s 2 P A YU
BIRZEIT UNIVERSITY

COMPUTER SCIENCE DEPARTMENT FACULTY OF
ENGINEERING AND TECHNOLOGY

ADVANCED PROGRAMMING CompP231

Java &2 y s

Instructor :Murad Njoum
Office : Masri322

Chapter 12 Exception Handling and Text |10

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

*An Exception is a run-time error which interrupts the normal flow of
program execution. Disruption during the execution of the program is
referred as error or exception.

*Errors are classified into two categories

 Compile time errors — Syntax errors, Semantic errors

* Runtime errors- Exception
*A robust program should handle all exceptions and continue with its normal
flow of program execution. Java provides an inbuilt exceptional handling
method
*Exception Handler is a set of code that handles an exception. Exceptions can
be handled in Java using try & catch.
*Try block: Normal code goes on this block.

*Catch block: If there is error in normal code, then it will go into this block
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the
application. An exception normally disrupts the normal flow of the application that is why
we use exception handling. Let's take a scenario:

1.statement 1;

2.statement 2;

3.statement 3;

4.statement 4;

5.statement 5;//exception occurs

6.statement 6;

/.statement /;

8.statement 8;

9.statement 9;

10.statement 10;

Suppose there are 10 statements in your program and there occurs an exception at statement
5, the rest of the code will not be executed i.e. statement 6 to 10 will not be executed. If we

perform exception handling, the rest of the statement will be executed. That is why we use
exception handling in Java.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Hierarchy of Java Exception classes

The java.lang.Throwable class is the root class of
Java Exception hierarchy which is inherited by
two subclasses: Exception and Error. A hierarchy
of Java Exception classes are given below:

STUDENTS-HUB.com

Throwable

T

Exception Error
— |OException — StackOverflowError
— SQLException — VirtualMachineError
— Fou(;ijaiisi(':\le()p:tion — OutOfMemoryError
— RuntimeException
— AnthmeticException

NullPointerException

NumberFormat
Exception

IndexOutOf
BoundsException

ArraylndexOutOf
BoundsException

StringIndexOQutOf
BoundsException

Uploaded By: Jibreel Bornat

Types of Java Exceptions, Difference between Checked and Unchecked Exceptions

checked and unchecked. Here, an error is considered as the
unchecked exception.

1) Checked Exception

The classes which directly inherit Throwable class except
RuntimeException and Error are known as checked exceptions
e.g. I0OException, SQLException etc. Checked exceptions are

checked at compile-time. Unchecked

Exception

2) Unchecked Exception

The classes which inherit RuntimeException are known as
unchecked exceptions e.g. ArithmeticException,
NullPointerException, ArraylndexOutOfBoundsException etc.
Unchecked exceptions are not checked at compile-time, but
they are checked at runtime.

3) Error

Error is irrecoverable e.g. OutOfMemoryError,

VirtualMachineError, AssertionError etc. L% _—
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

"~ Problem
Occurs

Create
Exception

Throw
Exception

Handle
Exception

STUDENTS-HUB.com

5. Throw an exception

el

Method N

Method 2

Method 1

> 4. Method call
> 3. Method call
> 2. Method call

—

Method N

Method 2

Method 1

> 6. Find handler
> 7. Find handler
> 8. Find handler

10. Display error messag;)

amgie Lppie e [l

B e I e T o N)
Camtrnm Po awk dor ol o Pa evs wd et cotris |
e R e e 3

e -

Uploaded By: Jibreel Bornat

Java Exception Keywords
There are 5 keywords which are used in handling exceptions in Java.

Keyword Description

try The "try" keyword is used to specify a block where we should place exception code. The try block must be
followed by either catch or finally. It means, we can't use try block alone.

catch The "catch" block is used to handle the exception. It must be preceded by try block which means we can't use
catch block alone. It can be followed by finally block later.

finally The "finally" block is used to execute the important code of the program. It is executed whether an exception
is handled or not.

throw The "throw" keyword is used to throw an exception.

throws The "throws" keyword is used to declare exceptions. It doesn't throw an exception. It specifies that there may
occur an exception in the method. It is always used with method signature.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Common Scenarios of Java Exceptions

There are given some scenarios where unchecked exceptions may occur. They are as
follows:

1) A scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.

