
ENCS3340 - Artificial Intelligence

Search
(Problem Formulation)

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Search as Problem-Solving Strategy

• Many problems can be viewed as reaching a goal from a given starting point

• often there is an underlying state space that defines the problem and its possible
solutions in a more formal way

• the space can be traversed by applying a successor function (operators, actions,
state transitions) to proceed from one state to the next

• if possible, information about the specific problem or the general domain is used
to improve the search

• experience from previous instances of the problem

• strategies expressed as heuristics

• simpler versions of the problem

• constraints on certain aspects of the problem

1
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Examples

• Loading a moving truck

• start: apartment full of boxes and furniture

• goal: empty apartment, all boxes and furniture in the truck

• actions: select item, carry item from apartment to truck, load item

• Getting settled after moving

• start: items randomly distributed over the place

• goal: satisfactory arrangement of items

• actions: select item, move item

• Repairing a flat tire on your bike

• start: bike with a flat tire

• goal: bike with two properly inflated tires

• actions: remove wheel, remove tire, remove tube, fix tube, return tube, return tire,
partially inflate tube, return wheel, fully inflate tube

2
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Problem-Solving Agents

• Agents whose task it is to solve a particular problem

• problem formulation

• what are the possible states of the world relevant for solving the problem

• what information is accessible to the agent

• how can the agent progress from state to state

• goal formulation

• what is the goal state

• what are important characteristics of the goal state

• how does the agent know that it has reached the goal

• are there several possible goal states

• are they equal or are some more preferable

• if necessary, a utility function is required to determine priorities among goals

3
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Problem Types

• single-state problems
• accessible world and knowledge of its actions allow the agent to know which state it will be

in after a sequence of actions

• Ex: playing chess

• multiple-state problems
• the world is only partially accessible, and the agent has to consider several possible states

as the outcome of a sequence of actions

• Ex: walking in a dark room

• contingency problems
• at some points in the sequence of actions, sensing may be required to decide which action

to take; this leads to a tree of sequences

• Ex: a new skater in a ring

• exploration problems
• the agent doesn’t know the outcome of its actions, and must experiment to discover states

of the world and outcomes of actions

• Ex: Mars Exploration Rovers
4

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Well-Defined Problems

• initial state
• starting point from which the agent sets out

• actions (operators, successor functions)
• describe the set of possible actions, and transitions from one state to another

• state space
• set of all states reachable from the initial state by any sequence of actions

• goal state
• terminal state that the agent wants to achieve

• goal test
• determines if a given state is the goal state

• Path
• sequence of actions leading from one state in the state space to another

• path cost
• determines the expenses of the agent for executing the actions in a path

• Solution
• path from the initial state to a goal state

5
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Selecting States and Actions

• states describe distinguishable points or periods during the problem-solving
process

• dependent on the task and domain

• actions move the agent from one state to another one

• an action is applied to the current state and takes the agent to the successor state

• dependent on states, capabilities of the agent, and properties of the environment

• choice of suitable states and actions

• can make the difference between a problem that can or cannot be solved

• level of abstraction

• high: smaller state space, complex actions

• low: simple actions, larger state space

6
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Example Problem: Romania Map

• On vacation in Romania; currently in Arad

• Flight leaves tomorrow from Bucharest

• Initial state
• Arad

• Actions
• Go from one city to another

• Transition model (successor function)
• If you go from city A to

city B, you end up in city B

• Goal state
• Bucharest

• Path cost
• Sum of edge costs

7
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Example Problem: Vacuum world

• States
• Agent location and dirt location

• How many possible states?

• What if there are n possible locations?

• Actions
• Left, right, suck

• goal test

• all squares clean

• path cost
• one unit per action

8
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Vacuum world state space graph

9
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Example Problem: The 8-puzzle

• States
• location of tiles (including blank tile)

• 9!/2 = 181,440 reachable states

• Actions
• Move blank left, right, up, down

• Path cost
• 1 per move

• Finding the optimal solution of n-Puzzle is NP-hard

10
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

State Space for the 8-puzzle

11
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Example Problem: Robot motion planning

• States
• Real-valued coordinates of robot joint angles

• Actions
• Continuous motions of robot joints

• Goal state
• Desired final configuration (e.g., object is grasped)

• Path cost
• Time to execute, smoothness of path, etc.

