
Public-Key (Asymmetric) Ciphers

ENCS4320 - Applied Cryptography

Dr. Ahmed I. A. Shawahna

Electrical and Computer Engineering Department 

Birzeit University

Uploaded By: Dana RafiSTUDENTS-HUB.com



Public-Key (Asymmetric) Ciphers ENCS4320 – Applied Cryptography © Ahmed Shawahna – slide 2

Presentation Outline

❖Motivation

❖ The Public-Key Revolution

❖ Principles Behind Public-Key Ciphers

❖ Essential Number Theory for Public-Key Algorithms

❖ Essential Group Theory for Public-Key Algorithms

❖ Public-key Examples

Uploaded By: Dana RafiSTUDENTS-HUB.com



Public-Key (Asymmetric) Ciphers ENCS4320 – Applied Cryptography © Ahmed Shawahna – slide 3

Basic Goals of Cryptography: Review

❖ Security goals:

 Data privacy: adversary should not be able to read message M       

 Data integrity: adversary should not be able to modify message M 

 Data authenticity: message M really originated from Alice 

Alice Bob

Internet

Trudy

Alice

But how to build?

Secure Channel
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Cryptographic Schemes

key2

plaintext

ciphertext

encrypt decrypt

key1

plaintext

Crypto Keys

Symmetric Key key1 = key2

Public Key key1  key2

How do keys get distributed?

ℳ

𝒦

𝒞 ℳ
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❖ Symmetric-key ciphers (e.g., AES or 3DES) are very secure, 

fast, and widespread. But:

❖ Partial solution: 
 key distribution centers (KDC)

▪ One central authority hands out temporary keys
▪ 𝒪(N) (long-term) keys needed (to the KDC)
▪ Might be a feasible solution in a single organization
▪ But, single point of failure, and
▪ What about the internet?

Issues with Symmetric-key Ciphers

 Number of keys: In a network, 

each pair of users requires a 

unique key
▪ 𝑁 users in the network require 

Τ𝑁(𝑁 − 1) 2 keys, 𝒪 𝑁2 , with 

each user storing (𝑁 − 1) keys!!

▪ Difficult to store and manage so 

many keys securely
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Issues with Symmetric-key Ciphers

❖ Symmetric-key ciphers (e.g., AES or 3DES) are very secure, 

fast, and widespread. But:

 Key distribution problem: Secret key must be transported 

securely

 Cheating: Alice or Bob can cheat each other, because they 

have identical keys!!!
▪ Repudiation by Alice

▪ Fabrication by Bob
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Basic Goals of Cryptography

Message Privacy
Message Integrity / 

Authentication

Symmetric Keys
Symmetric Encryption 

(private-key encryption)

Message Authentication 

Codes (MAC)

Asymmetric Keys 
Asymmetric Encryption 

(public-key encryption)
Digital Signatures
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Diffie-Hellman Key Exchange – Idea

𝐾

𝐾
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Public-Key Encryption
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Diffie-Hellman Key Exchange 

❖ Discovered in the 1970's 

❖ A “key exchange” algorithm

 Allows two parties to establish a shared secret (shared symmetric key) 
without ever having met

 Not for encrypting or signing

❖ Diffie & Hellman paper also introduced:

 Public-key encryption

 Digital signatures

Whitfield Diffie

Martin Hellman

Ralph Merkle
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Public-Key Cryptography

❖ Two keys

 Sender uses recipient’s public key to encrypt

 Recipient uses private key to decrypt

❖ The main idea behind asymmetric-key cryptography is the 

concept of the trapdoor one-way function

 “One way” means easy to compute in one direction, but hard to 

compute in other direction 

 “Trap door” used to create key pairs

A function is a rule mapping a domain to a range
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Trapdoor One-Way Function

❖ One-Way Function (OWF)

1.  f is easy to compute

2.  f −1 is difficult to compute

❖ Trapdoor One-Way Function (TOWF)

3.  Given y and a trapdoor k’, x can be computed easily

A function is a rule mapping a domain to a range
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Trapdoor One-Way Function (Continued)

❖ Example 1:

 When n is large, n = p × q is a one-way function

 Given p and q, it is always easy to calculate n

 However, given n, it is very difficult to compute p and q

 This is the factorization problem

❖ Example 2:

 When n is large, the function y = xk mod n is a trapdoor one-way 

function

 Given x, k, and n, it is easy to calculate y

 Given y, k, and n, it is very difficult to calculate x

 This is the discrete logarithm problem

 However, if we know the trapdoor, k′, such that k×k′ = 1 mod (n), 

we can use x = yk′ mod n to easily find x
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𝒁𝑛
∗ ≃ 𝒁𝑝1

∗ × 𝒁𝑝2
∗ × ⋯ × 𝒁𝑝𝑡

∗

Symmetric and Asymmetric Crypto 

❖ Symmetric crypto boils down to a few primitives 

 Block ciphers/PRFs, hash functions

 Why are these considered secure? 

▪ Lots and lots of cryptanalysis (well-studied!) 

▪ Artificial and man-made

❖Want asymmetric crypto to be based on a                            

few well-studied primitives too

❖ Candidates come from a different place: 

 Hard mathematical problems

 Good candidates: discrete logarithm                                

problem, factoring

▪ Much more algebraic structure

AES

SHA2-256

𝑦2 = 𝑥3 − 5𝑥 + 2
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How to build Public-Key Algorithms

❖ One-way functions are based on mathematically hard 

problems

❖  Three main families:

 Factoring integers (RSA, ...)

▪ Given a composite integer n, find its prime factors

▪ Multiply two primes: easy

 Discrete Logarithm (DL) (Diffie-Hellman, Elgamal, DSA, …)

▪ Given a, y and m, find x such that y = ax mod m

▪ Exponentiation ax : easy

 Elliptic Curves (EC) (ECDH, ECDSA)

▪ Generalization of discrete logarithm

❖ Note: The problems are considered mathematically hard, but 

no proof exists (so far)
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Key Lengths and Security Levels

❖ The exact complexity of RSA and DL is difficult to estimate

❖ The existence of quantum computers would probably be the 

end for EC, RSA ,& DL (at least 2-3 decades away, and 

some people doubt that QC will ever exist)
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Public-Key Cryptography

❖ Encryption

 Suppose we encrypt M with Bob’s public key

 Bob’s private key can decrypt to recover M

❖ Digital Signature

 Sign by “encrypting” with your private key

 Anyone can verify signature by “decrypting” with public key

 But only you could have signed

 Like a handwritten signature, but way better…
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Modular Exponentiation

❖ A type of exponentiation performed over a modulus

 e.g., ab mod m  or  ab (mod m)

❖ Example: Solve 233 mod 30 

 23  -7 mod 30 

 -73 = -343 = -13  17 mod 30

➔233 mod 30  17

❖ Example: Solve 31500 mod 30 

 31  1 mod 30 

 1500 = 1 mod 30

➔ 31500 mod 30  1
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Modular Exponentiation
❖ Example: Solve 242329 mod 243 