1.int a=50/0;//ArithmeticException

2) A scenario where NullPointerException occurs

If we have a null value in any variable, performing any operation on the variable throws a
NullPointerException.

1.String s=null;
2.System.out.printin(s.length());//NullPointerException

3) A scenario where NumberFormatException occurs

The wrong formatting of any value may occur NumberFormatException. Suppose I have a string
variable that has characters, converting this variable into digit will occur NumberFormatException.
1.String s="abc";

2.int i=Integer.parselnt(s);//NumberFormatException

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

4) A scenario where ArraylIndexOutOfBoundsException occurs

If you are inserting any value in the wrong index, it would

result in ArrayIndexOutOfBoundsException as shown below:
1.int a[]=new Int[5];

2.a[10]=50; //ArrayIndexOutOfBoundsException

Syntax of Java try-catch
try{
//code that may throw an exception
ycatch(Exception_class_Name ref){}

Syntax of try-finally block

try{

//code that may throw an exception
Hinally{}

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Trace a Program Execution

try {
statements;

}

catch (TheException ex) {
handling ex;

}
finally {

finalStatements;

Next statement;

STUDENTS-HUB.com Uploaded By: JibreelBornat

Trace a Program Execution

try {
statements;

}

catch (TheException ex) {
handling ex;

}

finally {

finalStatements;

Next statement;

STUDENTS-HUB.com Uploaded By: Jibreel'Bornat

Trace a Program Execution

try {
statements;

}

catch (TheException ex) {
handling ex;

}

finally {
finalStatements;

Next statement;

STUDENTS-HUB.com Uploaded By: JibreelBornat

Trace a Program Execution

try {
statementl;

statement?2;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}

finally ({
finalStatements;

Next statement;

STUDENTS-HUB.com Uploaded By: JibreelBornat

Trace a Program Execution

try {
statementl;

statement?2;

statement3;

}

catch (Exceptionl ex) |{

handling ex;

}
finally ({
finalStatements;

Next statement;

STUDENTS-HUB.com Uploaded By: JibreelBornat

Trace a Program Execution

try {
statementl;

statement?2;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}

finally ({
finalStatements;

Next statement;

STUDENTS-HUB.com Uploaded By: JibreelBornat

Trace a Program Execution

try {
statementl;

statement?2;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}

finally {
finalStatements;

Next statement;

STUDENTS-HUB.com Uploaded By: JibreelBornat

Trace a Program Execution

try {
statementl;
statement?2;

statement3;

}

catch (Exceptionl ex) {
handling ex;

}

catch (Exception2 ex) {
handling ex;
throw ex;

}

finally {
finalStatements;

}

Next statement;

STUDENTS-HUB.com Uploaded By: JibreelBornat

Trace a Program Execution

try {
statementl;

statement?2;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}

catch (Exception2 ex
handling ex;
throw ex;

}

finally {
finalStatements;

}

Next statement;

STUDENTS-HUB.com Uploaded By: Jibreel®Bornat

Trace a Program Execution

try {
statementl;
statement2;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}

catch (Exception2 ex) {
handling ex;
throw ex;

}

finally {
finalStatements;

}

Next statement;

STUDENTS-HUB.com Uploaded By: Jibreel®Bornat

Trace a Program Execution

try {
statementl;
statement2;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}

catch (Exception2 ex) {
handling ex;
throw ex; ~

}

finally {
finalStatements;

}

Next statement;

STUDENTS-HUB.com Uploaded By: JibreetBornat

Example: What is the output?

int []Ja= {1,2,3};

try {
System.out.println(al21/2);;
System.out.println(al21/0);;
System.out.println(al0l/2);;

s
catch(IllegalArgumentException ex) {

System.out.println(ex.getMessage());

}

catch(ArithmeticException ex) {
System.out.println(ex.getMessage());
throw new IllegalArgumentException("2 . Welcome");

I3
finally {
System.out.println("3. finalStatements");

}

STUDENTS-HUB.com Uploaded By: Jibreef Bornat

public class JavaExceptionExample{
public static void main(String args[]){
try{
//code that may raise exception
int data=100/0;

ycatch(ArithmeticException e){System.out.println(e);
b

//rest code of the program
System.out.printin("rest of the code...");

¥
¥

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero
rest of the code...

In the above example, 100/0 raises an ArithmeticException which is handled by a try-catch
block.

