Interfacing Techniques

Instructor
Dr. Wasel Ghanem
Email:ghanem@birzeit.edu

The content of these slides is a collection of different resources

Objectives of the Course

- Introduce the fundamentals of intelligent sensor systems:
 - sensors, instrumentation, interfacing techniques and pattern analysis
- Provide the students with an integrative and multidisciplinary experience by building a complete multi-sensor intelligent system
- Allow the students to develop data acquisition and software using modern interfacing techniques and software tools required

Intelligent Sensor Systems

System

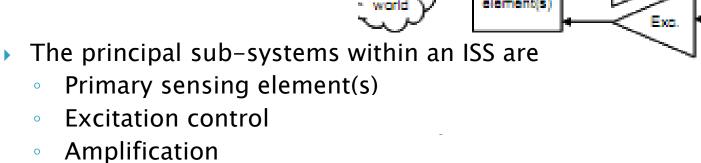
- A combination of two or more elements, subsystems and parts necessary to carry out one or more functions
- To interact with the real world, a system requires
 - Sensors: inputs devices
 - Actuators: output devices
 - Processing: signals, information and knowledge

Sensor

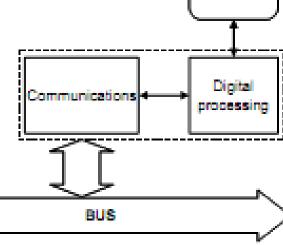
- A device that receives and responds to a stimulus
 - Stimulus: mechanical, thermal, magnetic, electric, optical, chemical...
 - Response: an electrical signal (in most cases)

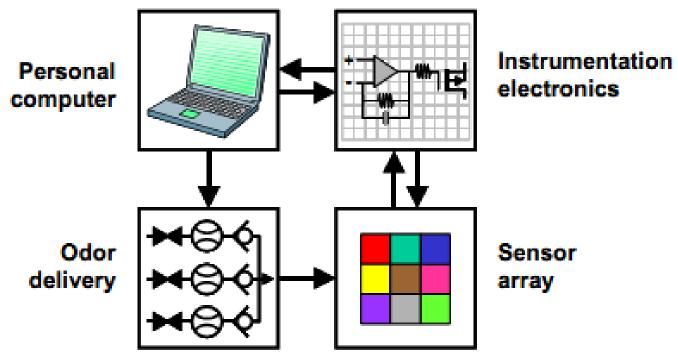
Intelligence

- The ability to combine
 - A priori knowledge (available before experience) and
 - Adaptive learning (from experience



Intelligent Sensor System


- Several definitions are available
 - A sensor that is capable of modifying its internal behavior to optimize the collection of data from the external world
 - The concepts of adaptation and compensation are central to the Intelligent Sensor philosophy
 - A device that combines a sensing element and a signal processor on a single integrated circuit
 - The minimum requirements of the signal processor are not clear
 - Basic integrated electronics (signal conditioning, ADC)
 - A micro-processor
 - Logic functions and decision making
 - A smart sensor is a sensor that provides functions beyond those necessary for generating a correct representation of a sensed or controlled quantity (IEEE 1451.2)
 - This function typically simplifies the integration of the transducer into applications in a networked environment
 - "Intelligent" or "Smart" Sensors?


Building blocks of Intelligent Sensors

- Analogue filteringData conversion
- Compensation
- Digital information processing
- Digital communications processing

The E-nose: a model ISS

An electronic nose (e-nose) is a device that identifies the specific components of an odor and analyzes its chemical makeup to identify it. An electronic nose consists of a mechanism for chemical detection, such as an array of electronic sensors, and a mechanism for pattern recognition, such as a <u>neural network</u>

Applications.....

Need to diagnose an illness in a hurry? Scientists are developing an 'electronic nose' app for smart phones

Researchers are working to manufacture a smart phone attachment that works when used in conjunction with what they call sensory vapour technology

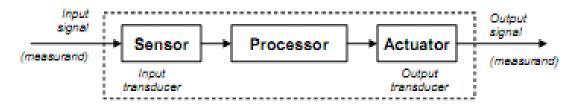
List of videos about ISS

- Track Everything the Internet of Things
- The Internet of Things
- System of Systems

NEW Part...