 242329  -1329 mod 30 

 -1329 = -1  242 mod 243

➔242329 mod 243  242

❖ Example: Solve 117 mod 13 

 11  -2 mod 13 

 -27 = -128  -11 mod 13  2 mod 13

➔ 117 mod 13  2
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Modular Exponentiation
❖ Example: Solve 520 mod 35 

 520 = 95367431640625  25 mod 35

❖ A better way: Square-and-Multiply Algorithm

 20 = (10100)2

 (1, 10, 101, 1010, 10100) = (1, 2, 5, 10, 20)

 Note that 2 = 1 2, 5 = 2  2 + 1, 10 = 2  5, 20 = 2  10

 51  5 mod 35

 52 = (51)2 = 52  25 mod 35

 55 = (52)2  51 = 252  5 = 3125  10 mod 35

 510 = (55)2 = 102 = 100  30 mod 35

 520 = (510)2 = 302 = 900  25 mod 35

❖ No huge numbers and it’s efficient!
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Modular Exponentiation
❖ Example: Solve 887 mod 187 

 7 = (111)2

 (1, 11, 111) = (1, 3, 7)

 Note that 3 = 1 2 + 1, 7 = 2  3 + 1

 881  88 mod 187

 883 = (881)2  881 = 882  88 = 7744  88  77  88 = 6776                
 44 mod 187

 887 = (883)2   881 = 442   88 = 1936 . 88   66 . 88 = 5808             
  11 mod 187
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Euler’s Phi (Totient) Function

❖ New problem, important for public-key systems, e.g., RSA

❖ Given the set of the m integers {0, 1, 2, …, m-1}

❖ How many numbers in the set are relatively prime to m?

❖ Answer: Euler’s Phi (Totient) Function (m) 

 (m) is “the number of numbers less than m that are relatively 
prime to m”. Here, “numbers” are positive integers

❖ Example: Calculate (5) and (6)
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Euler’s Phi (Totient) Function

❖ Testing one gcd per number in the set is extremely slow for 

large m

❖ Fortunately, there exists a relation to calculate (m) much more 

easily if we know the factorization of m
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Euler’s Phi (Totient) Function

❖ Phi especially easy for ei = 1

 e.g., m = p . q ➔ (m) = (p-1) . (q-1)

❖ Example: m = 899 = 29 . 31

 (899) = (29 - 1) . (31 - 1) = 28 . 30 = 840

❖ Note: Finding (m) is computationally easy if factorization of 

m is known

 Otherwise, the calculation of becomes computationally 
infeasible for large numbers

❖ (n) can be computed recursively by:

1. (1) = 1

2. if n is a prime power, n = pe, then (n) = pe – p(e – 1)

3. if gcd(m, n) = 1, then (mn) = (m) . (n)
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Euler’s Phi (Totient) Function

❖ Examples: 

 (17) = 16

 (25) = 52 = 52 – 5 = 20

 (16) = 24 = 24  – 23 = 8

 (105) = (3 . 5 . 7) = 2 . 4 . 6 = 48

 (200) = (23 . 52) = (23 – 22) (52 – 5) = 4 . 20 = 80

 (240) = (24 . 3 . 5) = (24 – 23) . (3 – 1) . (5 – 1) = 8 . 2 . 4 = 64
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Fermat’s Little Theorem

❖ Very useful in public-key ciphers
 e.g., primality testing while generating keys

❖ Recall that arithmetic in finite fields GF(p) is done modulo p
 Hence, the theorem holds for all integers a  GF(p)

❖ Alternate form: ap  a−1 = ap−1 ≡ 1 (mod p) (why?)
 a  ap−2 ≡ 1 (mod p)  a−1 ≡ ap−2 (mod p)

 Quick way to find multiplicative inverse if modulus is a prime!!

 But slower than EEA unless a hardware accelerator is used for fast 

exponentiation

❖ Example: Let p = 7 and a = 2  a−1 = ap−2 = 25 = 32 ≡ 4 mod 7
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❖ Generalization of Fermat’s Little Theorem for any modulus
 i.e., moduli that are not necessarily primes

❖ Example: Let m = 12 and a = 5  gcd (12, 5) = 1

 (12) = (22 · 3) = (22 − 21)(31 − 30) = 4

Verify: 5(12) = 54 = 625 ≡ 1 mod 12

❖ Theorem is used to prove correctness of RSA (most popular 

public-key crypto)

Euler’s Theorem
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❖ Another important use of Euler’s theorem is the following:

if k ≡ j (mod (n))  ,  then ak ≡ aj mod n

 Helps in exponentiation computation (needed in RSA)

❖ Example 1: 246 = 22 (mod 5), since 46  2 (mod (5))

❖ Example 2: Compute the following:

a. 1452 (mod 11)

 1452 ≡ 352 (mod 11). Since (11) = 10  52 ≡ 2 (mod 10)

 1452 ≡ 352 ≡ 32 ≡ 9 (mod 11)

b. 46391 (mod 15)

 46391 ≡ 1391 ≡ (–2)91 (mod 15). Since (15) = 2 × 4 = 8

 91 ≡ 3 (mod 8)  (–2)91 ≡ (–2)3 ≡ –8 ≡ 7 (mod 15)

Euler’s Theorem
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Preliminaries

𝒁 = … , −2, −1, 0, 1, 2, 3, …(integers) 

𝑹 = the real numbers

𝒁𝑛 = 0, 1, 2, … , 𝑛 − 1

𝒁𝑝 = 0, 1, 2, … , 𝑝 − 1

𝑹∗ = 𝑹 ∖ {0}

𝒁𝑝
∗ = 𝒁𝑝 ∖ 0

(reals) 

(integers “mod 𝑛”) 

(integers “mod 𝑝”) 

Examples:

𝒁11 = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

𝒁11
∗ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

An integer 𝑝 > 1 is prime if 

it's only divisible by 1 and 𝑝 
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Group – Definition 

Definition: A group 𝐺,∘  is a set 𝐺 together with a binary operation ∘ satisfying 

the following axioms.

     G1:      𝑎 ∘ 𝑏 ∘ 𝑐 = 𝑎 ∘ 𝑏 ∘ 𝑐  for all 𝑎, 𝑏, 𝑐, ∈ 𝐺                 (associativity)

     G2:      ∃𝑒 ∈ 𝐺 such that 𝑒 ∘ 𝑎 = 𝑎 ∘ 𝑒 = 𝑎 for all 𝑎 ∈ 𝐺             (identity)

     G3:      ∀𝑎 ∈ 𝐺 there exists  𝑎−1 ∈ 𝐺 such that 𝑎 ∘ 𝑎−1 = 𝑎−1 ∘ 𝑎 = 𝑒   (inverse)

A group is abelian/commutative if: 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎 for all 𝑎, 𝑏 ∈ 𝐺 

The order of a group is the number of elements in 𝐺, denoted 𝐺
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" 9/7 −1" = −9/7

Groups – Examples 

𝒁, +

𝑹, +

𝒁𝑛, +𝑛

𝑹∗,⋅

𝒁𝑝
∗ , ⋅𝑝

𝒁, −

𝒁,⋅

𝑹,⋅

𝒁𝑛, ⋅𝑛

Groups

Not Groups

1 − 2 − 3 ≠ 1 − (2 − 3)
2−1 = ?