STUDENTS-HUB.com Uploaded By: Jibreef Bornat

CONOUAWNE

=
.o L]

11.
12.

13.

14. 1}

15,
16.)

STUDENTS-HUB.com

.public class TryCatchExample5 {

public static void main(String[] args) {

try

{
int data=100/0; //may throw exception

b
// handling the exception

catch(Exception e)

{
// displaying the custom message
System.out.printin("Can't divided by zero");

¥

Uploaded By: Jibreef Bornat

public class TryCatchExample9 {

public static void main(String[] args) {
try

{
int arr[]={1,3,5,7};
System.out.printin(arr[10]); //may throw exception

b
// handling the array exception
catch(ArrayIndexOutOfBoundsException e)

{
¥

System.out.printin("rest of the code");

¥

System.out.printin(e);

STUDENTS-HUB.com Uploaded By: Jibreef Bornat

public class MultipleCatchBlock3 {
public static void main(String[] args) {

try{
int a[]=new int[5];
System.out.println(a[10]);
a[5]=30/0;
System.out.println(a[10]);
}
catch(ArithmeticException e)
{System.out.println("Arithmetic Exception occurs"”); }
catch(ArrayIndexOutOfBoundsException e)
{System.out.println("ArrayIndexOutOfBounds Exception occurs"”);

catch(Exception e)
{System.out.println("Parent Exception occurs"); }
finally{System.out.println("Processed final");}
System.out.println("rest of the code");

¥

} ArraylndexOutOfBounds Exception occurs
Processed final

STUDENTS-HUB.com 'estof the code Uploaded By: Jibreef Bornat

Try-catch Blocks:

public class MultipleCatchBlock3 {

public static void main(String[] args) {
int a[]=new int[5];
try{
System.out.println(a[10]);
}
catch(ArrayIndexOutOfBoundsException e)
{System.out.println("ArrayIndexOutOfBounds Exception occurs"); }

try{
a[5]=30/0;
System.out.println(a[10]);
}

catch(Exception e)
{System.out.println("Parent Exception occurs"); }

finally{System.out.println("Processed finnal");}
System.out.println("rest of the code");

}
STUDENTS-HUB.com Uploaded By: Jibreef Bornat

Nested try catch:

public class MultipleCatchBlock3 {

public static void main(String[] args) {
int a[]=new int[5];
try{
System.out.println(a[10]);

try{
a[5]=30/0;
System.out.println(a[10]);
}catch(Exception e)
{System.out.println("Parent Exception occurs"); }

}
catch(ArrayIndexOutOfBoundsException e)

{System.out.println("ArrayIndexOutOfBounds Exception occurs"); }
finally{System.out.println("Processed finnal");}
System.out.println("rest of the code");

}
}

STUDENTS-HUB.com Uploaded By: Jibreef Bornat

Fixing With a method

STUDENTS-HUB.com

public class QuotientWithMethod {
public static int quotient(int numberl, int number2) {
if (number2 == 0) {
System.out.println("Divisor cannot be zero");
System.exit(1);

}

return numberl / number2;

}

public static void main(String[] args) {
Scanner input = new Scanner(System.in);

// Prompt the user to enter two integers
System.out.print("Enter two integers: ");
int numberl = input.nextInt();
int number2 = input.nextInt();

int result = quotient(numberl, number2);
System.out.println(numberi + " / " + number2 + " is "
+ result);

} Uploaded By: Jibreef Bornat

public class QuotientWithException {
public static int quotient(int numberl, int number2) {

if (number2 == 0)
throw new ArithmeticException("Divisor cannot be zero");

return numberl / number2;

public static void main(String[] args) {
Scanner input = new Scanner(System.in);

System.out.print("Enter two integers: ");
int numberl = input.nextInt();
int number2 = input.nextInt();

try {
int result = quotient(numberl, number2);

System.out.println(numberl + " / " + number2 + " 1is
+ result);
}
catch (ArithmeticException ex) {
System.out.println("Exception: an integer " +
"cannot be divided by zero ");

}

STUDENTS-bystemy@ut.println("Execution continues ..."); }}

Uploaded By: Jibreef Bornat

Handling InputMismatchException

public class InputMismatchExceptionDemo {
By handling InputMismatchException, your program will public static void main(String[] args) {

continuously read an input until it is correct. Scanner input = new Scanner(System.1in);
boolean continueInput = true;

do {

try {

System.out.print("Enter an integer: ");
int number = input.nextInt();

// Display the result
System.out.println(

"The number entered is " + number);

continueInput = false;
}
catch (InputMismatchException ex) {
System.out.println("Try again. (" +
"Incorrect input: an integer is required)");
input.nextLine(); // discard input

}
} while (continueInput);
}
}
STUDENTS-HUB.com Uploaded By: JibreelBornat

Unchecked Exceptions

* In most cases, unchecked exceptions reflect programming logic errors
that are not recoverable.