Sensor characteristics

- Transducers, sensors and measurements
- Calibration, interfering and modifying inputs
- Static sensor characteristics
- Dynamic sensor characteristics

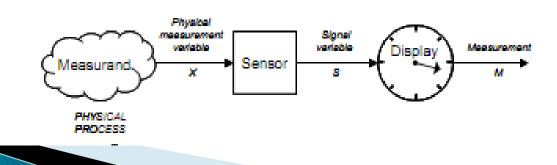

Transducers: sensors and actuators

Transducer

- A device that converts a signal from one physical form to a corresponding signal having a different physical form
 - Physical form: mechanical, thermal, magnetic, electric, optical, chemical...
- Transducers are ENERGY CONVERTERS or MODIFIERS

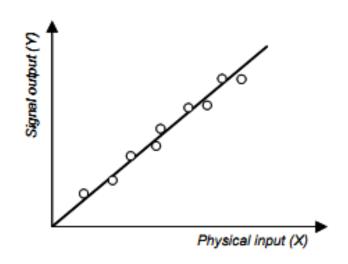
Sensor

- A device that receives and responds to a signal or stimulus
 - This is a broader concept that includes the extension of our perception capabilities to acquire information about physical quantities
- Transducers: sensors and actuators
 - Sensor: an input transducer (i.e., a microphone)
 - Actuator: an output transducer (i.e., a loudspeaker)

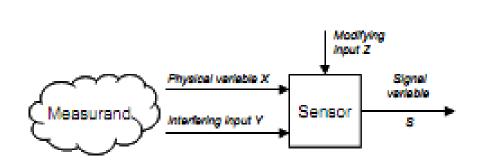


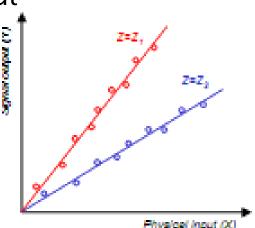
Measurements

- A simple instrument model
 - A observable variable X is obtained from the measurand
 - X is related to the measurand in some KNOWN way (i.e., measuring mass)
- The sensor generates a signal variable that can be manipulated:
 - Processed, transmitted or displayed
- In the example above the signal is passed to a display, where a measurement can be taken
- Measurement


STUDENTS-HUB.com

 The process of comparing an unknown quantity with a standard of the same quantity (measuring length) or standards of two or more related quantities (measuring velocity)


Calibration


- The relationship between the physical measurement variable (X) and the signal variable (S)
 - A sensor or instrument is calibrated by applying a number of KNOWN physical inputs and recording the response of the system

Additional inputs

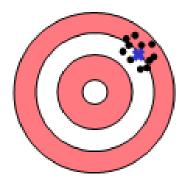
- Interfering inputs (Y)
 - Those that the sensor to respond as the linear superposition with the measurand variable X
 - Linear superposition assumption: S(aX+bY)=aS(X)+bS(Y)
- Modifying inputs (Z)
 - Those that change the behavior of the sensor and, hence, the calibration curve
 - Temperature is a typical modifying input

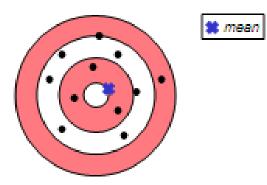
Sensor characteristics

- Static characteristics
 - The properties of the system after all transient effects have settled to their final or steady state
 - Accuracy
 - Discrimination
 - Precision
 - Errors
 - Drift
 - Sensitivity
 - Linearity
 - Hystheresis (backslash)
- Dynamic characteristics
 - The properties of the system transient response to an input
 - Zero order systems
 - First order systems
 - Second order systems

Accuracy, discrimination and precision

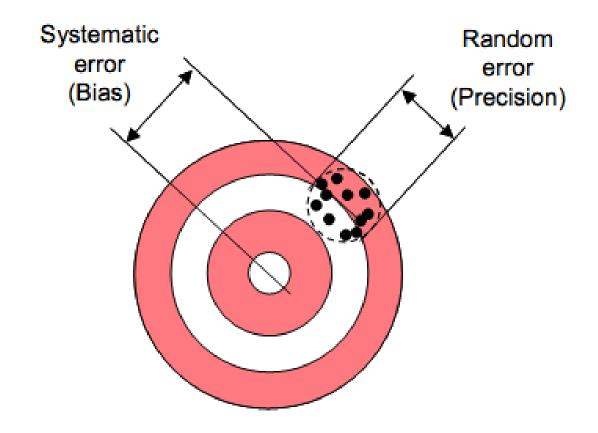
- Accuracy is the capacity of a measuring instrument to give RESULTS close to the TRUE VALUE of the measured quantity
 - Accuracy is related to the bias of a set of measurements
 - (IN)Accuracy is measured by the absolute and relative errors
- Discrimination is the minimal change of the input necessary to produce a detectable change at the output
 - Discrimination is also known as RESOLUTION
 - When the increment is from zero, it is called THRESHOLD


Precision


- The capacity of a measuring instrument to give the same reading when repetitively measuring the same quantity under the same prescribed conditions
 - Precision implies agreement between successive readings,
 NOT closeness to the true value
 - Precision is related to the variance of a set of measurements
 - Precision is a necessary but not sufficient condition for accuracy
- Two terms closely related to precision
 - Repeatability
 - The precision of a set of measurements taken over a short time interval
 - Reproducibility
 - The precision of a set of measurements BUT
 - taken over a long time interval or
 - Performed by different operators or
 - with different instruments or
 - in different laboratories

Shooting darts

- Discrimination
 - The size of the hole produced by a dart
- Which shooter is more accurate?
- Which shooter is more precise?



Accuracy and errors

- Systematic errors
 - Result from a variety of factors
 - Interfering or modifying variables (i.e., temperature)
 - Drift (i.e., changes in chemical structure or mechanical stresses)
 - The measurement process changes the measurand (i.e., loading errors)
 - The transmission process changes the signal (i.e., attenuation)
 - Human observers (i.e., parallax errors)
 - Systematic errors can be corrected with COMPENSATION methods (i.e.,
 - feedback, filtering)
- Random errors
 - Also called NOISE: a signal that carries no information
 - True random errors (white noise) follow a Gaussian distribution
 - Sources of randomness:
 - Repeatability of the measurand itself (i.e., height of a rough surface)
 - Environmental noise (i.e., background noise picked by a microphone)
 - Transmission noise (i.e., 60Hz hum)
 - Signal to noise ratio (SNR) should be >>1
 - With knowledge of the signal characteristics it may be possible to interpret a signal with a low SNR (i.e., understanding speech in a loud environment)

Example: systematic and random errors

More static characteristics

Input range

- The maximum and minimum value of the physical variable that can be measured (i.e., -40F/100F in a thermometer)
- Output range can be defined similarly

Sensitivity

- The slope of the calibration curve y=f(x)
 - An ideal sensor will have a large and constant sensitivity
- Sensitivity-related errors: saturation and "dead-bands"

Linearity

 The closeness of the calibration curve to a specified straight line (i.e., theoretical behavior, least-squares fit)

Monotonicity


 A monotonic curve is one in which the dependent variable always increases or decreases as the independent variable increases

Hystheresis

- The difference between two output values that correspond to the same input depending on the trajectory followed by the sensor (i.e., magnetization in ferromagnetic materials)
 - **Backslash**: hystheresis caused by looseness in a mechanical joint

Dynamic characteristics

- The sensor response to a variable input is different from that exhibited when the input signals are constant (the latter is described by the static characteristics)
- The reason for dynamic characteristics is the presence of energy-storing elements
 - Inertial: masses, inductances
 - · Capacitances: electrical, thermal
- Dynamic characteristics are determined by analyzing the response of the sensor to a family of variable input waveforms:
 - Impulse, step, ramp, sinusoidal, white noise...

