BIRZEIT UNIVERSITY

COMPUTER SCIENCE DEPARTMENT FACULTY
OF ENGINEERING AND TECHNOLOGY

ADVANCED PROGRAMMING COMP231

Lecturer :Farid Mohammad

SSSSSSSSSSSSSSSS


https://students-hub.com

Object Oriented Thinking

STUDENTS-HUB.com


https://students-hub.com

Class Abstraction and Encapsulation

Class abstraction is the separation of class
implementation from the use of a class.

The details of implementation are encapsulated and
hidden from the user.
This is known as class encapsulation.

Listing 2.9, ComputeLoan.java, presented a program
for computing loan payments.

That program cannot be reused in other programs
because the code for computing the payments is
in the main method.

One way to fix this problem is to define static
methods for computing the monthly payment and
total payment.

However, this solution has limitations.
Suppose you wish to associate a date with the loan.
There is no good way to tie a date with a loan without

using objects.

The traditional procedural programming paradigm is
action-driven, and data are separated from actions.

To tie a date with a loan, you can define a loan class
with a date

A loan object now contains data and actions

Figure 10.2 shows the UML class diagram for the
Loan class.

STUDENTS-HUB.com

LisTiNG 2.9 Computeloan.java

1 dmport java.util.Scanner;

import class

3 public class ComputeLoan {
4 public static void main(String[] args) {
5 // Create a Scanner
6 Scanner input = new Scanner(System.in); create a Scanner
7
8 // Enter annual interest rate in percentage, e.g., 7.25%
9 System.out.print("Enter annual interest rate, e.g., 7.25%: ");
10 double annualInterestRate = input.nextDouble(); enter interest rate
11
12 // Obtain monthly interest rate
13 double monthlyInterestRate = annuallnterestRate / 1200;
14
15 // Enter number of years
16 System.out.print(
17 "Enter number of years as an integer, e.g., 5: ');
18 int numberOfYears = input.nextInt(); enter years
19
20 // Enter loan amount
21 System.out.print("Enter Toan amount, e.g., 120000.95: ");
22 double loanAmount = input.nextDouble(); enter loan amount
23
Loan

-annualInterestRate: double
-numberOfYears: int
-loanAmount: double
-ToanDate: java.util.Date

+Loan()

+Loan(annualInterestRate: double,
numberOfYears: int, loanAmount:
double)

+getAnnualInterestRate(): double
+getNumberOfYears(): int
+getlLoanAmount(): double
+getlLoanDate(): java.util.Date

+setAnnualInterestRate(
annualInterestRate: double): void

+setNumber0fYears(
numberOfYears: int): void

+setLoanAmount(
ToanAmount: double): void

+getMonthlyPayment(): double
+getTotalPayment(): double

The annual interest rate of the loan (default: 2.5).
The number of years for the loan (default: 1).
The loan amount (default: 1000).

The date this loan was created.

Constructs a default Loan object.

Constructs a loan with specified interest rate, years,
and loan amount.

Returns the annual interest rate of this loan.
Returns the number of the years of this loan.
Returns the amount of this loan.

Returns the date of the creation of this loan.
Sets a new annual interest rate for this loan.

Sets a new number of years for this loan.
Sets a new amount for this loan.

Returns the monthly payment for this loan.
Returns the total payment for this loan.



https://students-hub.com

Thinking in Objects

The procedural paradigm focuses on designing
methods.

The object-oriented paradigm couples data and
methods together into objects.

Software design using the
object-oriented paradigm focuses on objects and
operations on objects.

Chapters 1-8 introduced fundamental programming
techniques for problem solving using
loops, methods, and arrays.

Knowing these techniques lays a solid foundation for
object-oriented programming.

Classes provide more flexibility and modularity for
building reusable software.

This section improves the solution for a problem
introduced in Chapter 3 using the
object-oriented approach.

Listing 3.4, ComputeAndInterpretBMI.java, presented a program for
computing body
mass index.

The code cannot be reused in other programs, because the code is in
the main method.