» For example, a NullPointerException 1s thrown if you access an object
through a reference variable before an object 1s assigned to it;

¢ an IndexOutOfBoundsException is thrown if you access an element in

an array outside the bounds of the array. These are the logic errors that
should be corrected in the program.

¢ Unchecked exceptions can occur anywhere in the program. To avoid
cumbersome overuse of try-catch blocks, Java does not mandate you to
write code to catch unchecked exceptions.

STUDENTS-HUB.com Uploaded By: Jibreet'Bornat

Declaring, Throwing, and Catching Exceptions

catch exception —

methodl () {

oo

itry {

i :
égcatch (Exception ex) ({i
! Process exception; i

i 1nvoke method2; /

..

oo
.

STUDENTS-HUB.com

...

____declare exception

____throw exception

Uploaded By: Jibreet’Bornat

Declaring Exceptions

Every method must state the types of checked exceptions it might
throw. This is known as declaring exceptions.

public void myMethod()
throws |OException

public void myMethod()
throws |OException, OtherException

STUDENTS-HUB.com Uploaded By: Jibreet*Bornat

Throwing Exceptions

When the program detects an error, the program can create an instance of
an appropriate exception type and throw it. This is known as throwing an
exception. Here is an example,

throw new TheException();

TheException ex = new TheException();
throw ex;

STUDENTS-HUB.com Uploaded By: Jibreet'Bornat

Throwing Exceptions Example

/** Set a new radius */
public void setRadius (double newRadius)

throws IllegalArgumentException ({

if (newRadius >= 0)
radius = newRadius;

else
throw new IllegalArgumentException (

"Radius cannot be negative") ;

STUDENTS-HUB.com

Uploaded By: Jibreet®Bornat

Catching Exceptions

try {
statements; // Statements that may throw exceptions

}
catch (Exceptionl exVarl) {
handler for exceptionl;

}
catch (Exception2 exVar2) {

handler for exception2;

}

catch (ExceptionN exVar3) {
handler for exceptionN;

}

STUDENTS-HUB.com Uploaded By: Jibreel®Bornat

Catching Exceptions

main method {
try {
statementl;

catch (Exceptionl exl) {
Process exl;

}

statement2;

}

invoke methodl; /

/L

methodl {
try {
invoke method2;
statement3;

catch (Exception2 ex2) {

Process ex2;

}

statement4;

method2 {

o

/ try {

statement5;

Process ex3;

}

statement6;

invoke method3;,,/””’

catch (Exception3 ex3) {

7

Call Stack

main method

STUDENTS-HUB.com

} }
method3
method?2 method?2
methodl methodl methodl
main method main method main method

Uploaded By: JibreelBornat

An exception
is thrown in
method3

Catch or Declare Checked Exceptions

Suppose p2 is defined as follows:

void p2 () throws IOException {
if (a file does not exist) {
throw new IOException("File does not exist");

}

STUDENTS-HUB.com Uploaded By: Jibreet®Bornat

Catch or Declare Checked Exceptions

Java forces you to deal with checked exceptions. If a method declares a checked exception
(i.e., an exception other than Error or RuntimeException), you must invoke it in a try-catch
block or declare to throw the exception in the calling method. For example, suppose that

method p1l invokes method p2 and p2 may throw a checked exception (e.g., IOException),
you have to wri e code as shown in (a) or (b).

void pl\() { void pl () thro?IOException {
try {
p2(); p2();
}
catch (IOException ex) { }
}
}
(a) (b)

STUDENTS-HUB.com Uploaded By: Jibreet’Bornat

Example: Declaring, Throwing, and Catching Exceptions

* Objective: This example demonstrates
declaring, throwing, and catching exceptions
by modifying the setRadius method in the
Circle class defined in Chapter 9. The new
setRadius method throws an exception if
radius is negative.