0 ⋅ 𝑥 = 1?

2𝑥 = 1 mod 4 ?

𝒁𝑝, ⋅𝑝

𝑒 = 0 "3−1" = −3

𝑒 = 0

𝑒 = 1 9/7 −1 = 7/9

𝑒 = 0 "3−1" = 𝑥: 3 + 𝑥 ≡ 0 mod 𝑛

𝑒 = 1 "3−1" = 𝑥: 3 ⋅ 𝑥 ≡ 1 mod 𝑝

∘ e a b

e e a b

a a b e

b b e a

𝑮,∘
+3 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

𝒁3, +3

∘ e a b c

e e a b c

a a b c e

b b c e a

c c e a b

𝑮,∘

⋆ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

𝒁4, +4 𝑮,⋆
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Group Arithmetic 

= 𝑔 ∘ ⋯ ∘ 𝑔 ∘ 𝑔 ∘ ⋯ ∘ 𝑔

𝑔0 =
def

𝑒

𝑔𝑛 =
def

𝑔 ∘ 𝑔 ∘ ⋯ ∘ 𝑔

𝑛 

𝑔−𝑛 =
def

𝑔−1 𝑛

𝑔𝑛 ∘ 𝑔𝑚 = 𝑔𝑛𝑔𝑚

𝑛 𝑚 

𝑛 + 𝑚 

= 𝑔𝑛+𝑚Fact:

Fact: 𝑔𝑛 𝑚 = 𝑔𝑛𝑚 = 𝑔𝑚 𝑛

𝒁, + : "210" = 2 + 2 + ⋯ + 2
= 10 ⋅ 2 = 20

10 
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Cyclic Groups

Definition: A group 𝐺,∘  is cyclic if there exists 𝑔 ∈ 𝐺 such that

 𝐺 = 𝑔𝑖 𝑖 ∈ 𝒁 = … , 𝑔−2, 𝑔−1, 𝑔0, 𝑔1, 𝑔2, …

Element 𝑔 is called a generator for 𝐺 and we write 𝐺,∘ = 𝑔

𝒁, + = 1

𝒁𝑛, +𝑛 = 1

Examples: Not cyclic groups:

𝑹, + 𝑹∗,⋅

𝒁𝑝
∗ ,⋅ = 𝑎  

𝒁7
∗ ,⋅ = 3

 
= 30, 31, 32, 33, 34, 35 = 1, 3, 2, 6, 4, 5
= 50, 51, 52, 53, 54, 55 = 1, 5, 4, 6, 2, 3= 5

≠ 2 = 20, 21, 22, 23, 24, 25 = 1, 2, 4, 1, 2, 4 = 1, 2, 4
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Cyclic Groups

Theorem: 

     For every prime p, 𝒁𝑝
∗ ,⋅ is an abelian finite cyclic group. 

❖ Cyclic groups are the basis of discrete logarithm cryptosystems

• Consider 𝒁47
∗ ,⋅  with the generator 𝑔 = 5.

 Find 𝑥 such that 5𝑥 ≡ 41 𝑚𝑜𝑑 47

Definition: A group 𝐺,∘  is cyclic if there exists 𝑔 ∈ 𝐺 such that

 𝐺 = 𝑔𝑖 𝑖 ∈ 𝒁 = … , 𝑔−2, 𝑔−1, 𝑔0, 𝑔1, 𝑔2, …

Element 𝑔 is called a generator for 𝐺 and we write 𝐺,∘ = 𝑔
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Subgroups

Definition: A set 𝐻 ⊆ 𝐺 is a subgroup, written 

𝐻 < 𝐺, if

  ∀𝒂, 𝒃 ∈ 𝑯: 𝒂 ∘ 𝒃 ∈ 𝑯

𝐺

𝐻

𝑒
𝑥

𝑥−1

𝑦
𝑥 ∘ 𝑦

Fact: a subgroup 𝐻 is a group

Examples:

𝑒 < 𝐺  (for all groups)

𝐺 < 𝐺  (for all groups)

2𝒁 = … , −2, 0, 2, 4, 6, … < 𝒁, +

3𝒁 = … , −3, 0, 3, 6, 9, … < 𝒁, +

1, −1 < 𝑹∗,⋅𝑹+ < 𝑹∗,⋅

20 < 10 < 5 < 𝒁40, +

positive real numbers

5 = 0, 5, 10, … , 35   

10 = 0, 10, 20, 30   

20 = 0, 20   
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Finite Cyclic Groups

Theorem:  if 𝐺,∘  is a finite group, then for all 𝑔 ∈ 𝐺: 

𝒈 𝑮 = 𝒆

𝑔1𝑒 𝑔2 𝑔3 𝑔𝑛⋯ ⋯

𝑔𝑛 = 𝑔3 ⟹ 𝑔𝑛−3= 𝑒 ⟹ 𝑔𝑗= 𝑒    𝑗 < 𝑛

Proof (finite cyclic groups):

𝐺 = 𝑔 = 𝑛

𝑔𝑛−1

contradiction!

𝐺

𝑔𝑛+1 𝑔𝑛+2

Corollary I:  𝑔𝑖 = 𝑔𝑖 mod 𝑛 = 𝑔𝑖 mod 𝐺

Corollary II (Lagrange's theorem): if 𝐻 < 𝐺, then the order 

of 𝐻 divides the order of 𝐺  (i.e., 𝐺 / 𝐻 )
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Groups of Prime Order

❖ Fact: any prime-order group is cyclic

❖ Fact: any non-trivial element (≠ 𝑒) in a prime-order group is a 

generator

❖Warning: 𝒁𝑝
∗ ,⋅  is not a prime-order group!   𝒁𝑝

∗ = 𝑝 − 1 

❖ Suppose 𝑝 = 2𝑞 + 1, with 𝑞 being prime; what are the possible 

sub-groups of 𝒁𝑝
∗ ,⋅ ?