12
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Example: n-queens

• Put n queens on a n × n board with no two queens on the same row, column,
or diagonal

13
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

8-Queens: Incremental Approach

• start with an empty board

• add queens one by one (no violation of constraints)

• incremental formulation

• states
• arrangement of up to 8 queens on the board

• initial state
• empty board

• successor function (actions)
• add a queen to any square

• goal test
• all queens on board

• no queen attacked

• path cost
• irrelevant (all solutions equally valid)

14
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

8-Queens: Complete-State Approach

• start with a full board (all n queens placed on the board, conflicts are to be expected)

• try to find a better configuration (reduced number of conflicts)

• Complete-state formulation

• states
• arrangement of the 8 queens on the board

• initial state
• all 8 queens on board

• successor function (actions)
• move a queen to a different square

• goal test
• no queen attacked

• path cost
• irrelevant (all solutions equally valid)

15
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Example Problem: VLSI Layout

• States
• positions of components, wires on a chip

• Initial state
• incremental: no components placed

• complete-state: all components placed (e.g. randomly, manually)

• Successor function (actions)
• incremental: place components, route wire

• complete-state: move component, move wire

• Goal test
• all components placed

• components connected as specified

• Path cost
• may be complex: distance, capacity, number of connections per component

16
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Searching for Solutions

• Given
• Initial state

• Actions

• Transition model

• Goal state

• Path cost

• How do we find the optimal solution?
• How about building the state space and then using Dijkstra’s shortest path

algorithm?

• The state space may be huge!

• Complexity of Dijkstra’s is O(E + V log V), where V is the size of the state space

17
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Searching for Solutions

• traversal of the search space
• from the initial state to a goal state

• legal sequence of actions as defined by successor function (actions, operators,
state transitions)

• general procedure
• check for goal state

• expand the current state
• determine the set of reachable states

• return “failure” if the set is empty

• select one from the set of reachable states

• move to the selected state

• a search tree is generated

• nodes are added as more states are visited

18
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Search Terminology

• search tree
• generated as the search space is traversed

• the search space itself is not necessarily a tree, frequently it is a graph

• the tree specifies possible paths through the search space

• expansion of nodes
• as states are explored, the corresponding nodes are expanded by applying the

successor function

• this generates a new set of (child) nodes

• the fringe (frontier) is the set of nodes not yet visited

• newly generated nodes are added to the fringe

• search strategy

• determines the selection of the next node to be expanded

• can be achieved by ordering the nodes in the fringe

• e.g. queue (FIFO), stack (LIFO), “best” node w.r.t. some measure (cost)

19
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Example: Graph Search

• describes the search (state) space
• each node represents one state in the search space

• e.g. a city to be visited in a routing or touring problem

• additional information
• names and properties for the states

• links between nodes, specified by the successor function

• properties for links (distance, cost, name, ...)

20
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Graph and Tree

• the tree is generated by traversing the
graph

• the same node in the graph may appear
repeatedly in the tree

• the arrangement of the tree depends on
the traversal strategy (search method)

• the initial state becomes the root node of
the tree

• in the fully expanded tree, the goal states
are the leaf nodes

• cycles in graphs may result in infinite
branches

21
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Graph and Tree

• the tree is generated by traversing the
graph

• the same node in the graph may appear
repeatedly in the tree

• the arrangement of the tree depends on
the traversal strategy (search method)

• the initial state becomes the root node of
the tree

• in the fully expanded tree, the goal states
are the leaf nodes

• cycles in graphs may result in infinite
branches

22
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Graph and Tree

• the tree is generated by traversing the
graph

• the same node in the graph may appear
repeatedly in the tree

• the arrangement of the tree depends on
the traversal strategy (search method)