CircleWithException

TestCircleWithException -

STUDENTS-HUB.com Uploaded By: JibreetBornat

public class CircleWithException {

private double radius; public void setRadius(double newRadius)
private static int numberOfObjects = ©; throws IllegalArgumentException {
if (newRadius »>= 0)
public CircleWithException() { radius = newRadius;
this(1.0); else
} throw new IllegalArgumentException(

"Radius cannot be negative");
public CircleWithException(double newRadius) { }

setRadius(newRadius);
numberOfObjects++; public static int getNumberOfObjects() {

} return numberOfObjects;
}
public double getRadius() {

return radius;
) public double findArea() {

return radius * radius * 3.14159;

}
}

STUDENTS-HUB.com Uploaded By: Jibreef'Bornat

public class TestCircleWithException {
public static void main(String[] args) {

try {
CircleWithException cl
CircleWithException c2
CircleWithException c3

}

catch (IllegalArgumentException ex) {
System.out.println(ex);

}

new CircleWithException(5);
new CircleWithException(-5);
new CircleWithException(0);

n

System.out.println("Number of objects created: +
CircleWithException.getNumberOfObjects());

STUDENTS-HUB.com Uploaded By: Jibreef'Bornat

Rethrowing Exceptions

try {
statements;

}
catch (TheException ex) {

perform operations before exits;
throw ex;

}

STUDENTS-HUB.com Uploaded By: JibreetBornat

The finally Clause

try {
statements;
}

catch (TheException ex) {
handling ex;

}
finally ({

finalStatements;

}

For each try block there can be zero or more catch block, but only one finally

STUDENTE[ﬂ%.com Uploaded By: Jibreet'Bornat

// A Class that represents use-defined expception
E)(a M ple . class MyException extends Exception
A

public MyException(String s)
{ // Call constructor of parent Exception
super(s); }
}
// A Class that uses above MyException
public class Main
{ // Driver Program
public static void main(String args[])
{ try
{
// Throw an object of user defined exception
throw new MyException("Comp231");

}
catch (MyException ex)

{
System.out.println("Caught”);
// Print the message from MyException object

System.out.println(ex.getMessage()); } Caught
} Comp231

STUDENTS-HUB.com } Uploaded By: Jibreef Bornat

import java.util.Scanner;
class MarriageAgeException extends Exception {
public MarriageAgeException(String message) {
super(message);
}

}
public class MyOwnException {

public static void main(String args[]) throws MarriageAgeException {

Scanner sc = new Scanner(System.1in);

System.out.println("Enter a person age");

int age = sc.nextInt();
if (age <= 30) {
System.out.println("Valid for Marriage"”);

} else {
throw new MarriageAgeException("Maarige Age is Over Exception");

}
}

STUDENTS-HUB.com Uploaded By: Jibreef'Bornat

class BelowAgeException extends Exception{
BelowAgeException(){
super("Excpetion :Age is under 18 cann't do it");}

}

class Application {
private String name;
private String course;
private int age;

public Application(String name,String course) {
this.name=name;
this.course=course;

age=18,;

}

public Application() {
this(llll-’llll);

}

public void setAge(int age) throws BelowAgeException{
if(age<18)

throw new BelowAgeException(); _
the name of student :Ali

else Applied for Java Programming
this.age=age; Applicant's Ag: 20
} Excpetion :Age is under 18 cann't do it
Finally called
STUDENTS-HUB.com Procced job

public

System.
System.
System.
System.

public
public

void displayDetails() {

out.println("the name of student :"+name);
out.println("Applied for "+course);
out.println("Applicant's Ag: "+age);
out.println();}}

class userDefinedExcpetion {
static void main(String[] args) {

Application appl= new Application("Ali","Java
Programming”);

Application app2= new Application("Ahmad","Java
Programming”);

try {

appl.setAge(20);
appl.displayDetails();

app2.setAge(17);
app2.displayDetails();
tcatch(BelowAgeException ex) {

System.

out.println(ex.getMessage());

}finally {System.out.println("Finally called");}

System.out.println("Procced job ");

}
}

Uploaded By: Jibreef Bornat

Cautions When Using Exceptions

* Exception handling separates error-handling code from
normal programming tasks, thus making programs easier to
read and to modify.

* Be aware, however, that exception handling usually requires
more time and resources because it requires instantiating a
new exception object, rolling back the call stack, and
propagating the errors to the calling methods.

STUDENTS-HUB.com Uploaded By: JibreetBornat

When to Throw Exceptions

* An exception occurs in a method. If you want the exception to
be processed by its caller, you should create an exception
object and throw it. If you can handle the exception in the
method where it occurs, there is no need to throw it.

STUDENTS-HUB.com Uploaded By: JibreetBornat

When to Use Exceptions

When should you use the try-catch block in the code?
You should use it to deal with unexpected error
conditions. Do not use it to deal with simple, expected
situations. For example, the following code

try {

System.out.println (refVar.toString()) ;
}

catch (NullPointerException ex) {

System.out.println("refVar is null");

}
STUDENTS-HUB.com Uploaded By: JibreelBornat

When to Use Exceptions

is better to be replaced by

if (refvar '= null)
System.out.println (refVar. toString()) ;
else

System.out.println("refVar is null");

STUDENTS-HUB.com Uploaded By: Jibreel'Bornat

Defining Custom Exception Classes

+ Use the exception classes in the API whenever possible.

+ Define custom exception classes if the predefined
classes are not sufficient.

+ Define custom exception classes by extending
Exception or a subclass of Exception.

STUDENTS-HUB.com Uploaded By: Jibreel’Bornat

The File Class

The File class is intended to provide an abstraction that
deals with most of the machine-dependent complexities
of files and path names in a machine-independent
fashion. The filename is a string. The File class is a
wrapper class for the file name and its directory path.

STUDENTS-HUB.com Uploaded By: Jibreel®Bornat

Obtaining file properties and manipulating file

java.io.File

+File(pathname: String) Creates a File object for the specified path name. The path name may be a
directory or a file.

+File(parent: String, child: String) Creates a File object for the child under the directory parent. The child may be
a file name or a subdirectory.

+File(parent: File, child: String) Creates a FiTe object for the child under the directory parent. The parent is a
Fi7le object. In the preceding constructor, the parent is a string.

+exists(): boolean Returns true if the file or the directory represented by the FiTe object exists.

+canRead() : boolean Returns true if the file represented by the FiTe object exists and can be read.

+canWrite(): boolean Returns true if the file represented by the FiTe object exists and can be written.

+isDirectory(): boolean Returns true if the File object represents a directory.

+isFile(): boolean Returns true if the File object represents a file.

+isAbsolute(): boolean Returns true if the File object is created using an absolute path name.

+isHidden(): boolean Returns true if the file represented in the File object is hidden. The exact

definition of hidden is system-dependent. On Windows, you can mark a file
hidden in the File Properties dialog box. On Unix systems, a file is hidden if
its name begins with a period(.) character.

+getAbsolutePath(): String Returns the complete absolute file or directory name represented by the File
object.
+getCanonicalPath(): String Returns the same as getAbsoTutePath() except that it removes redundant

names, such as "." and "..", from the path name, resolves symbolic links (on
Unix), and converts drive letters to standard uppercase (on Windows).

+getName(): String Returns the last name of the complete directory and file name represented by
the File object. For example, new File("c:\\book\\test.dat").getName() returns
test.dat.
+getPath(): String Returns the complete directory and file name represented by the FiTe object.
For example,new File("c:\\book\\test.dat").getPath() returns c:\book\test.dat.
+getParent(): String Returns the complete parent directory of the current directory or the file

represented by the File object. For example, new
File("c:\\book\\test.dat").getParent() returns c:\book.

+lastModified(): Tong Returns the time that the file was last modified.

+length(): long Returns the size of the file, or 0 if it does not exist or if it is a directory.

+listFileQ: File[] Returns the files under the directory for a directory FiTe object.

+delete(): boolean Deletes the file or directory represented by this FiTe object.The method returns
true if the deletion succeeds.

+renameTo(dest: File): boolean Renames the file or directory represented by this Fi1e object to the specified name
represented in dest. The method returns true if the operation succeeds.

+mkdir(): boolean Creates a directory represented in this Fi1e object. Returns true if the the directory is
created successfully.

+mkdirs(): boolean Same as mkd1i r() except that it creates directory along with its parent directories if

the parent directories do not exist.