Dynamic models

- The dynamic response of the sensor is (typically) assumed to
- be linear
 - Therefore, it can be modeled by a constant-coefficient linear differential equation $a_k \frac{d^k y(t)}{dt^k} + \cdots + a_2 \frac{d^2 y(t)}{dt^2} + a_1 \frac{dy(t)}{dt} + a_0 y(t) = x(t)$

In practice, these models are confined to zero, first and second order.
 Higher order models are rarely applied

- These dynamic models are typically analyzed with the Laplace transform, which converts the differential equation into a polynomial expression
 - Think of the Laplace domain as an extension of the Fourier transform
 - Fourier analysis is restricted to sinusoidal signals
 - $x(t) = \sin(\omega t) = e j\omega t$
 - · Laplace analysis can also handle exponential behavior
 - $x(t) = e \sigma t Sin(\omega t) = e (\sigma + j\omega)$

The Laplace Transform (review)

- The Laplace transform of a time signal y(t) is denoted by
 - L[y(t)] = Y(s)
 - The s variable is a complex number $s=\sigma+j\omega$
 - The real component σ defines the real exponential behavior
 - The imaginary component defines the frequency of oscillatory behavior
- The fundamental relationship is the one that concerns the transformation of differentiation

$$L\left[\frac{d}{dt}y(t)\right] = sY(s) - f(0)$$

Other useful relationships are

Impulse:
$$L[\delta(t)]=1$$

Step:
$$L[u(t)] = \frac{1}{s}$$

Step:
$$L[u(t)] = \frac{1}{s}$$

Ramp: $L[r(t)] = \frac{1}{s^2}$

Decay:
$$L[exp(at)] = (s-a)^{-1}$$

Sine:
$$L[\sin(\omega t)] = \frac{\omega}{s^2 + \omega^2}$$

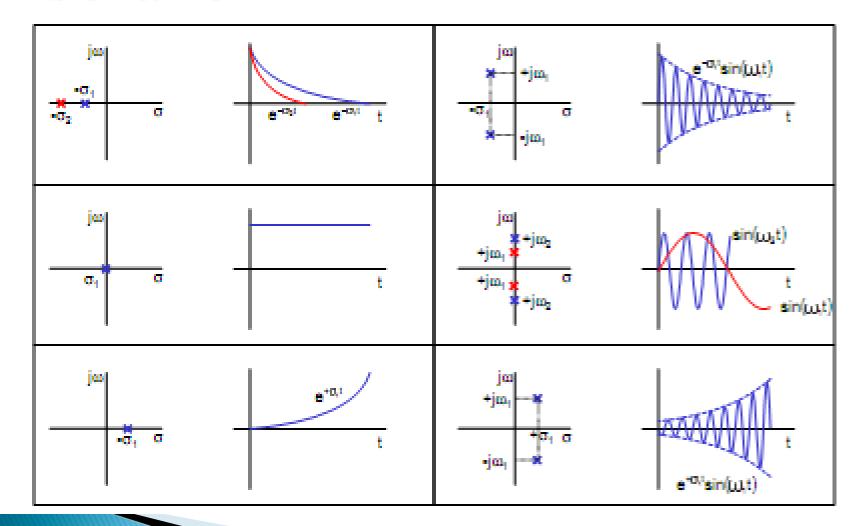
Cosine: $L[\cos(\omega t)] = \frac{s}{s^2 + \omega^2}$

Cosine:
$$L[\cos(\omega t)] = \frac{s}{s^2 + \omega^2}$$

The Laplace Transform (review)

Applying the Laplace transform to the sensor model yields

$$L\left[a_{k}\frac{d^{k}y}{dt^{k}} + \cdots + a_{2}\frac{d^{2}y}{dt^{2}} + a_{1}\frac{dy}{dt} + a_{0}y(t) = x(t)\right]$$

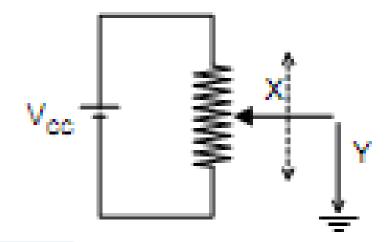

$$(a_{k}s^{k} + \cdots + a_{2}s^{2} + a_{1}s + a_{0})Y(s) = X(s)$$

$$U$$

$$G(s) = \frac{Y(s)}{X(s)} = \frac{1}{a_{k}s^{k} + \cdots + a_{2}s^{2} + a_{1}s + a_{0}}$$