𝒁𝑝
∗ =

{1},
{1, −1},

𝐻, 𝐻 = 𝑞
𝒁𝑝

∗

𝒁𝑝
∗ = 𝑝 − 1 = 2𝑞 𝒁11

∗ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

11 = 2 ⋅ 5 + 11 < 𝒁11
∗

1, −1 = {1,10} < 𝒁11
∗

𝒁11
∗ < 𝒁11

∗

𝐻 = 3 = 4 = 5 = 9 = {1, 3, 4, 5, 9} < 𝒁11
∗

Example:

Corollary II (Lagrange's theorem): if 𝐻 < 𝐺, then the order of 𝐻 

divides the order of 𝐺 
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Next …

❖Motivation

❖ The Public-Key Revolution

❖ Principles Behind Public-Key Ciphers

❖ Essential Number Theory for Public-Key Algorithms

❖ Essential Group Theory for Public-Key Algorithms

❖ Public-key Examples

Diffie-Hellman (DH)

 Elgamal

RSA
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Diffie-Hellman

❖ Based on discrete log problem: 

Given: g, p, and gk mod p
 Find: exponent k

❖ Let p be prime, let g be a generator 

 For any x  {2, … , p-2} there is n s.t. x = gn mod p

❖ Alice selects her private value a

❖ Bob selects his private value b

❖ Alice sends ga mod p to Bob

❖ Bob sends gb mod p to Alice

❖ Both compute shared secret, gab mod p

❖ Shared secret can be used as symmetric key
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Diffie-Hellman

𝐴 = 𝑔𝑎

𝐵 = 𝑔𝑏

𝑎 ՚
$

2, … , 𝐺 − 1 𝑏 ՚
$

2, … , 𝐺 − 1

𝑍 ՚ 𝐵𝑎 𝑍′ ՚ 𝐴𝑏= (𝑔𝑏)𝑎 = 𝑔𝑎𝑏 = 𝑔𝑎 𝑏= 𝑔𝑎𝑏

𝐺 = 〈𝑔〉
public

Claim: 𝑍 = 𝑍′

❖ Public: g and p

❖ Private: Alice’s exponent a, Bob’s exponent b

❑ Alice computes (gb)a = gba = gab mod p 

❑ Bob computes (ga)b = gab mod p

❑ Use k = gab mod p as symmetric key 
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Diffie-Hellman – Example 

570 ՚ 2493 mod 1019 72 ՚ 2901 mod 1019

493 ՚
$

2, … , 1017 901 ՚
$

2, … , 1017

𝑍 ՚ 72493 mod 1019 𝑍′ ՚ 570901 mod 1019 ≡ 𝟓𝟑𝟏

𝒁1019
∗ = 〈2〉

≡ 𝟓𝟑𝟏

570

72

❖ Public: g (2) and p (1019)

❖ Private: Alice’s exponent a (493), Bob’s exponent b (901)

❑ Alice computes (gb)a = gba = gab mod p 

❑ Bob computes (ga)b = gab mod p

❑ Use k = gab mod p as symmetric key 
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❖ Security:

Must be hard to compute 𝑍 ՚ 𝑔𝑎𝑏 given 𝑔, 𝐴, 𝐵 (DH assumption)

Must be hard to find 𝑎 (or 𝑏) given 𝑔, 𝐴, 𝐵           (DL assumption)

 If Trudy can solve discrete log problem, she can find 𝑎 or 𝑏

Diffie-Hellman - Security

Doesn't work: 𝐴 ∘ 𝐵 = 𝑔𝑎 ∘ 𝑔𝑏 = 𝑔𝑎+𝑏 ≠ 𝑔𝑎𝑏

𝐴 = 𝑔𝑎

𝐵 = 𝑔𝑏

𝑎 ՚
$

2, … , 𝐺 − 1 𝑏 ՚
$

2, … , 𝐺 − 1

𝑍 ՚ 𝐵𝑎 𝑍′ ՚ 𝐴𝑏= (𝑔𝑏)𝑎 = 𝑔𝑎𝑏 = 𝑔𝑎 𝑏= 𝑔𝑎𝑏

𝐺 = 〈𝑔〉
public
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Discrete Logarithm Problem (DLP)

𝐄𝐱𝐩𝐺,𝑔
𝐷𝐿𝑃 𝐴

1. 𝑥 ՚
$

2, … , 𝐺 − 1

2. 𝑋 ՚ 𝑔𝑥

3. 𝑥′ ՚ 𝐴 𝑋

4. return 𝑥 =
?

𝑥

Challenger  

𝑥 ՚
$

2, … , 𝐺 − 1

𝑋 ՚ 𝑔𝑥
𝑋

𝑥′

Adversary wins if 𝑥′ = 𝑥

Public: 𝐺 = 𝑔

In other words: 𝑥′ = DL𝑔 𝑋

Definition: The DLP-advantage of an adversary 𝐴 is

𝐀𝐝𝐯𝐺,𝑔
𝐷𝐿𝑃 𝐴 = Pr 𝐄𝐱𝐩𝐺,𝑔

𝐷𝐿𝑃 𝐴  ⇒ true
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Diffie-Hellman Problem (DHP)

𝐄𝐱𝐩𝐺,𝑔
𝐷𝐻𝑃 𝐴

1. 𝑥, 𝑦 ՚
$

2, … , 𝐺 − 1

2. 𝑋 ՚ 𝑔𝑥

3. 𝑌 ՚ 𝑔𝑦

4. 𝑧 ՚ 𝐴 𝑋, 𝑌

5. return 𝑔𝑧 =
?

𝑔𝑥𝑦

Challenger  

𝑥, 𝑦 ՚
$

2, … , 𝐺 − 1

𝑋 ՚ 𝑔𝑥
𝑋, 𝑌

𝑧

Adversary wins if 𝑔𝑧 = 𝑔𝑥𝑦

Public: 𝐺 = 𝑔

Definition: The DHP-advantage of an adversary 𝐴 is

𝐀𝐝𝐯𝐺,𝑔
𝐷𝐻𝑃 𝐴 = Pr 𝐄𝐱𝐩𝐺,𝑔

𝐷𝐻𝑃 𝐴  ⇒ true

𝑌 ՚ 𝑔𝑦
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DLP vs. DHP

𝐄𝐱𝐩𝐺,𝑔
𝐷𝐿𝑃 𝐴

1. 𝑥 ՚
$

2, … , 𝐺 − 1

2. 𝑋 ՚ 𝑔𝑥

3. 𝑥′ ՚ 𝐴 𝑋

4. return 𝑥 =
?

𝑥

𝐄𝐱𝐩𝐺,𝑔
𝐷𝐻𝑃 𝐴

1. 𝑥, 𝑦 ՚
$

2, … , 𝐺 − 1

2. 𝑋 ՚ 𝑔𝑥

3. 𝑌 ՚ 𝑔𝑦

4. 𝑧 ՚ 𝐴 𝑋, 𝑌

5. return 𝑔𝑧 =
?

𝑔𝑥𝑦

DL security ⟸ DH security

DL security ⟹
?

 DH security

If the only way of solving the DHP 

requires the DLP, one would say that 

“the DHP is equivalent to the DLP”. 

However, this is not proven (yet).
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Attacks Against the DLP

❖ Generic algorithms; works for all (cyclic) groups

 Brute-Force Search

1. Given 𝒈 and 𝑿 ∈ 𝑮

2. for 𝒊 = 𝟐, 𝟑, … , 𝑮 −1 check if 𝒈𝒊 = 𝑿

Are there better algorithms?