STUDENTS-HUB.com Uploaded By: Jibreel'Bornat

Problem: Explore File Properties

Objective: Write a program that demonstrates how to
create files in a platform-independent way and use the
methods 1n the File class to obtain their properties. The
following figures show a sample run of the program on
Windows and on Unix.

C:\book>java TestFileClass | $ pwd =
Does it exist? true [| /home/liang/book [
Can it be read? true $ java TestFileClass
Can it be written? true Does it exist? true

Is it a directory? false Can it be read? true
Is it a file? true Can it be written? true

Is it absolute? false Is it a directory? false

. . Is it a file? true
?
Is 1t hidden? false Is it absolute? false

Is it hidden? false

What is its absolute path? /home/liang/book/./image/us.gif
What is its canonical path? /home/liang/book/image/us.gif
What is its name? us.gif

What is its path? ./image/us.gif

What is its absolute path? C:\book\.\image\us.gif

What is its canonical path? C:\book\image\us.gif

What is its name? us.gif

What is its path? .\image\us.gif

When was it last modified? Sat May 08 14:00:3% EDT 1999

What is the path separator? ; When was it last modified? Wed Jan 23 11:00:14 EST 2002
What is the name separator? \ What is the path separator? :
¢ :\book What is the name separator? /
:\book> - $ v
< | [" | ﬂ?‘

TestFileClass -

STUDENTS-HUB.com Uploaded By: JibreelBornat

Text |/O

A File object encapsulates the properties of a file or a
path, but does not contain the methods for
reading/writing data from/to a file. In order to perform
/0, you need to create objects using appropriate Java |/O
classes. The objects contain the methods for
reading/writing data from/to a file. This section
introduces how to read/write strings and numeric values
from/to a text file using the Scanner and PrintWriter
classes.

STUDENTS-HUB.com Uploaded By: Jibreel®Bornat

Writing Data Using PrintWriter

java.io.PrintWriter

+PrintWriter(filename: String) | Creates a PrintWriter for the specified file.

+print(s: String): void Writes a string.

+print(c: char): void Writes a character.

+print(cArray: char[]): void Writes an array of character.

+print(i: int): void Writes an int value.

+print(l: long): void Writes a long value.

+print(f: float): void Writes a float value.

+print(d: double): void Writes a double value.

+print(b: boolean): void Writes a boolean value.

Also contains the overloaded A println method acts like a print method; additionally it
println methods. prints a line separator. The line separator string is defined

Also contains the overloaded by the system. It is \ﬂn on Windpws and \n on Ugix.
printf methods. The printf method was 1ntr.0duced in §4.6, “Formatting

Console Output and Strings.”

WriteData -

STUDENTS-HUB.com Uploaded By: Jibreel’Bornat

: i Wiiter <] Buffered Writer
PipedWriter H Object : lock + BufferedWriter{Writer p0)
+ PipedWriterx() H Writex() + BufferedWriter{Writer p0, int p1)
+ PipedWriter{PipedReader p0) = H Writer(Object p0) -l%ic:’ + void : flushBuffer)
+ woid : connect{PipedReader p0) + void : write(int p0) + void : newLine()
+ void : wite{char[] p0)

+ void : write(char (] p0, infpl, inf p2) 1
+ void : write(String p0) !

. . i’
__StringWriter + void - write(String p0, int pl, int p2) | :
+ StringWriter() + void : flushf) ju
+ String : toString() + void - i
+ StringPuffer : getBuffer() Vol :ciosai) DECORATOR
, PATTERN
i 1 i —
s ’ \\
£ LY
£]
s 1
' \ 6
OuiputSireamWriter PrintWriter FilterWhiter
+ OutputStrearaWriter{OutputStreara p0, String p1) + PrintWriter{ Writer p0) H Writer : out
+ OutputStrearaWriter{OutputStreara p0) + PrintWritex{Writer p0, boolean p1) H FilterWriter{ Writer p0)
+ String : getEncoding() + PrintWriter{OutputStreara p0)
+ void : flushBuffer() + PrintWriter{OutputStreara p0, boolean pl)
+ boolean : checkErrox)
| + void : print(boolean p0)
+ woid : print({char p0)
+ woid : print(int p0)
+ woid : print(long p0)
+ woid : print(float p0)
File Writer + void : print{double p0)
- - - + <0id : pn
+ FileWriter(String p0) + ﬁﬁ j pmg@r[} pg;
+ FilsWritex{String p0, boolean p1) it t(o}?_ngtp 0
+ FileWriter(File p0) 3 yoid: prin(Object
+ FileWriter{FileDescriptor p0) + Wid : pnn:tf:; Jean pO0)
void : printInfboolean p
+ woid : printIn{char p0)
+ woid : printIn{int p0)
+ woid : printIn{long p0)
+ woid : printIn{float p0)
+ woid : printin{double p0)
+ woid : printIn{char[] p0)
+ woid : printIn{String p0)
+ woid : printIn{Object p0)]
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Try-with-resources

