Chapter 7.1, Problem 15E

Problem

Let *F* and *G* be functions from the set of all real numbers to itself. Define the product functions $F \cdot G : \mathbf{R} \to \mathbf{R}$ and $G \cdot F : \mathbf{R} \to \mathbf{R}$ as follows: For all $x \in \mathbf{R}$, $(F \cdot G)(x) = F(x) \cdot G(x)$ $(G \cdot F)(x) = G(x) \cdot F(x)$ Does $F \cdot G = G \cdot F$? Explain.

Step-by-step solution

Step 1 of 2

Consider the functions F and G are defined from real numbers to itself.

Define the product $F \cdot G : \mathbb{R} \to \mathbb{R}$ and $G \cdot F : \mathbb{R} \to \mathbb{R}$ for all $x \in \mathbb{R}$ as follows,

 $(F \cdot G)(x) = F(x) \cdot G(x)$ $(F \cdot G)(x) = (G \cdot F)(x)$

Step 2 of 2

For all real number $x \in \mathbb{R}$

By the definition of $F \cdot G$,

 $(F \cdot G)(x) = F(x) \cdot G(x)$

Now, apply the commutative law for multiplication of real numbers,

 $(F \cdot G)(x) = G(x) \cdot F(x)$

Again by the definition of $G \cdot F$

$$(F \cdot G)(x) = (G \cdot F)(x)$$

Therefore, the functions F and G are satisfy the product $F \cdot G = G \cdot F$ for all real number

 $x \in \mathbb{R}$