❖ Non-generic algorithms; efficiently exploits algebraic features, 

i.e., the inherent structure, of given group

running time: 𝒪 𝐺 ≈ 𝒪 2𝑛 ,  

given 𝐺 ≈ 2𝑛 
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Generic Algorithms for Solving DL

❖ Nechaev '94 & Shoup '97: Solving DL requires time Ω 𝐺  in 

generic groups 

❖ Square-Root Attacks:

• Shanks’ Baby-Step Giant-Step:    Time 𝒪 𝐺         Memory 𝒪 𝐺

• Pollard's rho:                Time 𝒪 𝐺    Memory 𝒪 1

❖ Consequence: 𝐺  must be large enough

• 𝐺 ≈ 2128 only gives 2128 = 264  security

• 𝐺 ≈ 𝟐𝟏𝟔𝟎 only gives 2160 = 𝟐𝟖𝟎  security

• 𝐺 ≈ 𝟐𝟐𝟓𝟔 only gives 2256 = 𝟐𝟏𝟐𝟖  security

• 𝐺 ≈ 2512 only gives 2512 = 2256 security

• etc...
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Shanks’ Baby-Step Giant-Step Method

𝑥 = 𝑚𝑗 + 𝑖

𝑋 ՚ 𝑔𝑥

𝑋0 ՚ 𝑋 ⋅ 𝑔−0

𝑋1 ՚ 𝑋 ⋅ 𝑔−1

𝑋2 ՚ 𝑋 ⋅ 𝑔−2

𝑋3 ՚ 𝑋 ⋅ 𝑔−3

𝑋𝑚 ՚ 𝑋 ⋅ 𝑔−𝑚

⋮

𝑌0

𝑌 ՚ 𝑔𝑚

𝑌1

𝑌2

𝑌3

𝑌𝑚

⋮

𝑋𝑖 ՚ 𝑋 ⋅ 𝑔−𝑖

⋮

𝑌𝑗

⋮

𝑋𝑖 = 𝑌𝑗

𝑋 ⋅ 𝑔−𝑖 = 𝑔𝑚𝑗

𝑋 = 𝑔𝑚𝑗+𝑖

DL 𝑋 = DL 𝑔𝑚𝑗+𝑖

𝑚 ՚ 𝐺

⋅ 𝑔𝑖 ⋅ 𝑔𝑖

Sort the values and Find “collision”

𝒪 𝐺 𝒪 𝐺

𝒪 𝐺 ⋅ log 𝐺 ≈ 𝒪 𝐺

Given:

Time + Memory:  𝒪 𝐺  

Find: 𝑥
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Non-Generic Algorithms for DL

https://en.wikipedia.org/wiki/Discrete_logarithm_records

❖ Unfortunately, 𝒁𝑝
∗ ,⋅  is not a generic group!

❖Much faster specific algorithms exist for solving DL in 𝒁𝑝
∗ ,⋅

• Index-calculus method

• Elliptic-curve method

• Special number-field sieve (SNFS)

• General number-field sieve (GNFS)

❖ Current DL-solving record: 𝒁𝑝
∗ ≈ 2795 (240-digit) using GNFS 

(Heninger et al. 2019)

• Previous records: https://en.wikipedia.org/wiki/Discrete_logarithm_records

❖ 𝒁𝑝
∗ ≥ 21024 typically required as a minimum today

❖ Better alternatives to 𝒁𝑝
∗ ,⋅ ?  

• Elliptic Curves
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Diffie-Hellman - Attack

❖ Subject to man-in-the-middle (MiM) attack:

❖ Trudy shares secret gat mod p with Alice 

❖ Trudy shares secret gbt mod p with Bob

❖ Alice and Bob don’t know Trudy exists!

❖ In any case, you MUST be aware of MiM attack on 
Diffie-Hellman

ga mod p

gb mod pgt mod p

gt mod p

Alice, a Bob, bTrudy, t
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Diffie-Hellman - Attack

❖ Subject to man-in-the-middle (MiM) attack

 Example: Assume using 𝒁13
∗ ,⋅  with 𝒁13

∗ = 2  

6

311

11

Alice, 5 Bob, 4Trudy, 7

6 ՚ 25 mod 13

𝑍 ՚ 115 mod 13 ≡ 𝟕

11 ՚ 27 mod 13

𝑍𝐴 ՚ 67 mod 13 ≡ 𝟕

𝑍𝐵 ՚ 37 mod 13 ≡ 𝟑

3 ՚ 24 mod 13

𝑍 ՚ 114 mod 13 ≡ 𝟑
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Next …

❖Motivation

❖ The Public-Key Revolution
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❖ Public-key Examples

Diffie-Hellman (DH)

 Elgamal

RSA
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Public-Key Cipher

❖What can we do with public-key algorithms?

❖ Goal: Develop an encryption scheme from DH key exchange

Service
Algorithm Family

Integer Factorization Discrete Logarithm Elliptic Curves

Key Exchange RSA DH ECDH

Digital Signature RSA DSA, Elgamal ECDSA

Encryption RSA Elgamal ECxxx

𝐴 = 𝑔𝑎

𝐵 = 𝑔𝑏

𝐾𝐴𝐵 ≡ 𝐵𝑎 = 𝑔𝑏 𝑎
= 𝑔𝑎𝑏 𝑚𝑜𝑑 𝑝 𝐾𝐴𝐵 ≡ 𝐴𝑏 = 𝑔𝑎 𝑏 = 𝑔𝑎𝑏 𝑚𝑜𝑑 𝑝

𝑮 = 𝒈 , 𝒑 

Alice, 𝑎 Bob, 𝑏

Message 𝑥

𝑌 ≡ 𝑥 ∙ 𝐾𝐴𝐵  𝑚𝑜𝑑 𝑝
𝑌

𝑥 ≡ 𝑌 ∙ 𝐾𝐴𝐵
−1 𝑚𝑜𝑑 𝑝
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Public-Key Encryption - Procedure

❖ Scenario:

 Alice wants to send an encrypted message to Bob

❖ Procedure:

 Bob computes a public and a private key, the keypair

 Bob publishes his public key

 Alice Encrypts the message using Bob’s public key

 Alice sends the message to Bob.

