1 Covariance and 2 Correlation are descriptive measures for the relationship between two variables.

(Xi, Yi), i=1,2,...,n

the sample covariance is $xy = \frac{\sum (x_i - x_j)(y_i - y_j)}{h-1}$

e Population Covariance $6_{xy} = \frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{N}$

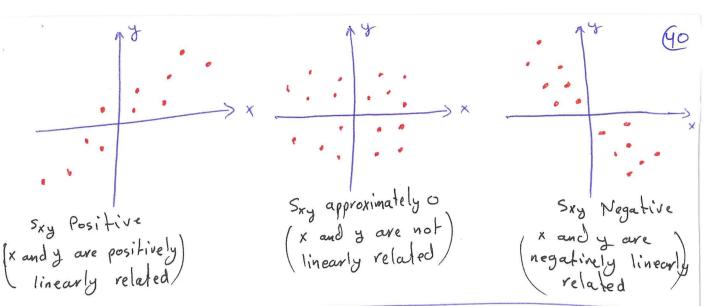
- . Interpretation of the covariance: The covariance is a measure of the linear association between two variables.
 - e If Sxy >0, then there is a positive linear association between x and y. (If x7, then yT)
 - association between x and y. (If xT, then yt)
 - association between x and y.

STUDENTS-HUB.com

Sky < 0 because | Sky > 0 because | Bornat

| Xi < x and y; > y | xi > x and y; > y

| Sky > 0 because | Sky < 0 because
| Xi < x and y; < y | Xi > x and y; < y
| Xi < x and y; < y | xi > x and y; < y



Example: (Q45) Five observations taken for two variables:

| X: 4 | 6 | 11 | 3 | 16 |
| Y: 50 | 50 | 40 | 60 | 30 |

19) Develop a scatter diagram with x on the horizontal axis.

To What does the scatter diagram indicate about the relationship between the two variables?

There is a negative linear relation ship between x and y

EDUDENTRIPUBE com and interpret the sample covariance Uploaded By: Jibreel Bornat

X	1 9	$ X_1-X $	1/4:-9	(x:-x)(y:-y	$\vec{x} = \frac{2x_1}{n} = \frac{40}{6} = 8$
4	50	-4	4	-16	y = <u>Ey</u> : = <u>230</u> = 46
6	50	-2	4	- 8	5
11	140	3	-6	-18	1 Sxy = \(\(\sum_{1} - \varksigma \) (\(\text{8} \) \(\sum_{1} - \varksigma \) \(\text{8} \)
3	60	-5	14	-70	= -240 =-60
16	30	8	-16	-128	Y .
40	230			- 240	The sample covariance indicate inegative linear association between x and y.

2 Correlation Coefficient ray = $\frac{S_{xy}}{S_{x}S_{y}}$, where Txy = sample correlation coefficient "pearson product moment correlation coefficient" Sxy = Sample covariance $S_X = \sqrt{\frac{\xi(x; -\bar{x})^2}{n-1}}$ Sx = sample standard deviation of x Sy = Sample standard deviation of y. Sy = \(\left(\frac{5}{2} \) \(\frac{5}{2} \) * Pearson product moment correlation coefficient "Population data $P_{xy} = \frac{6xy}{6x6u}$, where Pxy = population correlation coefficient 6xy = population covaniance 6x = population standard deviation for x 6y = population standard deviation for y * The sample correlation coefficient vxy is the estimator of the population correlation coefficient Pry. Interpretation of the correlation coefficient: STUDENTS-HUB.com · The correlation coefficient ranges from -1 to 1 xy Plotaded By: Jibreel Bornat s valves close to -1, it indicate a stronge linear negative relationship between x and y. a weak relaship between x and y.

scatters

=> Example (Q45)

(42

(d) Compute and interpret the sample correlation coefficient.

Xi	141	$\left(X_1 - \widehat{X}\right)$	(y:-y)	(x,-x)	(9:-9)
4	50	4	Ч	16	16
6	50	-2	4	4	16
11	40	3	-6	9	36
3	60	-5	14	75	196
16	30	8	-16	64	256
			118	520	

$$S_{x} = \sqrt{\frac{\sum (y_{1}-\overline{x})^{2}}{N-1}} = \sqrt{\frac{118}{5-1}}$$

$$= \sqrt{29}, 5 = 5.43$$

$$S_{y} = \sqrt{\frac{\sum (y_{1}-\overline{y})^{2}}{N-1}} = \sqrt{\frac{5}{5-0}} = 11.4$$

$$V_{xy} = \frac{S_{x}y}{S_{x}S_{y}} = \frac{-60}{(5.43)(11.4)} = -0.969$$
The sample correlation

coefficient (-0.969) indicates of a stronge negative linear relationship.

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat