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Basic Goals of Cryptography: Review

Internet

/ ) Secure Channel

But how to build?

b kil

Trudy
s Security goals:

< Data privacy: adversary should not be able to read message M
<> Data integrity: adversary should not be able to modify message M

< Data authenticity: message M really originated from Alice
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Cryptographic Schemes

keyl K key?2
M C M
plaintext — encrypt LA VAN decrypt — plaintext
ciphertext
Crypto Keys
Symmetric Key keyl = key?2
Public Key keyl # key2

How do keys get distributed?
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Issues with Symmetric-key Ciphers

“ Symmetric-key ciphers (e.g., AES or 3DES) are very secure,
fast, and widespread. But:

< Number of keys: In a network, o= o= & — a
each pair of users requires a g:. %Z //// \\
unique key e /// N
= N users in the network require ab <
N(N —1)/2 keys, O(N?), with / ) \
each user storing (N — 1) keys!! 7\\\\\\
= Difficult to store and manage so & | \
many keys securely \
< Partial solution: \ N
< key distribution centers (KDC) A

* One central authority hands out temporary keys

= O(N) (long-term) keys needed (to the KDC)
= Might be a feasible solution in a single organization
= But, single point of failure, and
= What about the internet?
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Issues with Symmetric-key Ciphers

“ Symmetric-key ciphers (e.g., AES or 3DES) are very secure,
fast, and widespread. But:

< Key distribution problem: Secret key must be transported
securely
< Cheating: Alice or Bob can cheat each other, because they
have identical keys!!!
» Repudiation by Alice
= Fabrication by Bob
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Basic Goals of Cryptography

Message Integrity /

Message Privacy Authentication

Symmetric Encryption Message Authentication

Symmetric Keys (private-key encryption) Codes (MAC)

Asymmetric Encryption

Asymmetric Keys (public-key encryption)

Digital Signatures (\ge\
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Diffie-Hellman Key Exchange - Idea
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Public-Key Encryption
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Diffie-Hellman Key Exchange

“* Discovered in the 1970's
“* A “key exchange” algorithm

< Allows two parties to establish a shared secret (shared

without ever having met
<> Not for encrypting or signing

¢ Diffie & Hellman paper also introduced:

< Public-key encryption
< Digital signatures

Ralph Merkle

Whitfield Diffie
Martin Hellman
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New Directions in Cryptography

Invited Paper

Whitfield Diffie and Martin E. Hellman

Abstract  Two kinds of contemp ents in cryp-

C! ications over an insecure channel order to use cryptog-

tography are examined. Widening applications of teleprocess-
ing have given rise to a need for new types of cryptographic
systems, which minimize the need for secure key distribution
channels and supply the equivalent of a written signature. This
paper suggests ways to solve these currently open problems.
It also discusses how the theories of communication and compu-
tation are beginning to provide the tools to solve cryptographic
problems of long standing.

1 INTRODUCTION

We stand today on the brink of a revolution in cryptography.
The development of cheap digital hardware has freed it from
the design limitations of mechanical computing and brought
the cost of high grade cryptographic devices down to where
they can be used in such commercial applications as remote
cash dispensers and computer terminals. In turn, such applica-
tions create a need for new types of cryptographic systems
which minimize the necessity of secure key distribution chan-
nels and supply the equivalent of a written signature. At the
same time, theoretical developments in information theory and
computer science show promise of providing provably secure
cryptosystems, changing this ancient art into a science.

The development of computer ¢ lled ication net-

raphy to insure privacy. however, it currently necessary for the
communicating partics to share a key which is known to no
one else. This is done by sending the key in advance over some
secure channel such a private courier or registered mail. A
private conversation between two people with no prior acquain-
tance is a common occurrence in business, however, and it is
unrealistic to expect initial business contacts to be postponed

long enough for keys to be transmitted by some physical means.
The cost and delay imposed by this key distribution problem
is a major barrier to the transfer of business communications
to large teleprocessing networks,

Section III proposes two approaches to transmitting keying

information over public (i secure) channel without compro-
mising the security of the em. In public key
enciphering and deciphering are governed by distinct keys, £
and D, such that computing D from

ble (e.g.. requiring 10'® instructions). The enciphering key

yprosystem

is computationally infeasi-

E can thus be publicly disclosed without compromising the
deciphering key D. Each user of the network can, therefore,
place his enciphering key in a public directory. This enables
any user of the system to send a message to any other user
enciphered in such a way that only the intended receiver is
able to decipher it. As such, a public key cryptosystem is
mullipli access cipl}er, A private conversation can therefore be

ENCS4320 — Applied Cryptography
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Public-Key Cryptography

* Two keys
<> Sender uses recipient’s public key to encrypt
<> Recipient uses private key to decrypt
*» The main idea behind asymmetric-key cryptography is the
concept of the trapdoor one-way function

< “One way” means easy to compute in one direction, but hard to
compute in other direction

< “Trap door” used to create key pairs

A function is a rule mapping a domain to a range
y=fx

Domain Range
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Trapdoor One-Way Function

“ One-Way Function (OWF)
1. f is easy to compute
2. f1isdifficult to compute

“* Trapdoor One-Way Function (TOWF)
3. Giveny and a trapdoor £’, X can be computed easily

A function is a rule mapping a domain to a range
y=fx

Domain Range
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Trapdoor One-Way Function (Continued)

“ Example 1.
< Whennis large, n = p x g is a one-way function
< Given p and g, it is always easy to calculate n
< However, given n, it is very difficult to compute p and q
< This is the factorization problem

» Example 2:
<> When n is large, the function y = x< mod n is a trapdoor one-way
function
< Given x, k, and n, it is easy to calculate y
< Giveny, k, and n, it is very difficult to calculate x
< This is the discrete logarithm problem

< However, if we know the trapdoor, k', such that kxk’ =1 mod ¢(n),
we can use X =y mod n to easily find x
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Symmetric and Asymmetric Crypto

< Symmetric crypto boils down to a few primitives 368 s 0444 4000
L ™

e N

<> Block ciphers/PRFs, hash functions e o o= o
BISTSE BRI R
<> Why are these considered secure? u.\'\ﬁ P |
= Lots and lots of cryptanalysis (well-studied!) Abs
= Artificial and man-made T | e
—
* Want asymmetric crypto to be based on a =
few well-studied primitives too e T Tt
] ] SHA2-256
*» Candidates come from a different place:
<~ Hard mathematical problems Ln = Lp, X L, X X Ly,
< Good candidates: discrete logarithm oM (modm /
« !

problem, factoring

= Much more algebraic structure € g, /<//\Q

XGZ SGT
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How to build Public-Key Algorithms

“ One-way functions are based on mathematically hard
problems
s Three main families:
< Factoring integers (RSA, ...)
= Given a composite integer n, find its prime factors
= Multiply two primes: easy
< Discrete Logarithm (DL) (Diffie-Hellman, Elgamal, DSA, ...)
= Given a, y and m, find x such that y = a* mod m
= Exponentiation a* : easy
< Elliptic Curves (EC) (ECDH, ECDSA)
= Generalization of discrete logarithm

“* Note: The problems are considered mathematically hard, but
no proof exists (so far)
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Key Lengths and Security Levels

Symmetric oL RSA, DL Remark
64 Bit 128 Bit = 700 Bit Only short term security
(a few hours or days)
80 Bit 160 Bit | = 1024 Bit Medium security
(except attacks from big
governmental institutions etc.)
128 Bit 256 Bit | = 3072 Bit Long term security

(without quantum computers)

*» The exact complexity of RSA and DL is difficult to estimate

*» The existence of quantum computers would probably be the
end for EC, RSA ,& DL (at least 2-3 decades away, and
some people doubt that QC will ever exist)

pustil- i tsihewics EigheCOM

ENCS4320 — Applied Cryptography U ploadgghr%){Sh%mg— @@efls



Public-Key Cryptography
“ Encryption
<> Suppose we encrypt M with Bob’s public key
<> Bob’s private key can decrypt to recover M
*» Digital Signature
< Sign by “encrypting” with your private key
< Anyone can verify signature by “decrypting” with public key

< But only you could have signed

< Like a handwritten signature, but way better...

PLﬁiI—%RE)MF&%E%HI%SCO m ENCS4320 — Applied Cryptography U P | Oad8 gh%){Sh%mg— @@efb



Next ...

“ Motivation

¢ The Public-Key Revolution

** Principles Behind Public-Key Ciphers

“ Essential Number Theory for Public-Key Algorithms
s Essential Group Theory for Public-Key Algorithms

*» Public-key Examples

PLﬁiI—%RE)MF&%E%HI%SCO m ENCS4320 — Applied Cryptography U P | Oad8 gh%){Sh%mg— @@efio



Modular Exponentiation

*» A type of exponentiation performed over a modulus
<> e.g.,a® mod m or a® (mod m)

% Example: Solve 233 mod 30
< 23 =-7mod 30

> -73=-343=-13 =17 mod 30
> 23 mod30=17

% Example: Solve 37°% mod 30
< 37 =1 mod 30

< 1°00 = 7 mod 30
=> 37°9 mod 30 =1
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Modular Exponentiation

s Example: Solve 24232° mod 243
> 242329 =-132° mod 30

> -132° = -1 =242 mod 243
> 2423%° mod 243 =242

% Example: Solve 77" mod 13
<> 11=-2mod 13

$-27 =-128=-1T1mod 13 =2 mod 13
=> 17" mod 13 =2
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Modular Exponentiation

% Example: Solve 5% mod 35
<> 520 = 95367431640625 =25 mod 35
s A better way: Square-and-Multiply Algorithm
% 20 = (10100),
< (1,10, 1017, 1070, 10700) = (1, 2, 5, 10, 20)
< Notethat2=7-25=2-2+1,10=2-520=2-10
<> 57 =5 mod 35
<> 52 = (57)2 = 52 =25 mod 35
> 5>=(5%)2.5"=252.5=37125 =10 mod 35
<> 570 = (5°)2 = 710 = 100 =30 mod 35
<> 520 = (570)2 = 302 = 900 =25 mod 35

** No huge numbers and it’s efficient!
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Modular Exponentiation

s Example: Solve 88" mod 187
& 7=(111),
< (1,11,111) =(1, 3, 7)
< Notethat3=7-2+1,7=2-3+1
< 88" =88 mod 187

<883 =(887)° -88" =882 -88 =7744 -88 =77 -88 = 6776
=44 mod 187

<887 = (883)° - 88" =442 . 88 = 1936.88 = 66 . 88 = 5808
= 11 mod 187
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Euler's Phi (Totient) Function

0
0
0
0

0

New problem, important for public-key systems, e.g., RSA
Given the set of the m integers {0, 1, 2, .
“ How many numbers in the set are relatlvely prime to m?

, m-1)}

“ Answer: Euler’s Phi (Totient) Function ¢(m)

< ¢(m) is “the number of numbers less than m that are relatively
prime to m”. Here, “numbers” are positive integers

% Example: Calculate ¢(5) and ¢(6)
gcd(0,6) = 6

I | .

= 1 and 5 relatively prime to m=6,
hence @(6) = 2
PLﬁiI—%RE)MF&%E%H@rscom ENCS4320 — Applied Cryptography

gcd(0,5)
ged(1,5)
ocd(2,5)
ged(3,5)
gcd(4,5)

— e e e[S

11l

> @B)=4
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Euler's Phi (Totient) Function

¢ Testing one gcd per number Iin the set is extremely slow for
large m

¢ Fortunately, there exists a relation to calculate ¢(m) much more
easily if we know the factorization of m

Theorem 6.3.1 Let m have the following canonical factorization

— 4l €2 e
Mm=py - -py -..-D;,

where the p; are distinct prime numbers and e; are positive integers,
then

n

@ (m) =[](pi = pi").

i=1
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Euler's Phi (Totient) Function

“* Phi especially easy for e; = T
-eg.,.m=p.q=>em)=(p-1).(Qq-1)

» Example: m = 899 = 29. 31
<> 0899) =(29-1).(31-1)=28.30=2840

“* Note: Finding ¢(m) is computationally easy if factorization of

m is known
< Otherwise, the calculation of becomes computationally
Infeasible for large numbers

** ¢(n) can be computed recursively by:
1. ¢(1)=1
2. ifnisaprime power, n = p¢, then ¢(n) = p —pe-1
3. if gcd(m, n) =1, then ¢(mn) = ¢(m) . ¢(n)
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Euler's Phi (Totient) Function

*» Examples:
< ®(17) =16
< ¢(25) =52=52-5=20
< $(16) =24=24-23=8
< (105 =¢(3.5.7)=2.4.6=48
< $(200) = ¢(2%.5%) = (23-2%) (52-5)=4.20=80
<> $(240) =¢p(24.3.5)=(24-23).(3-1).(5-1)=8.2.4=64
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Fermat's Little Theorem

*» Very useful in public-key ciphers
< e.g., primality testing while generating keys

Theorem 6.3.2 Fermat’s Little Theorem
Let a be an integer and p be a prime, then:

a’ =a (mod p).

*» Recall that arithmetic in finite fields GF(p) is done modulo p
<> Hence, the theorem holds for all integers a € GF(p)

% Alternate form: aP x at =afPt =1 (mod p) (why?)
axaP?=1(modp)=at=al? (modp)
< Quick way to find multiplicative inverse if modulus is a prime!!
<> But slower than EEA unless a hardware accelerator is used for fast
exponentiation
% Example: Letp=7anda=2=al=aP?=2>=32=4mod 7
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Euler's Theorem

¢ Generalization of Fermat'’s Little Theorem for any modulus
<> 1.e., moduli that are not necessarily primes

Theorem 6.3.3 Euler’s Theorem
Let a and m be integers with gcd(a,m) = 1, then:

@D (m)

a =1 (mod m).

 Example: Letm=12anda=5=g9cd (12,5) =1
= 0(12) = (2% - 3) = (22 - 2%)(3" - 3%) = 4
Verify: 5%12) = 54 = 625 =1 mod 12

¢ Theorem is used to prove correctness of RSA (most popular
public-key crypto)
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Euler's Theorem

*» Another important use of Euler’'s theorem is the following:
if k =j (mod ¢(n)) , then ak =a mod n
< Helps in exponentiation computation (needed in RSA)
% Example 1. 245 = 22 (mod 5), since 46 = 2 (mod ¢(5))
s Example 2: Compute the following:
a. 14°2 (mod 11)
= 14°2 = 352 (mod 11). Since ¢(11) =10 = 52 = 2 (mod 10)
= 142 =32 =32=9 (mod 11)
b. 463°! (mod 15)
= 46391 = 139 = (-2)°! (mod 15). Since ¢(15) =2 x4 =8
=91 =3 (mod 8) = (-2)? = (-2)*=-8 =7 (mod 15)
pustit- ks heric) SiigCOM ENCS4320 — Applied Cryptography Uploadgg, By siaha Gaf,
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Preliminaries

(integers) Z={.,-2,—-1,0,1,2,3,...}
(reals) R = the real numbers R* = R\ {0}

(integers “mod n”) Z,, ={0,1,2,...,n—1}

. 13 ” (b'O/.//h *
(integers "'mod p”) Z, =1{0,1,2,..,p—1} Z,=7,\1{0}

An integer p > 1is prime if

Examples: it's only divisible by 1 and p

Z,, ={0,1,2,3,4,5,6,7,8,9,10}

Z:, =1{1,2,3,4,5,6,7,8,9,10}
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Group - Definition

/Definition: A group (G,°) is a set G together with a binary operation o satisfying\
the following axioms.

Gl: (aocb)oc=ao(boc)foralla,b,ceG (associativity)
¢2: 3dJeeGsuchthateoca=ace=aforallaedG (identity)
\_ G3: Va€ G there exists a™! € G suchthataca™!=aloa=¢ (inverse)/

A group is abelian/commutative if: aocb=>boa foralla,bedG

The order of a group is the number of elements in G, denoted |G|
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Groups - Examples

Groups (G,o) (Z3,+3)
° e |a| b + | 0| 1] 2
(Z; +) e = O "3_1" == —3 el el alb olol 11 2
R+ =0 "9/ =97 Febi s 2R
(R*) e=1 (9/7)"1=7/9
(Z,,+,) e=0 "371"=x: 3+x=0modn (Go)
(Z*, -p) e=1 "371"= x: 3-x=1modp e Z Z : E
a a b c e
Not Groups T
(Z,) 271 =7 clhelelhal?
(Z,-)(1-2)-3#1-(2-3) (Z4, +4) (G*)
+, 1 0 1] 2|3 * e|lal| b | c
(R) 0-x =17 olol1]|2]3 elelaln]ec
(Z, n) 2x = 1 (mod 4)? t]1z]s]o  afafelc|o
(Z . ) 2121 3]01|1 b|b | c|e]| a
p> b 3030/ 1]2 clelplale
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Group Arithmetic

0 def 10
g . (Z,‘l‘) 1121011 =242+ ...42
gnd_efgogo.“og :10-2:20
g E (gHn

n m
Fact: gnogm=gngm =go-..ogogo...og=gn+m

n—+m

Fact: (gM)™ = g™ = (g™)"
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Cyclic Groups

b £

efinition: Agroup (G,°) is cyclic if there exists g € G such tha

G={g'|iez}={.,97%97%4%9% g% ..}

\Element g is called a generator for G and we write (G,°) = (g) Y

Examples: Not cyclic groups:
(Z,+) =(1) (R, +) (R*,)
(Zn: +n) = (1)

(Z,) = (a)

(Z5,) = (3) ={3°31,32,33,34,3°} ={1,3,2,6,4,5}
= (5) = {59,51,52 53 54 551 = {15 4,6,2,3)}

#(2) ={29,21,22,23,24,2°Y =1{1,2,4,1,2,4} = {1, 2,4}
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Cyclic Groups

b £

efinition: Agroup (G,°) is cyclic if there exists g € G such tha

G={g'|iez}={.,97%97%4%9% g% ..}

\Element g is called a generator for G and we write (G,°) = (g) Y

¢ Cyclic groups are the basis of discrete logarithm cryptosystems
« Consider (Z,,,-) with the generator g = 5.
Find x such that 5* = 41 mod 47

-
Theorem:

For every prime p, (Z3,) is an abelian finite cyclic group.
q J

PLﬁiI—%RE)MF&%E%HI@rsCO m ENCS4320 — Applied Cryptography U P | Oadg ghl%){Sh%mg— @@eféS




Subgroups

[Definition: Aset H € (G Is asubgroup, Written\
H<G,If

Va,be H: aocb€eH
N\ J

Fact: a subgroup H is a group

/ positive real numbers

Examples:

{e} < G (for all groups) R, <(R) t1,—1} < (R,

G < G (for all groups) (20) < (10) < (5) < (Z4o,+)
27 =1{..,—2,0,2,4,6,..} < (Z,+) (5)=10,5,10, ..., 35}

(10) = {0,10, 20,30}
(20) = {0, 20}
Plﬁl‘éRﬁMF&%E%H@rscom ENCS4320 — Applied Cryptography U ploadg Qhﬁ)(sru%ﬁ@_ @@ef@
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Finite Cyclic Groups

-
Theorem: if (G,0) is a finite group, then for all g € G:
G|

g =€
. J
Proof (finite cyclic groups):
G
Gl = Kg) =n
e gl gz gB gn—l gn gn+1 gn+2

g"=9°= g'3=e= g/=e j<n contradiction!

Corollary I: gi — gimodn — gimod |G| ]

(Corollary Il (Lagrange's theorem): if H < G, then the order
\of H divides the order of G (i.e., |G| / |H|)
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Groups of Prime Order

Corollary Il (Lagrange's theorem): if H < G, then the order of H
divides the order of G

*» Fact: any prime-order group is cyclic
* Fact: any non-trivial element (# ¢e) in a prime-order group is a
generator

“ Warning: (Z3,") is not a prime-order group!

Z*

p

* Suppose p = 2q + 1, with g being prime; what are the possible
sub-groups of (Z;,-)?

=p—1

Z)|=p—-1=2q Example: Z;,=1{1,2,3,4,5,6,7,8,9,10}
({13, {1} < Z34 11=2-5+1
P LS {1,-1} = {1,10} < 77,
’ H, |Hl=q H=(3)=(4)=(5)=(9)=1{13459} <Zj,
. % Z1, <Zy,
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Diffie-Hellman

*» Based on discrete log problem:
$ Given: g, p, and gk mod p
<> Find: exponent k

“ Let p be prime, let g be a generator
- Forany x € {2, ..., p-2} thereisns.t. x = g" mod p

¢ Alice selects her private value a

+ Bob selects his private value b

< Alice sends g° mod p to Bob

» Bob sends g® mod p to Alice

< Both compute shared secret, g mod p

¢ Shared secret can be used as symmetric key
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Diffie-Hellman
Z_ G =(g)
B |

g -
a<—1{2,.., |G| —1} <

Z < B*=(g")*=g" 7'« AP = (gM)’= g*
Clam: Z =7

< Public: gand p

< Private: Alice’s exponent a, Bob’s exponent b
a Alice computes (gP)® = g®@ = g% mod p

0 Bob computes (g®)° = g mod p

0 Use k = g% mod p as symmetric key
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Diffie-Hellman - Example

, 29{019 — (2)
\;; \."
" 570 &%
y > >
5 < /2 $

493 «{2,..,1017} 901 «{2,...,1017}
570 « 2% mod 1019 72 « 2997 mod 1019
7 « 723 mod 1019 = 531 7" « 570°°1 mod 1019 = 531

< Public: g (2) and p (1019)

< Private: Alice’s exponent a (493), Bob’s exponent b (901)
a Alice computes (gP)® = g®@ = g% mod p

0 Bob computes (g®)° = g mod p

0 Use k = g% mod p as symmetric key |
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Diffie-Hellman - Security

. ¥

$

% Z’<—Ab:(ga b:gab

Doesn't work: Ao B = g“ ogb — ga+b + gab

$
a—{2,..,1G|-1}
Z < B%=(g")*=g"

% Security:
<> Must be hard to compute Z « g%’ given g, A, B (DH assumption)
<> Must be hard to find a (or b) given g, A, B (DL assumption)
< If Trudy can solve discrete log problem, she can find a or b
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Discrete Logarithm Problem (DLP)

Exp2LF (4) Public: ¢ = (g) Challenger
: $

$ —

1. x<{2,..,|G] -1} X xeiZe 6l -1
X < g”*
2. X e g”*
3. x' <« A(X)
?

4. returnx = x

Adversary wins if x’ = x
In other words: x" = DL, (X)

(L ... . )
Definition: The DLP-advantage of an adversary A is

Adv(il (4) = Pr[Exp2if(4) = true]
- J
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Diffie-Hellman Problem (DHP)

Exp2HP (4) Public: ¢ = (g) Challenger
’ $

$ _

1. x,y<{2,..,|G| —1} < XY x,y<1{2,..,|G| — 1}
X « g*

2. X « gx Y « gy
3. Yeg7
4.z« AX,Y)
5. return g i g*Y Adversary wins if g% = g*¥

(L ... . )
Definition: The DHP-advantage of an adversary A Is

Adv;i P (A) = Pr|Expgfif (4) = true|
- J
PLﬁiI—%RE)MF&%E%H@rscom ENCS4320 — Applied Cryptography U ploadg gh%){Sh%mg— @@efAS




DLP vs. DHP

EXpDLP (A) EXpDHP (A)
$ $
1. x<{2,..,1G| - 1} 1. xy<{2 ..,|G| -1}
2. X< g* 2. X e« g*
3. x' « A(X2 3 Y « gy
return x = x 4. 7z« AX,Y)
?
5. return g? = g*¥
DL security <= DH security If the only way of solving the DHP
2 _ requires the DLP, one would say that
DL security = DH security “he DHP is equivalent to the DLP”,

However, this is not proven (yet).
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Attacks Against the DLP

*» Generic algorithms; works for all (cyclic) groups
< Brute-Force Search

1. Givengand X € G
2. fori=2,3,...,|G| —1 check if g* = X

running time: 0(|G|) = 0(2M),
given |G| = 2"

< Are there better algorithms?

“* Non-generic algorithms; efficiently exploits algebraic features,
l.e., the inherent structure, of given group
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Generic Algorithms for Solving DL

** Nechaev '94 & Shoup '97: Solving DL requires time Q(\/lGl) In
generic groups

¢ Sguare-Root Attacks:
« Shanks’ Baby-Step Giant-Step: Time O ( |G|) Memory O (\/ |G|)

« Pollard's rho: Time O (\/ |G|) Memory 0(1)

*» Consequence: \/m must be large enough
* |G| = 2128 only gives V2128 = 26* security
|G| = 210 only gives V2160 = 280 security
|G| = 2%5% only gives V2256 = 2128 gecurity

« |G| = 2°12 only gives V2512 = 2256 gecurity

* efc...
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Shanks' Baby-Step Giant-Step Method

Given: X « g*
Find: x

Xo=X-g7°
X1 (_X’g_l
X, «X-g7*

Xz« X-g7°

Xpe=X-g™

Xm<—X-g_m

pustil- i tsihewics EigheCOM

vegr  me|Jial]
0 (/161 - 10g IGT)= 0 (/I6)

Sort the values and Find “collision”
X, =Y/

X-g_i-gi :gmj.gi
X=gmj+i

DL(X) = DL(g™*t)

X =mj+1

Time + Memory: O (\/W)
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Non-Generic Algorithms for DL

< Unfortunately, (Z;,-) is not a generic group!

«» Much faster specific algorithms exist for solving DL in (Z;,-)

« Index-calculus method
 Elliptic-curve method

« Special number-field sieve (SNFS)
« General number-field sieve (GNFS)

Z;| =~ 279> (240-digit) using GNFS

¢ Current DL-solving record:

(Heninger et al. 2019)
 Previous records: https://en.wikipedia.ora/wiki/Discrete logarithm records

Zp

\/
0.0

> 21024 typically required as a minimum today

< Better alternatives to (Z3,-)?
 Elliptic Curves
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Diffie-Hellman - Attack

¢ Subject to man-in-the-middle (MiM) attack:

Trudy, t

<+ Trudy shares secret g** mod p with Alice
«» Trudy shares secret g°* mod p with Bob
¢ Alice and Bob don’t know Trudy exists!

* In any case, you MUST be aware of MiM attack on
Diffie-Hellman
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Diffie-Hellman - Attack

* Subject to man-in-the-middle (MiM) attack
< Example: Assume using (Z75,") with Z7; = (2)

'Alice, Trudy, 7
6 « 25 mod 13 11 « 27 mod 13 3 « 2*mod 13
Z « 11°mod 13 =(7) Z « 11*mod 13 =(3)

Z, < 6’"mod13 =
Zp < 3"mod 13 =
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Public-Key Cipher

*» What can we do with public-key algorithms?

_ Algorithm Family
Service — : : —
Integer Factorization | Discrete Logarithm | Elliptic Curves
Key Exchange RSA DH ECDH
Digital Signature RSA DSA, Elgamal ECDSA
Encryption RSA Elgamal ECxxxX

** Goal: Develop an encryption scheme from DH key exchange

G={(g)p
A=g“
Alice, a , g
Message x |, & =
K,z = B% = mod p Kig = AP = (gM)? = g** mod p
Y =x-Kygmodp r > x=VY-(Kug) tmodp
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Public-Key Encryption - Procedure

% Scenario:
< Alice wants to send an encrypted message to Bob

¢ Procedure:
<> Bob computes a public and a private key, the keypair
<> Bob publishes his public key
<> Alice Encrypts the message using Bob’s public key
<> Alice sends the message to Bob.
<> Bob encrypts the message using his private key

» Effect:
< Nobody intercepting the message can read
<> nor alter it unrecognized
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Elgamal Public-key Cryptosystem

*» Elgamal is a public-key cryptosystem that was developed by
Dr. Taher Elgamal in 1985

<> Based on the Diffie—Hellman key exchange, but with reordering
of steps
*» Key aspects:
<> Based on the Discrete Logarithm problem
<> Randomized encryption

» Application:
< Establishing a secure channel for key sharing
< Encrypting messages
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Elgamal - Key Generation

“ Bob (receiver) must do the following:
1. Generate a large random prime number p
2. Choose a generator number «o
3. Choose secret number d, d € {2,3,...,p — 2}
4. Compute f = a® mod p

“ Public key: (B,p,a)
** Private key: d
** Notes:

< The public key g is fixed, p and a are chosen by Bob
< p must be > 300 digits (i.e., > 1024 bits)
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Elgamal - Encryption

 Alice (sender) must do the following:

1.
. Choose an integer i, i € {2,3,...,p — 2}

N O Ok WD

Obtain public key (£, p, «) from Bob (receiver)

Compute K. = a' mod p, Kz: Ephemeral Key
Compute K,;, = B mod p, K,;: Masking Key
Represent the plaintext as an integer x
Compute ciphertext Y = x X K;, (mod p)
Send (Y, Kz) to Bob

** Notes:
<> i must be new for each encryption, i.e., Kz must be different for

every plaintext

<> Because of that, Elgamal is a “probabilistic encryption scheme”
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Elgamal - Decryption

“+ Bob (receiver) does the following:
1. Obtain ciphertext and ephemeral key (Y, K) from Alice (sender)
2. Compute K, = K% mod p, K;;: Masking Key
3. Recover plaintext x = Y x K;,~* (mod p)

+* Notes:

<~ To compute K,,~*, we need to apply the square-and-multiply
algorithm to calculate K, first, and then apply the extended
Euclidean algorithm to calculate the inverse

< However, using the Fermat’s little theorem, the computation of
K, ~* can be simplified as follows:
Ky = (KEd)_l(mod p) = Kz~% x 1 (mod p)
= K.~ % x K" "Y(mod p) = K:*"1"%(mod p)

{- Thus, steps (2) and (3) are merged as: x = ¥ x K:?717% (mod p)
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Generator Number

* Testing if a IS generator number:
1. amuste{1,2,3,..,p—1}
2. Find 6(p) =p —1
3. Find the all factors of @(p), {f1, f>, f5, - fn} — {1}
4

. Find {q4, 9>, 953, ..., 9}, where q; = f;
= For redundant factors q; = f*, where h = 1,2, ..., freq(f;)

5. «a is generator iff w; = (2)?®)/% % 1 mod p, for all g;
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Generator Number - Example 1

 Letp =11, a = 2, test if a Is generator number
¢(p) = 10, factors of 10 ={2, 5} = q,=2,09,=5
w, =219 mod11=10=1

W, =219 mod11=4=1
= «a IS a generator number
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Generator Number - Example 2

 Letp =11, a = 3, test if a Is generator number
¢(p) = 10, factors of 10 ={2, 5} =, =2,09,=5
w, =319 mod11=1

w, =30 mod11=9=+1
= «a IS NOT a generator number
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Generator Number - Example 3

 Letp =37, a =2, test if a Is generator number

d(p) = 36, factors of 36 = {2, 2, 3, 3}
:>q1:21:2,q2:22:4,q3:31:3,Q4:32:9

W, = 2362 mod 37 =36 =1
W, = 2364 mod 37 =31 =1
W, = 2363 mod 37 =26 = 1
w, =239 mod 37 =16 =1
= «a IS a generator number
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Key Generation - Example

letp=11,a=2,andd =5

— Calculate 8 = a® mod p = 2° mod 11 = 10

Public key: (B,p,a) = (10,11,2)
Private key: d = (5)
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Encryption/Decryption - Example
* Let public key (8,p,a) = (10,11, 2) and plaintext x = (1,7, 5)

“* Encryption:
Kr = a'mod p, Ky = Bt mod p, and Y = x X K;; (mod p)
x =1, choose arandom integeri =6
= K, =2°mod 11 =9,K,, =10°mod 11 =1,and Y =1 x 1 (mod 11) = 1
x = 7,choose arandom integer i = 4
=Ky, =2"mod 11 =5,K,, =10*mod 11 =1,andY =7 x 1 (mod 11) = 7
x = 5, choose arandom integeri =7
=Ky, =2"mod 11 =7,K,;, =10" mod 11 =10,and Y =5 x 10 (mod 11) = 6

= Send: (1,9)(7,5)(6,7)
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Encryption/Decryption - Example

% Let public key (8,p,a) = (10,11, 2), private key d = (5), and
received ciphertext (1,9)(7,5)(6,7)

» Decryption:
Ky '=K:""7% (modp) and x=VY x Ky * (mod p)

Y=1,K;=9
=Ky, '=9""15(mod11) =1 and x=1x1(mod11) =1
Y=7,K=5
=Ky, ' =5""15(nod11) =1 and x=7x1(mod11) =7
Y=6K;=17

=Ky ' =7""15(nmod11) =10 and x=6x10(mod11) =5

Plaintext x = (1,7,5)
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Elgamal Public-key Cryptosystem

“* Encryption requires two modular exponentiations that are
iIndependent of the plaintext

<> Can be computed ahead of time if need be.
On the other hand,
“ Decryption only requires one modular exponentiation

“ Ciphertext is twice as long as the corresponding plaintext
(disadvantage)
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Elgamal Attacks

» Attack computes DLP
>d=1log,B o Ky ‘=K 1% andx=Y- Ky’
OR
>i=log,Ky @ Ky=pfLandx=Y K, '

Thus, the DLP needs to be a computational hard problem =» p must be
large p = 21044

¢ Attack Re-use of secret exponent i

Ke=a' , Ky=p
Yl = Xq KM (Yl) KE) >
YZ = Xy KM (Yz,KE) >

Assume Trudy knows x; (known-plaintext attack).

KM = Yl . Xl_l = YZ . .Xz_l 9 Xo = YZ . Yl_l * X1 mod D
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RSA

“ Invented in 1977 by Rivest, Shamir, and Adleman
< RSA is the gold standard in public key crypto
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RSA - Key Generation

“* Let p and q be two large prime numbers

“ Let N =pq be the modulus

 Calculate ¢(N) = (p—1)(q-1)

% Choose ¢, c € {1, 2,...,6(N) — 1}, relatively prime to ¢(N)
< l.e., gcd(e, d(N)) =1 (why?)

“* Find d such that ed = 1 mod ¢(N)
< i.e.,d=elmod (p—-1)(q-1)

“» Public key is (N, ¢)

** Private key is d

¢ In practice, p & q should be large (= 1024 bits)

¢ Thus, N & d should be large (= 2048 bits)
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RSA - Enc/Dec

“* Message M (i.e., plaintext) is treated as a number
% To encrypt plaintext M = C=M"mod N

< To decrypt ciphertext C = M =C%mod N

*» Recall that e and N are public

“ If Trudy can factor N = pq, she can use e to easily find d since
ed =1 mod (p—1)(q—1)

¢ Factoring the modulus breaks RSA
<> Is factoring the only way to break RSA?
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Does RSA Really Work?

» Given C =Me mod N, we must show
M=Cd=Mdmod N

% Facts:
) oMN)=p-1)q-1)
2) ed=1mod(p—1)(q—1)=1 mod ¢p(N)
3) By definition of “mod”:
ed = t¢(N) + 1, where t is an integer

= Must show M = Cd = Med = MM)FL = M) M
= (M*M™)t M mod N
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Does RSA Really Work?

“*Must show (M*™N)*M =M mod N

“Case 1: gcd(M, N) =1
<> Use Euler’s Theorem © = if gcd(M, N) = 1, then 1 = M*™ mod N
= Cld=Md = (MMN)YM=(1))M=M mod N

»Case 2. gcd(M, N)=gcd(M,p-q) =1

<> Can’t use Euler’s Theorem directly ®
< pand qare primes =>M=(r-p)orM=(s-q), wherer<qgands<p
= Notethat M = (x - p - q) (i.e., isn’t factor of both p & q)
< Assume M = (r - p) — will also work if M = (s - q) = gcd(M, q) = 1
<> Using Euler’s Theorem = 1t = (M%@)! mod q
< Consider again (MM)t = (M®-D(@-D)t = (M@)))P-D = [?-D = | mod g
<> But by definition of “mod” = (M!™)t=uq + 1, where u is an integer
= MMMt =Muq+1)=Muq+M=0Cp)uq+tM=>ru)N+M=MmodN
= Cd= M = (MN)YM =M mod N
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Simple RSA Example

“+ Example of RSA
< Select “large” primes p=11, q=3
< ThenN=pg=33and (p—1)(q—1)=20
<> Choose ¢ = 3 (relatively prime to 20)
<> Find d such that ed = 1 mod 20
= We find that d =7 works
“» Public key: (N, e)=(33, 3)
» Private key: d=7
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Simple RSA Example

“» Public key: (N, e)=(33, 3)
** Private key: d=7
“ Suppose message M =4
¢ Ciphertext C is computed as
C=M°*mod N=43=64 =31 mod 33
¢ Decrypt C to recover the message M by
M=Cimod N=31"=27,512,614,111
= 833,715,579 * 33 +4
=4 mod 33
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Key Generation

+* Like all asymmetric schemes, RSA has set-up phase during which
the private and public keys are computed

*** Key generation: choose two large, distinct primes p and g
<> Not-trivial!

*¢* So, how to find p and g?
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Finding Large Primes 1/2

*¢* Generating keys for RSA requires finding two large primes p and q such that
n =p * qis sufficiently large

*¢* The size of p and q is typically half the size of the desired size of n

+* To find primes, random integers are generated and tested for primality:

Secure P p'is prime
— Primality Test — OR
RNG i ality p' is composite

|

a
+¢* For this approach to work, we have to answer two questions:

1. How many random integers do we have to test before we have a prime?
<> If the likelihood of a prime is too small, it might take too long
2. How fast can we check whether a random integer is prime?

<> Again, if the test is too slow, the approach is impractical

¢ It turns out that both steps are reasonably fast!!! |
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How many primes are there?

*¢* By looking at the first few positive integers that primes become
less dense as the value increases:
2,3,5,7,11,13,17,19,23,29,31,37, . . .