 Bob encrypts the message using his private key 

❖ Effect:

 Nobody intercepting the message can read

 nor alter it unrecognized
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Elgamal Public-key Cryptosystem

❖ Elgamal is a public-key cryptosystem that was developed by 

Dr. Taher Elgamal in 1985

 Based on the Diffie–Hellman key exchange, but with reordering 

of steps

❖ Key aspects:

 Based on the Discrete Logarithm problem

 Randomized encryption

❖ Application:

 Establishing a secure channel for key sharing

 Encrypting messages 
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Elgamal - Key Generation

❖ Bob (receiver) must do the following:

1. Generate a large random prime number 𝑝

2. Choose a generator number 𝛼

3. Choose secret number 𝑑, 𝑑 ∈ 2, 3, … , 𝑝 − 2

4. Compute 𝛽 = 𝛼𝑑  𝑚𝑜𝑑 𝑝

❖ Public key: 𝛽, 𝑝, 𝛼

❖ Private key: 𝑑

❖ Notes: 

 The public key 𝛽 is fixed, 𝑝 and 𝛼 are chosen by Bob

  𝑝 must be > 300 digits (i.e., > 1024 bits)
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Elgamal - Encryption

❖ Alice (sender) must do the following:

1. Obtain public key 𝛽, 𝑝, 𝛼  from Bob (receiver)

2. Choose an integer 𝑖, 𝑖 ∈ 2, 3, … , 𝑝 − 2

3. Compute 𝐾𝐸 = 𝛼𝑖  𝑚𝑜𝑑 𝑝, 𝐾𝐸: Ephemeral Key

4. Compute 𝐾𝑀 = 𝛽𝑖  𝑚𝑜𝑑 𝑝, 𝐾𝑀: Masking Key

5. Represent the plaintext as an integer 𝑥

6. Compute ciphertext 𝑌 = 𝑥 × 𝐾𝑀 𝑚𝑜𝑑 𝑝

7. Send 𝑌, 𝐾𝐸  to Bob

❖ Notes: 

  𝑖 must be new for each encryption, i.e., 𝐾𝐸 must be different for 

every plaintext

 Because of that, Elgamal is a “probabilistic encryption scheme”
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Elgamal - Decryption

❖ Bob (receiver) does the following:

1. Obtain ciphertext and ephemeral key 𝑌, 𝐾𝐸  from Alice (sender)

2. Compute 𝐾𝑀 = 𝐾𝐸
𝑑  𝑚𝑜𝑑 𝑝, 𝐾𝑀: Masking Key

3. Recover plaintext 𝑥 = 𝑌 × 𝐾𝑀
−1 𝑚𝑜𝑑 𝑝

❖ Notes: 

 To compute 𝐾𝑀
−1, we need to apply the square-and-multiply 

algorithm to calculate 𝐾𝑀 first, and then apply the extended 

Euclidean algorithm to calculate the inverse

 However, using the Fermat’s little theorem, the computation of 

𝐾𝑀
−1 can be simplified as follows:

𝐾𝑀
−1 ≡ 𝐾𝐸

𝑑 −1
𝑚𝑜𝑑 𝑝 ≡ 𝐾𝐸

−𝑑 × 1 𝑚𝑜𝑑 𝑝

≡ 𝐾𝐸
−𝑑 × 𝐾𝐸

𝑝−1 𝑚𝑜𝑑 𝑝 ≡ 𝐾𝐸
𝑝−1−𝑑 𝑚𝑜𝑑 𝑝

 Thus, steps (2) and (3) are merged as: 𝑥 = 𝑌 × 𝐾𝐸
𝑝−1−𝑑 𝑚𝑜𝑑 𝑝
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Generator Number

❖ Testing if 𝛼 is generator number:

1.  𝛼 must ∈ 1, 2, 3, … , 𝑝 − 1

2. Find ∅ 𝑝 = 𝑝 − 1

3. Find the all factors of ∅ 𝑝 , 𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑛 − 1

4. Find 𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛 , where 𝑞𝑖 = 𝑓𝑖

▪ For redundant factors 𝑞𝑖 = 𝑓𝑖
ℎ, where ℎ = 1, 2, … , freq 𝑓𝑖

5.  𝛼 is generator iff 𝑤𝑖 = 𝛼 ∅ 𝑝 /𝑞𝑖 ≠ 1 𝑚𝑜𝑑 𝑝, for all 𝑞𝑖
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Generator Number – Example 1
❖ Let 𝑝 = 11, 𝛼 = 2, test if 𝛼 is generator number

   (𝑝) = 10, factors of 10 = {2, 5}  q1 = 2, q2 = 5

   w1 = 210/2 mod 11 = 10  1

   w2 = 210/5 mod 11 = 4  1 

    𝛼 is a generator number

Uploaded By: Dana RafiSTUDENTS-HUB.com



Public-Key (Asymmetric) Ciphers ENCS4320 – Applied Cryptography © Ahmed Shawahna – slide 65

Generator Number – Example 2
❖ Let 𝑝 = 11, 𝛼 = 3, test if 𝛼 is generator number

   (𝑝) = 10, factors of 10 = {2, 5}  q1 = 2, q2 = 5

   w1 = 310/2 mod 11 = 1

   w2 = 310/5 mod 11 = 9  1 

    𝛼 is NOT a generator number
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Generator Number – Example 3
❖ Let 𝑝 = 37, 𝛼 = 2, test if 𝛼 is generator number

   (𝑝) = 36, factors of 36 = {2, 2, 3, 3}

    q1 = 21 = 2, q2 = 22 = 4, q3 = 31 = 3, q4 = 32 = 9

  w1 = 236/2 mod 37 = 36  1

  w2 = 236/4 mod 37 = 31  1

  w3 = 236/3 mod 37 = 26  1

  w4 = 236/9 mod 37 = 16  1 

    𝛼 is a generator number
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Key Generation - Example

❖ Let 𝑝 = 11, 𝛼 = 2, and 𝑑 = 5

    Calculate 𝛽 = 𝛼𝑑  𝑚𝑜𝑑 𝑝 = 25 𝑚𝑜𝑑 11 = 10

Public key: 𝛽, 𝑝, 𝛼 = 10, 11, 2

Private key: 𝑑 = (5)
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Encryption/Decryption - Example

❖ Let public key 𝛽, 𝑝, 𝛼 = 10, 11, 2  and plaintext 𝑥 = 1, 7, 5

❖ Encryption: 

𝐾𝐸 = 𝛼𝑖 𝑚𝑜𝑑 𝑝, 𝐾𝑀 = 𝛽𝑖  𝑚𝑜𝑑 𝑝, and 𝑌 = 𝑥 × 𝐾𝑀 𝑚𝑜𝑑 𝑝

𝒙 = 𝟏, choose a random integer 𝒊 = 𝟔

    𝐾𝐸 = 26 𝑚𝑜𝑑 11 = 9, 𝐾𝑀 = 106 𝑚𝑜𝑑 11 = 1, and 𝑌 = 1 × 1 𝑚𝑜𝑑 11 = 1

𝒙 = 𝟕, choose a random integer 𝒊 = 𝟒

  𝐾𝐸 = 24 𝑚𝑜𝑑 11 = 5, 𝐾𝑀 = 104 𝑚𝑜𝑑 11 = 1, and 𝑌 = 7 × 1 𝑚𝑜𝑑 11 = 7

𝒙 = 𝟓, choose a random integer 𝒊 = 𝟕

  𝐾𝐸 = 27 𝑚𝑜𝑑 11 = 7, 𝐾𝑀 = 107 𝑚𝑜𝑑 11 = 10, and 𝑌 = 5 × 10 𝑚𝑜𝑑 11 = 6

➔ Send: (𝟏, 𝟗)(𝟕, 𝟓)(𝟔, 𝟕) 
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Encryption/Decryption - Example