try-with-resources syntax that automatically closes the files.
try (declare and create resources) {

Use the resource to process the file;

public class WriteDataWithAutoClose
} { public static void main(String[] args) throws
Exception
{ java.io.File file = new File("scores.txt");
if (file.exists()) {
System.out.println("File already exists");
System.exit(0); }
try (PrintWriter output = new PrintWriter(file);)
{
output.print("John T Smith "); output.println(90);
output.print("Eric K Jones "); output.println(85);

}
}
}
STUDENTS-HUB.com Uploaded By: Jibree®Bornat

Reading Data Using Scanner

java.util.Scanner

+Scanner(source: File) Creates a Scanner object to read data from the specified file.
+Scanner(source: String) Creates a Scanner object to read data from the specified string.
+close() Closes this scanner.
+hasNext(): boolean Returns true ifthis scanner has another token in its input.
+next(): String Returns next token as a string.
+nextByte(): byte Returns next token as abyte.
+nextShort(): short Returns next token as a short.
+nextlnt(): int Returns next token as an int.
+nextLong(): long Returns next token as a long.
+nextFloat(): float Returns next token as a float.
+nextDouble(): double Returns next token as adouble.
+useDel imiter(pattern: String): | Sets this scanner’s delimiting pattern.

S canner

ReadData -

STUDENTS-HUB.com Uploaded By: JibreetBornat

Problem: Replacing Text

Write a class named ReplaceText that replaces a string in a text
file with a new string. The filename and strings are passed as
command-line arguments as follows:

java ReplaceText sourceFile targetFile oldString newString

For example, invoking
java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

replaces all the occurrences of StringBuilder by StringBuffer in
FormatString.java and saves the new file in t.txt.

ReplaceText -

STUDENTS-HUB.com Uploaded By: Jibreet'Bornat

Reading Data from the Web

Just like you can read data from a file on your
computer, you can read data from a file on

the Web.

Client

Web
Browser

Application
Program

STUDENTS-HUB.com

@

Server

Web
Server

—

Local files

Uploaded By: JibreetBornat

Reading Data from the Web

URL url = new URL("www.google.com/index.html");

After a URL object is created, you can use the
openStream() method defined in the URL class to open an
input stream and use this stream to create a Scanner

object as follows:

Scanner input = new Scanner(url.openStream());

ReadFileFromURL -

STUDENTS-HUB.com Uploaded By: JibreetBornat

Case Study: Web Crawler

This case study develops a program that travels the Web
by following hyperlinks.

Starting URL
URLI1
URL2
URL3
URLI URL2 URL3
URLI11 URL21 URL31
URL12 URL22 URL32
| URILl 3 ‘ | U R|L33 UI?L4
] | . |

STUDENTS-HUB.com Uploaded By: Jibreet*Bornat

Case Study: Web Crawler

The program follows the URLs to traverse the Web. To
avoid that each URL is traversed only once, the program
maintains two lists of URLs. One list stores the URLs
pending for traversing and the other stores the URLs that

have already been traversed. The algorithm for this
program can be described as follows:

STUDENTS-HUB.com Uploaded By: JibreetBornat

Case Study: Web Crawler

Add the starting URL to a list named ListOfPendingURLs;
while listOfPendingURLs 1s not empty {
Remove a URL from ListOfPendingURLs;
if this URL 1s not in listOf TraversedURLs {
Add 1t to listOf I'raversedURLss;
Display this URL;
Exit the while loop when the size of S 1s equal to 100.
Read the page from this URL and for each URL contained 1n the page {
Add it to listOfPendingURLs 1f it 1s not 1s listOf TraversedURLs;
}

WebCrawler -

STUDENTS-HUB.com Uploaded By: Jibree!®Bornat