**What is the chance that a random number (e.g., 512 bits) is a
prime?
<> The chance that a randomly picked integer p is a prime is
approximately 1/In(p) (based on “prime number theorem™)
<> In practice, test only odd numbers so that the likelihood doubles
= probability for a random odd number p to be prime is

P(p is prime) ~

In(p)
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How many primes are there?

s* Example: RSA with a 2048-bit N, each of p and g = 21024
—=>P(p is prime) = 2/In(219%4) = 2/(1024 In(2)) = 1/355
—> Expect to test 355 random numbers before finding a prime
+* Likelihood of integers being primes decreases slowly, proportional
to integer bit length

= For very long RSA parameters (e.g., 4096 bit), the density of
primes is still sufficiently high
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How long to check if integer is prime?

¢ Factoring p and g to test for primality is typically not feasible

*** However, we are not interested in the factorization, we only want to
know whether p and q are composite or prime

¢ Typical primality tests are probabilistic, i.e., they are not 100%
accurate but their output is correct with very high probability
*¢* A probabilistic test has two outputs:
<>p' is composite — always true
<>p'is a prime — only true with a certain probability
¢ Among the well-known primality tests are the following:
<>Fermat Primality-Test

<>Miller-Rabin Primality-Test
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Fermat Primality-Test

*¢* Basic idea: Fermat’s Little Theorem holds for all primes, i.e., if a number
p' is found for which a1 # 1 mod p', then p' is not a prime

Algorithm: Fermat Primality-Test

Input: Prime candidate p', security parameter s
Output: (p'is composite) or (p'is likely a prime)
1. FORI=1TOs

2 choose random a € {2,3, ..., p'-2}

3. IFaf!l#1modp THEN

4, RETURN (p' is composite)

5. RETURN (p'is likely a prime)

*¢* For certain numbers (“Carmichael numbers”, such as 561 = 3x11x17) this
test returns (p' is likely a prime) often even though these numbers are
composite!!!

*¢* Therefore, the Miller-Rabin Test is preferred
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Theorem for Miller-Rabin’s test

+*¢* The more powerful Miller-Rabin Test is based on the following
theorem

Theorem
Given the decomposition of an odd prime candidate p'
p'—1=2Y.r

where r is odd. If we can find an integer a such that

a" #1 mod p’ and a?r # p'- 1 mod p’

For all j ={0,1, ..., u-1}, then p' is composite.

Otherwise it is probably a prime.

*¢* This theorem can be turned into an algorithm
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Miller-Rabin Primality-Test 1/3

Algorithm: Miller-Rabin Primality-Test

Input: Prime candidate p' with p'-1 = (2Y. r), security parameter s
Output: (p' is composite) or (p'is likely a prime)
FORI=1TOs
choose random a € {2,3, ..., p-2}
z =a" mod p'
IFz#1AND z# p'-1 THEN
FORj=1TOu-1
Z =z mod p'
IFz=1THEN
RETURN (p'is composite)
IF z # p'-1 THEN
10. RETURN (p' is composite)
11. RETURN (p'is likely a prime)
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Miller-Rabin Primality-Test 2/3

+¢ Possible that a composite number p gives the incorrect statement “prime”

*** However, the likelihood of this rapidly decreases as we run the test with
several different random base elements a

¢ Number of runs is given by security parameter s in the Miller—Rabin test

+¢* Following table shows how many different values a must be chosen in
order to have a probability < 2780 that a composite is incorrectly detected
as a prime

Bit lengths of p|Security parameter s
250 I
300 9
400
500
600

b tn O
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Miller-Rabin Primality-Test 3/3

s Example: Let p = 91 = p-1 = 21 . 45. Select a security parameter

of s =4 = Choose s times a random value a:

1. Leta=12 = z=12% =90 mod 91, hence, p is likely prime.
2. Leta=17 = z =174 =90 mod 91, hence, p is likely prime.
3. Leta=38 =z =38% =90 mod 91, hence, p is likely prime.
4. Leta=39 = z=39% =78 mod 91, hence, p is composite.

Since the numbers 12, 17 and 38 give incorrect statements for the
prime candidate p = 91, they are called “liars for 91"
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Attacks and Countermeasures

** There are two distinct types of attacks on cryptosystems

1) Analytical attacks
=" Try to break the mathematical structure of the underlying problem of RSA
= RSA is typically exposed to these analytical attack vectors
a) Mathematical attacks
* The best-known attack is factoring of N in order to obtain ¢(N)
= Can be prevented using a sufficiently large modulus N

= Currently, it is recommended that N should have a bit length
between 2048 and 4096 bits

b) Protocol attacks

= Exploit the malleability of RSA, i.e., the property that a ciphertext
can be transformed into another ciphertext which decrypts to a
related plaintext — without knowing the private key

= Can be prevented by proper padding
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Attacks and Countermeasures

** There are two distinct types of attacks on cryptosystems

2) Implementation attacks

= Attack a real-world implementation by exploiting inherent weaknesses in
the way RSA is realized in software or hardware

" Implementation attacks can be one of the following
a) Side-channel analysis

= Exploit physical leakage of RSA implementation (e.g., power
consumption, electromagnetic emanation, etc.)

b) Fault-injection attacks

* |nducing faults in the device while Chinese Remainder Theorem
(CRT) is executed can lead to a complete leakage of the private
key
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Slides Original Source

«» Jonathan Katz and Yehuda Lindell, “Introduction to Modern
Cryptography,” Third Edition, 2021

* M. Stamp, “Information Security: Principles and Practice,”
John Wiley

¢ B. Forouzan, “Cryptography and Network Security,” McGraw-
Hill

s C. Paar and J. Pelzl, “Understanding Cryptography — A
Textbook for Students and Practitioners,” Springer
(www.crypto-textbook.com)
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