❖ Let public key 𝛽, 𝑝, 𝛼 = 10, 11, 2 , private key 𝑑 = (5), and 

received ciphertext (𝟏, 𝟗)(𝟕, 𝟓)(𝟔, 𝟕) 

❖ Decryption: 

𝐾𝑀
−1 = 𝐾𝐸

𝑝−1−𝑑 𝑚𝑜𝑑 𝑝     and    𝑥 = 𝑌 × 𝐾𝑀
−1 𝑚𝑜𝑑 𝑝

𝒀 = 𝟏, 𝑲𝑬 = 𝟗

    𝐾𝑀
−1 = 911−1−5 𝑚𝑜𝑑 11 = 1    and    𝑥 = 1 × 1 𝑚𝑜𝑑 11 = 1

𝒀 = 𝟕, 𝑲𝑬 = 𝟓

  𝐾𝑀
−1 = 511−1−5 𝑚𝑜𝑑 11 = 1    and    𝑥 = 7 × 1 𝑚𝑜𝑑 11 = 7

𝒀 = 𝟔, 𝑲𝑬 = 𝟕

  𝐾𝑀
−1 = 711−1−5 𝑚𝑜𝑑 11 = 10    and    𝑥 = 6 × 10 𝑚𝑜𝑑 11 = 5

Plaintext 𝑥 = 1, 7, 5
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Elgamal Public-key Cryptosystem

❖ Encryption requires two modular exponentiations that are 

independent of the plaintext

 Can be computed ahead of time if need be. 

On the other hand, 

❖ Decryption only requires one modular exponentiation

❖ Ciphertext is twice as long as the corresponding plaintext 

(disadvantage)
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Elgamal Attacks

❖ Attack computes DLP

 𝑑 = 𝑙𝑜𝑔𝛼𝛽   ➔   𝐾𝑀
−1 = 𝐾𝐸

𝑝−1−𝑑, and 𝑥 = 𝑌 ∙ 𝐾𝑀
−1

OR

 𝑖 = 𝑙𝑜𝑔𝛼𝐾𝐸  ➔ 𝐾𝑀 = 𝛽𝑖, and 𝑥 = 𝑌 ∙ 𝐾𝑀
−1

Thus, the DLP needs to be a computational hard problem ➔ 𝑝 must be 

large 𝑝 ≥ 21024 

❖ Attack Re-use of secret exponent 𝒊

𝐾𝐸 = 𝛼𝑖    ,    𝐾𝑀 = 𝛽𝑖

Assume Trudy knows 𝑥1 (known-plaintext attack). 

𝐾𝑀 = 𝑌1 ∙ 𝑥1
−1 = 𝑌2 ∙ 𝑥2

−1   ➔   𝑥2 = 𝑌2 ∙ 𝑌1
−1 ∙ 𝑥1 𝑚𝑜𝑑 𝑝

𝑌1 ≡ 𝑥1 ∙ 𝐾𝑀
𝑌1, 𝐾𝐸

𝑌2 ≡ 𝑥2 ∙ 𝐾𝑀
𝑌2, 𝐾𝐸
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Next …

❖Motivation

❖ The Public-Key Revolution

❖ Principles Behind Public-Key Ciphers

❖ Essential Number Theory for Public-Key Algorithms

❖ Essential Group Theory for Public-Key Algorithms

❖ Public-key Examples

Diffie-Hellman (DH)

 Elgamal

RSA
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RSA

❖ Invented in 1977 by Rivest, Shamir, and Adleman
 RSA is the gold standard in public key crypto
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RSA – Key Generation

❖ Let p and q be two large prime numbers

❖ Let N = pq be the modulus

❖ Calculate (N) = (p−1)(q−1)

❖ Choose e, e ∈ 1, 2, … , (N) − 1 , relatively prime to (N) 

 i.e., gcd(e, (N)) = 1 (why?)

❖ Find d such that ed ≡ 1 mod (N)

 i.e., d ≡ e-1 mod (p−1)(q−1)

❖ Public key is (N, e)

❖ Private key is d

❖ In practice, p & q should be large (≥ 1024 bits)

❖ Thus, N & d should be large (≥ 2048 bits)
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RSA – Enc/Dec

❖Message M (i.e., plaintext) is treated as a number

❖ To encrypt plaintext M  C = Me mod N 

❖ To decrypt ciphertext C  M = Cd mod N 

❖ Recall that e and N are public

❖ If Trudy can factor N = pq, she can use e to easily find d since  
ed = 1 mod (p−1)(q−1)

❖ Factoring the modulus breaks RSA

 Is factoring the only way to break RSA?
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Does RSA Really Work?

❖ Given C  Me mod N, we must show 

 M  Cd  Med mod N

❖ Facts: 

1) (N) = (p − 1)(q − 1)

2) ed  1 mod (p − 1)(q − 1)  1 mod (N)

3) By definition of “mod”:

ed = t(N) + 1, where t is an integer

 Must show M  Cd  Med  Mt(N)+1  Mt(N) M1                                  

                               (M(N))t M mod N
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Does RSA Really Work?

❖Must show (M(N))t M  M mod N

❖Case 1: gcd(M, N) = 1

 Use Euler’s Theorem ☺  if gcd(M, N) = 1, then 1  M(N) mod N

 Cd  Med  (M(N))t M  (1)t M  M mod N

❖Case 2: gcd(M, N) = gcd(M, p  q)  1

 Can’t use Euler’s Theorem directly 

 p and q are primes  M = (r  p) or M = (s  q), where r < q and s < p

▪ Note that M  (x  p  q) (i.e., isn’t factor of both p & q)

 Assume M = (r  p) –– will also work if M = (s  q)  gcd(M, q) = 1

 Using Euler’s Theorem  1t  (M(q))t mod q

 Consider again (M(N))t  (M(p-1)(q-1))t  ((M(q))t)(p-1)  1(p-1)  1 mod q

 But by definition of “mod”  (M(N))t = u q + 1, where u is an integer

 M(M(N))t = M(u q + 1) = M u q + M = (r p) u q + M = (r u) N + M  M mod N

 Cd  Med  (M(N))t M  M mod N
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Simple RSA Example

❖ Example of RSA

 Select “large” primes p = 11, q = 3 

 Then N =  pq = 33 and (p − 1)(q − 1) = 20  

 Choose e = 3 (relatively prime to 20)

 Find d such that ed  1 mod 20 

▪ We find that  d = 7 works

❖ Public key: (N, e) = (33, 3)

❖ Private key: d = 7 
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Simple RSA Example

❖ Public key: (N, e) = (33, 3) 

❖ Private key: d = 7

❖ Suppose message M = 4

❖ Ciphertext C is computed as

C = Me mod N = 43 = 64  31 mod 33 

❖ Decrypt C to recover the message M by

M  Cd mod N = 317 = 27,512,614,111    

                                   = 833,715,579  33 + 4 

                                    4 mod 33 
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Key Generation

❖Like all asymmetric schemes, RSA has set-up phase during which 

the private and public keys are computed

❖Key generation: choose two large, distinct primes p and q 

Not-trivial!