To make it reusable, define a static method to compute body mass
index as follows:
public static double getBMI(double weight, double height)

L
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
Co
16
17
18
19
KI
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

ISTING 3.4 ComputeAndInterpretBMI.java

import java.util.Scanner;

public class ComputeAndInterpretBMI {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

// Prompt the user to enter weight in pounds
System.out.print("Enter weight in pounds: ");
double weight = input.nextDouble();

// Prompt the user to enter height in inches
System.out.print("Enter height in inches: ");
double height = input.nextDouble();

final double KILOGRAMS_PER_POUND = 0.45359237; //
nstant

final double METERS_PER_INCH = ©.0254; // Constant

// Compute BMI

double weightInKilograms = weight *
LOGRAMS_PER_POUND;

double heightInMeters = height * METERS_PER_INCH;
double bmi = weightInKilograms /

(heightInMeters * heightInMeters);

// Display result
System.out.println("BMI 1is " + bmi);
if (bmi < 18.5)
System.out.println("Underweight");
else if (bmi < 25)

System.out.println("Normal');
else if (bmi < 30)
System.out.println("Overweight");
else

System.out.println("Obese'");

}

}

STUDENTS-HUB.com



https://students-hub.com

This method is useful for computing body mass index for a
specified weight and height.
However, it has limitations.

Suppose you need to associate the weight and height with a
person’s name and birth date.

You could declare separate variables to store these values, but
these values would not be tightly coupled.

The ideal way to couple them is to create an object that
contains them all.

Since these values are tied to individual objects, they should be
stored in instance data fields.

You can define a class named BMI as shown in Figure 10.3.

BMI

The getter methods for these data fields
are provided in the class, but omitted in the
UML diagram for brevity.

-name: String /

-age: int
-weight: double
-height: double

+BMI(name: String, age: int, weight:

double, height: double)

+BMI(name: String, weight: double,
height: double)

+getBMI(): double
+getStatus(): String

The name of the person.

The age of the person.

The weight of the person in pounds.
The height of the person in inches.

Creates a BMI object with the specified
name, age, weight, and height.

Creates a BMI object with the specified
name, weight, height, and a default age 20.
Returns the BMIL.

Returns the BMI status (e.g., normal,
overweight, etc.).

FIGURE 10.3 The BMI class encapsulates BMI information.

LisTING 10.3 UseBMIClass.java

public class UseBMIClass {

public static void main(String[] args) {

BMI bmi1 = new BMI("Kim Yang", 18, , 70);
System.out.printin("The BMI for " + bmi1.getName() + "
is "

+ bmi1.getBMI() + " " + bmi1.getStatus());

BMI bmi2 = new BMI("Susan King", , 70);
System.out.printin("The BMI for " + bmi2.getName() + "
IS "

+ bmi2.getBMI() + " " + bmi2.getStatus());

}
}

STUDENTS-HUB.com

public class BMI {

private String names

private int ages

private double weights // in pounds
private double heights // in inches

public static final double KILOGRAMS_PER_POUND =

we

public static final double METERS_PER_INCH = :

public BMI(String name, int age. double weight, double height) {
this.name = names
this.age = age:
this.weight = weight;
this.height = heights

}

public BMI(String name. double weight., double height) {
this(name, 20, weight, height)s

}

public double getBMI() {

double bmi =

weight * KILOGRAMS_PER_POUND /

((height * METERS_PER_INCH) * (height * METERS_PER_INCH))s
return Math.round(bmi * )/

}

public String getStatus() §
double bmi = getBMI()s
if (bmi < )

return "Underweight"s
else if (bmi < 25)
return 'Normal's

else if (bmi < 30)
return "Overweight's
else

return "Obese's

}

public String getName() {
return names

}

public int getAge() {

return ages

}

public double getWeight() {
return weights

}

.
°



https://students-hub.com

public double getHeight() {
return heights

}

}

STUDENTS-HUB.com



https://students-hub.com

Class Relationships

To design classes, you need to explore the
relationships among classes.

What is
Class Relationship

The common relationships among classes
are:

Agsgociation

Aggregation

92321818 fotosearch.com

Composition

JInbieritance

STUDENTS-HUB.com



https://students-hub.com

Association

Association is a general binary relationship that
describes an activity between two classes.

For example, a student taking a course is an
association

between

the Student class

and the Course class,

and a faculty member teaching a course is an
association between

the Faculty

class

and the Course class.

These associations can be represented in UML
graphical notation,
as shown in Figure 10.4.

Take p Teach 4

0.3

: Faculty

Teacher

5.60
Student || L Course |

Figure 10.4 This UML diagram shows that a student may take any number of courses, a
faculty member may teach at most three courses, a course may have from five to sixty stu-
dents, and a course is taught by only one faculty member.