• the initial state becomes the root node of
the tree

• in the fully expanded tree, the goal states
are the leaf nodes

• cycles in graphs may result in infinite
branches

23

Fringe

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

General Tree Search Algorithm

• generate the first node from the initial state of the problem

• Repeat

• return failure if there are no more nodes in the fringe

• examine the current node; if it’s a goal, return the solution

• expand the current node, and add the new nodes to the fringe

Terminology:

Fringe: Set of “visible” but unexplored notes

24
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

General Search Algorithm

25

function GENERAL-SEARCH(problem, QUEUING-FN) returns solution

 nodes := MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))

 loop do

 if nodes is empty then return failure

 node := REMOVE-FRONT(nodes)

 if GOAL-TEST[problem] applied to STATE(node) succeeds

 then return node

 nodes := QUEUING-FN(nodes, EXPAND(node,

 ActionS[problem]))

 end

Note: QUEUING-FN is customizable which will be used to specify the search method

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Implementation: states vs. nodes

• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree includes state,
parent node, action, path cost g(x), depth

• The Expand function creates new nodes, filling in the various fields and
using the SuccessorFn of the problem to create the corresponding states.

26
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Search strategies

• A search strategy is defined by picking the order of node expansion

• Strategies are evaluated along the following dimensions:

• Completeness: does it always find a solution if one exists?

• Optimality: does it always find a least-cost solution?

• Time complexity: time it takes to find the solution (number of nodes generated)

• Space complexity: maximum number of nodes in memory

27
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Search strategies

• Time and space complexity are measured in terms of

• b: maximum branching factor of the search tree

• d: depth of the least-cost solution

• m: maximum length of any path in the state space (may be infinite)

28
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Search Cost and Path Cost

• the search cost indicates how expensive it is to generate a solution

• time complexity (e.g. number of nodes generated) is usually the main factor

• sometimes space complexity (memory usage) is considered as well

• path cost indicates how expensive it is to execute the solution found in the
search

• distinct from the search cost, but often related

• total cost is the sum of search and path costs

29
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Search strategies

• Uninformed Search
• breadth-first

• depth-first

• uniform-cost search

• depth-limited search

• iterative deepening

• bi-directional search

• Informed Search
• best-first search

• search with heuristics

• memory-bounded search

• iterative improvement search

30

• Local Search and Optimization
• hill-climbing

• simulated annealing

• local beam search

• genetic algorithms

• constraint satisfaction

• Others

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

	Slide 0: ENCS3340 - Artificial Intelligence Search (Problem Formulation)
	Slide 1: Search as Problem-Solving Strategy
	Slide 2: Examples
	Slide 3: Problem-Solving Agents
	Slide 4: Problem Types
	Slide 5: Well-Defined Problems
	Slide 6: Selecting States and Actions
	Slide 7: Example Problem: Romania Map
	Slide 8: Example Problem: Vacuum world
	Slide 9: Vacuum world state space graph
	Slide 10: Example Problem: The 8-puzzle
	Slide 11: State Space for the 8-puzzle
	Slide 12: Example Problem: Robot motion planning
	Slide 13: Example: n-queens
	Slide 14: 8-Queens: Incremental Approach
	Slide 15: 8-Queens: Complete-State Approach
	Slide 16: Example Problem: VLSI Layout
	Slide 17: Searching for Solutions
	Slide 18: Searching for Solutions
	Slide 19: Search Terminology
	Slide 20: Example: Graph Search
	Slide 21: Graph and Tree
	Slide 22: Graph and Tree
	Slide 23: Graph and Tree
	Slide 24: General Tree Search Algorithm
	Slide 25: General Search Algorithm
	Slide 26: Implementation: states vs. nodes
	Slide 27: Search strategies
	Slide 28: Search strategies
	Slide 29: Search Cost and Path Cost
	Slide 30: Search strategies