❖So, how to find p and q?
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Finding Large Primes 1/2

❖ Generating keys for RSA requires finding two large primes p and q such that      

n = p * q is sufficiently large

❖ The size of p and q is typically half the size of the desired size of n

❖ To find primes, random integers are generated and tested for primality:

❖ For this approach to work, we have to answer two questions:

1. How many random integers do we have to test before we have a prime?

 If the likelihood of a prime is too small, it might take too long

2. How fast can we check whether a random integer is prime?

 Again, if the test is too slow, the approach is impractical

❖  It turns out that both steps are reasonably fast!!!

Secure

RNG
Primality Test

p' p' is prime

OR

p' is composite

a

candidate

prime
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How many primes are there?

❖By looking at the first few positive integers that primes become 

less dense as the value increases: 

2,3,5,7,11,13,17,19,23,29,31,37, . . .

❖What is the chance that a random number (e.g., 512 bits) is a 

prime?

The chance that a randomly picked integer ෤𝑝 is a prime is 

approximately 1/ln( ෤𝑝) (based on “prime number theorem”)

 In practice, test only odd numbers so that the likelihood doubles      

 probability for a random odd number ෤𝑝 to be prime is
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How many primes are there?

❖Example: RSA with a 2048-bit N, each of p and q ≈ 21024

P( ෤𝑝 is prime) ≈ 2/ln(21024) = 2/(1024 ln(2)) ≈ 1/355

 Expect to test 355 random numbers before finding a prime

❖Likelihood of integers being primes decreases slowly, proportional 

to integer bit length

 For very long RSA parameters (e.g., 4096 bit), the density of 

primes is still sufficiently high
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How long to check if integer is prime?

❖Factoring p and q to test for primality is typically not feasible 

❖However, we are not interested in the factorization, we only want to 

know whether p and q are composite or prime

❖Typical primality tests are probabilistic, i.e., they are not 100% 

accurate but their output is correct with very high probability

❖A probabilistic test has two outputs:

p' is composite – always true 

p' is a prime – only true with a certain probability

❖Among the well-known primality tests are the following:

Fermat Primality-Test

Miller-Rabin Primality-Test
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Fermat Primality-Test

❖Basic idea: Fermat‘s Little Theorem holds for all primes, i.e., if a number 

p' is found for which ap'-1 ≡ 1 mod p', then p' is not a prime

❖For certain numbers (“Carmichael numbers”, such as 561 = 3x11x17) this 

test returns (p' is likely a prime) often even though these numbers are 

composite!!!

❖Therefore, the Miller-Rabin Test is preferred

Algorithm: Fermat Primality-Test

Input: Prime candidate p', security parameter s

Output: (p' is composite) or (p' is likely a prime)

1. FOR i = 1 TO s

2. choose random a  {2,3, ..., p'-2}

3. IF ap'-1  ≡ 1 mod p' THEN

4. RETURN (p' is composite)

5. RETURN (p' is likely a prime)
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Theorem for Miller-Rabinʹs test

❖The more powerful Miller-Rabin Test is based on the following 

theorem

❖This theorem can be turned into an algorithm

Theorem

Given the decomposition of an odd prime candidate p' 

p' – 1 = 2u . r

where r is odd. If we can find an integer a such that

ar ≡ 1 mod p' and       a2jr ≡ p' - 1 mod p'

For all j = {0,1, ..., u-1}, then p' is composite. 

Otherwise it is probably a prime.
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Miller-Rabin Primality-Test 1/3

Algorithm: Miller-Rabin Primality-Test

Input: Prime candidate p' with p'-1 = (2u . r), security parameter s

Output: (p' is composite) or (p' is likely a prime)

1. FOR i = 1 TO s

2. choose random a  {2,3, ..., p'-2}

3. z ≡ ar mod p'

4. IF z ≠ 1 AND z ≠ p'-1 THEN

5. FOR j = 1 TO u-1

6. z ≡ z2 mod p'

7. IF z = 1 THEN

8. RETURN (p' is composite)

9. IF z ≠ p'-1 THEN

10. RETURN (p' is composite)

11. RETURN (p' is likely a prime)
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Miller-Rabin Primality-Test 2/3

❖Possible that a composite number ෤𝑝 gives the incorrect statement “prime”

❖However, the likelihood of this rapidly decreases as we run the test with 

several different random base elements a

❖Number of runs is given by security parameter s in the Miller–Rabin test

❖Following table shows how many different values a must be chosen in 

order to have a probability  2−80 that a composite is incorrectly detected 

as a prime
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Miller-Rabin Primality-Test 3/3

❖Example: Let ෤𝑝 = 91  ෤𝑝−1 = 21 · 45. Select a security parameter 

of s = 4  Choose s times a random value a:

1. Let a = 12  z = 1245 ≡ 90 mod 91, hence, ෤𝑝 is likely prime.

2. Let a = 17  z = 1745 ≡ 90 mod 91, hence, ෤𝑝 is likely prime.

3. Let a = 38  z = 3845 ≡ 90 mod 91, hence, ෤𝑝 is likely prime.

4. Let a = 39  z = 3945 ≡ 78 mod 91, hence, ෤𝑝 is composite.

Since the numbers 12, 17 and 38 give incorrect statements for the 

prime candidate ෤𝑝 = 91, they are called “liars for 91”
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Attacks and Countermeasures

❖There are two distinct types of attacks on cryptosystems

1) Analytical attacks

▪ Try to break the mathematical structure of the underlying problem of RSA

▪ RSA is typically exposed to these analytical attack vectors

a) Mathematical attacks

▪ The best-known attack is factoring of N in order to obtain (N) 

▪ Can be prevented using a sufficiently large modulus N

▪ Currently, it is recommended that N should have a bit length 

between 2048 and 4096 bits

b) Protocol attacks

▪ Exploit the malleability of RSA, i.e., the property that a ciphertext 

can be transformed into another ciphertext which decrypts to a 

related plaintext – without knowing the private key

▪ Can be prevented by proper padding
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Attacks and Countermeasures

❖There are two distinct types of attacks on cryptosystems

2) Implementation attacks

▪ Attack a real-world implementation by exploiting inherent weaknesses in 

the way RSA is realized in software or hardware

▪ Implementation attacks can be one of the following

a) Side-channel analysis

▪ Exploit physical leakage of RSA implementation (e.g., power 

consumption, electromagnetic emanation, etc.)

b) Fault-injection attacks

▪ Inducing faults in the device while Chinese Remainder Theorem 

(CRT) is executed can lead to a complete leakage of the private 

key
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