An association is illustrated by
a solid line between two classes with an optional label that
describes the relationship.

In Figure 10.4, the labels are Take and Teach

Each relationship may have an optional small black triangle that
indicates the direction of the relationship.

In this figure, the direction indicates that a student takes a course
(as opposed to a course taking a student).

Each class involved in the relationship may have a role name
that describes the role it plays in the relationship.

In Figure 10.4, teacher is the role name for Faculty.

Each class involved in an association may specify a multiplicity,
which is placed at the side of the class to specify how many of
the class’s objects are involved in the relationship in UML.

The character * means an unlimited number of objects, and the
interval m..n indicates that the number of objects is between m
and n, inclusively.

In Figure 10.4, each student may take any number of courses,
and
each course must have at least five and at most sixty students.

Each course is taught by only one faculty member, and a
faculty member may teach from zero to three courses per
semester.

STUDENTS-HUB.com



https://students-hub.com

In Java code, you can implement associations by using data

fields and methods.

For example,

The relationships in Figure 10.4 may be implemented using the

classes in Figure 10.5.

public class Student {
private Course[]
courselist;

public void addCourse(
Course s { ... }

public class Course {
private Student[]
classList;
private Faculty faculty;

public void add5tudent(
Student 53 { ... }

public void setFaculty(
Faculty faculty) { ... }
1

public class Faculty {
private Course[]
courselist;

public void addCourse(
Course ) { ... }

Figure 10.5 The association relations are implemented using data fields and methods in classes.

STUDENTS-HUB.com



https://students-hub.com

Aggregation and Composition

Aggregation is a special form of association that represents an
ownership relationship between two objects.

Aggregation models has-a relationships.

The owner object is called an aggregating object,
and its class is called an aggregating class.

The subject object is called an aggregated object, and its class is
called an aggregated class.

An object can be owned by several other aggregating
objects.

If an object is exclusively owned by an aggregating object,
the relationship between the object and its aggregating object
is referred to as a composition.

For example, “a student has a name” is a composition
relationship between the Student class and the Name class,

whereas “a student has an address” is an
aggregation relationship between the Student class and the
Address class,

since an address
can be shared by several students.

In UML, a filled diamond is attached to an aggregating
class (in this case, Student) to denote the composition
relationship with an aggregated class (Name),

and an empty diamond is attached to an aggregating class
(Student) to denote the aggregation relationship with an
aggregated class (Address),

as shown in Figure 10.6.

Composition Aggregation

1 1\‘ 43 1
_MName_p————————dp Studemt [ Addres

FIGURE 10.6 Each student has a name and an address.

An aggregation relationship is usually represented as a data field
in the aggregating class.

For example, the relationships in Figure 10.6 may be
implemented using the classes in Figure 10.7.

The relation “a student has a name” and “a student has an
address” are implemented

in the data field name and address in the Student class.

STUDENTS-HUB.com



https://students-hub.com

public class Name { public class Student { public class Address {
ca private Name name; Ce
} private Address address; }

Aggregated class Aggregating class Agoregated class

Ficure 10.7 The composition relations are implemented using data fields in classes.

Aggregation may exist between objects of the same class.
1
. .. Perﬂwi
For example, a person may have a supervisor. This is —_— _
illustrated in Figure 10.8. : LB e
FiGure 10.8 A person may have a supervisor.
In the relationship “a person has a supervisor,” a supervisor can
be represented as a data field in the Person class, as follows:
public class Person {
// The type for the data is the class itself
private Person supervisor;
}
If a person can have several supervisors, as shown in Figure 10.9a, 1 .
@7 public class Person {

you may use an array to .

g : 0 Supervisor private Person[] supervisors;
store supervisors, as shown in Figure 10.9b. m

@) (®)
FIGURE 10.9 A person can have several supervisors.
Note
Since aggregation and composition relationships are represented using classes in the aggregation or composition

same way, we will not differentiate them and call both compositions for simplicity.

STUDENTS-HUB.com


https://students-hub.com

	
	COMPUTER SCIENCE DEPARTMENT FACULTY OF ENGINEERING AND TECHNOLOGY
	ADVANCED PROGRAMMING COMP231
	Lecturer :Farid Mohammad
	Object Oriented Thinking
	Class Abstraction and Encapsulation
	Thinking in Objects
	Class Relationships
	Association
	Aggregation and Composition

