 θ)dθ.

(d)
∫

csc θdθ
csc θ−sin θ

2. Find the derivatives of the following functions

(a) y =
∫ x

1
dt
t

(b) y =
∫ √

x

0 cos tdt

(c) y =
∫ 0

tanx
dt

1+t2

3. Find the linearization of g(x) = 3 +
∫ x2

1 sec(t− 1)dt at x = −1

4. Solve the following definite integrals

(a)
∫ √

2

1
s2+

√
s

s2 ds
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(b)
∫ π/6

0 (secx+ tanx)2dx

(c)
∫ π

0 (cosx+ | cosx|)dx
5. Use substitution to solve the following integrals:

(a)
∫

dx√
x(1+

√
x)2

(b)
∫

sec z tan z√
sec z

dz

(c)
∫ √

x−1
x5 dx

(d)
∫
x3
√
x2 + 1dx

6. Find the area enclosed between the given functions:

(a) y = x2 − 2x, y = x

(b) y = x2, y = −x2 + 4x

(c) x = y2, x = 3− 2y2

(d) x = y3 − y2, x = 2y
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Basics (Self Study)

• Functions: are maps in which every x value has only one image f(x) = y

•y-intercept: Where f crosses y-axis → Let x = 0, then find y = f(0)

•x-intercept (zero or root): Where f crosses x-axis → Let y = 0, then find x

• Shifting and reflections: Given a function y = f(x) and a constant c > 0, then

1) y = f(x) + c : Shift the graph of f(x) c units upward.

2) y = f(x)− c : Shift the graph of f(x) c units downward.

3) y = f(x+ c) : Shift the graph of f(x) c units leftward.

4) y = f(x− c) : Shift the graph of f(x) c units rightward.

5) y = −f(x) : Reflect the graph of f(x) about x-axis.

6) y = f(−x) : Reflect the graph of f(x) about y-axis

x

y

y = x2
x

y

y = −x2

x

y

y = x2 + 1

1

x

y

y = (x + 1)2−1

• Linear functions (Lines):

• General Form: y = f(x) = mx+ b , where m = ∆y
∆x

= y′ is the slope of the line.

• (y − y0) = m(x− x0): Gives the equation of the line with slope m and passes through (x0, y0)

•: Horizontal line: y = c → Slope = 0

•: Vertical line: x = c → Slope undefined

•: If L1 and L2 are two lines with slopes m1 and m2 respectively, then

1) L1 and L2 are parallel if m1 = m2

2) L1 and L2 are perpendicular (normal) if m1 = − 1
m2

• Solving Equations and inequalities with absolute value:

• |x| = a→ x = ±a
• |x| ≤ a→ −a ≤ x ≤ a

• |x| ≥ a→ x ≤ −a or x ≥ a

• Special Factorizations:

• x2 − a2 = (x− a)(x+ a)

• x3 − a3 = (x− a)(x2 + ax+ a2)

• x3 + a3 = (x+ a)(x2 − ax+ a2)

i
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• Quadratic functions (Parabolas):

• General Form: y = f(x) = ax2 + bx+ c ; a 6= 0

• Vertex: is the point (−b
2a
, f(−b

2a
))

• Discriminant= b2 − 4ac
1) If discriminant > 0, then f(x) has two real roots.

2) If discriminant = 0, then f(x) has one real root.

3) If discriminant < 0, then f(x) has no real roots.

• Quadratic formula: x =
−b±

√
b2 − 4ac

2a

If a > 0 then the parabola is open upward (concave up)

If a < 0 then the parabola is open downward (concave down)

• Square Completion: Given x2 + bx+ c, (notice that a = 1), add ±( b
2
)2

→ x2 + bx+ c = x2 + bx+ ( b
2
)2 − ( b

2
)2 + c = (x− | b

2
|)2 − ( b

2
)2 + c

Ex: x2 − 6x+ 11 = x2 − 6x+ 9− 9 + 11 = (x− 3)2 + 2

• Special Quadratic Curves in y: x = y2 and x = −y2

x = y2: a parabola open to the right with vertex (0, 0)

x = −y2: a parabola open to the left with vertex (0, 0)

Examples of shifts on x = y2:

1) x = y2 + 3: Shift the graph of x = y2 three units to the right

2) x = y2 − 3: Shift the graph of x = y2 three units to the left

3) x = (y + 3)2: Shift the graph of x = y2 three units downward

4) x = (y − 3)2: Shift the graph of x = y2 three units upward

x

y

x = y2

x

y

x = −y2

x

y

x = y2 + 3

3
x

y

x = y2 − 3

−3

•Circles:

(x− a)2 + (y − b)2 = r2: a circle with center (a, b) and radius r

• Unit circle: x2 + y2 = 1: center= (0, 0) and radius = 1

ii
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• Determine the sign of y = f(x): Sometimes we need to know when y is positive
(above x-axis) and when y is negative (below x-axis)

1) Polynomials: Find the zeros, if any, then substitute values

Ex: f(x) = 4− 2x → 4− 2x = 0 → x = 2 (take f(0) = 4 > 0 but f(3) = −2 < 0)

2

+ + −−

Ex: f(x) = x2 − x− 2 → x2 − x− 2 = 0 → x = −1, 2
(f(−2) = 4 > 0 , f(0) = −2 < 0 , f(3) = 4 > 0)

−1 2

+ + −− + +

Ex: f(x) = x3 − 4x → x3 − 4x = 0 → x = −2, 0, 2

−2 0 2

−− + + −− + +

Ex: f(x) = x2 + 3 has no zeros, so substitute any value f(1) = 4 > 0

+ +

2) Rational functions = polynomial
polynomial

: Determine sign of numerator, then denominator, then divide

Ex: f(x) = x3+1
x2−4

Numerator: x3 + 1 = 0 → x = −1

Denominator: x2 − 4 = 0 → x = −2, 2

−1

−− + +
Numerator

−2 2

+ + −− + +
Denomiantor

−2 −1 2

−− + + −− + +f(x)

Ex: f(x) = −2
x2+1

‘The numerator is always negative and the denominator is always positive, so f is always negative.

−−f(x)
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• Trigonometric functions
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• Unit Circle and trigonometric functions:

Recall: Unit Circle: x2 + y2 = 1 and cos2 θ + sin2 θ = 1

→ For any point on this circle: (x, y) = (cos θ, sin θ) ,where θ : is the angle (counterclockwise)
between the positive x-axis and the line segment form origin to point (x, y)

Ex: (
√

3
2
, 1

2
) = (cos(π

6
), sin(π

6
)) , (0, 1) = (cos(π

2
), sin(π

2
)) , (− 1√

2
, 1√

2
) = (cos(3π

4
), sin(3π

4
))

x

y

1
x

1
y

•

θ

(x, y) = (cos θ, sin θ)
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