- G(s) is called the transfer function of the sensor
- ➤The position of the poles of G(s) -zeros of the denominator- in the s-plane determines the dynamic behavior of the sensor such as
 - Oscillating components
 - Exponential decays
 - Instability

Pole location and dynamic behavior



Zero-order sensors

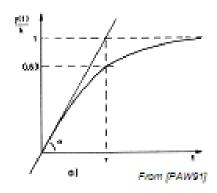
- Input and output are related by an equation of the type
 - Zero-order is the desirable response of a sensor

$$y(t) = k \cdot x(t) \Rightarrow \frac{Y(s)}{X(s)} = k$$

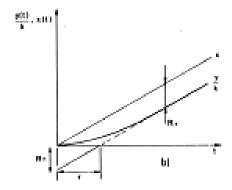
- No delays
- Infinite bandwidth
- The sensor only changes the amplitude of the input signal
- Zero-order systems do not include energy-storing elements
- Example of a zero-order sensor
 - A potentiometer used to measure linear and rotary displacements
 - This model would not work for fast-varying displacements

First-order sensors

Inputs and outputs related by a first-order

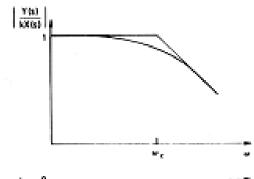

differential equation
$$a_1 \frac{dy}{dt} + a_0 y(t) = x(t) \Rightarrow \frac{Y(s)}{X(s)} = \frac{1}{a_1 s + a_0} = \frac{k}{\tau s + 1}$$

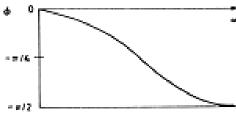
- First-order sensors have one element that stores energy and one that dissipates it
- Step response
 - $y(t) = Ak(1-exp(-t/\tau))$
 - A is the amplitude of the step
 - k = 1/a0 is the static gain, which determines the static response
 - τ (=a1/a0) is the time constant, which determines the dynamic response
- Ramp response
 - $y(t) = Akt Ak\tau u(t) + Ak\tau exp(-t/\tau)$
- Frequency response
 - Better described by the amplitude and phase shift plots



First-order sensor response

Step response

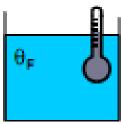


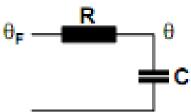

Ramp response

Frequency response

- Comer frequency ω_c=1/τ
- · Bandwidth

Example of a first-order sensor


- A mercury thermometer immersed into a fluid
 - What type of input was applied to the sensor?
 - Parameters
 - C: thermal capacitance of the mercury
 - R: thermal resistance of the glass to heat transfer
 - θF: temperature of the fluid
 - $\theta(t)$: temperature of the thermometer
 - The equivalent circuit is an RC network



- Heat flow through the glass (θ_ε -θ(t))/R
- Temperature of the thermometer rises as
- Taking the Laplace transform

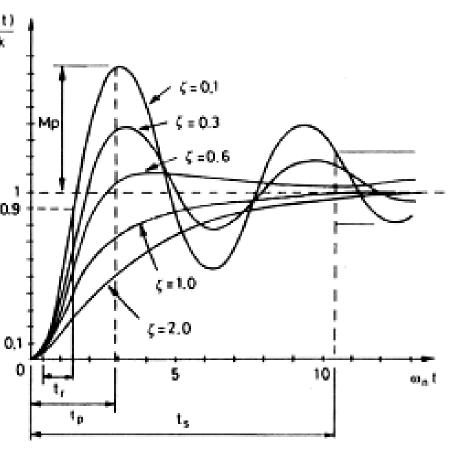
$$s \, \theta(s) = \frac{\theta_{F}(s) - \theta(s)}{RC} \Rightarrow (RCs + 1) \, \theta(s) = \theta_{F}(s) \Rightarrow$$

$$\Rightarrow \theta(s) = \frac{\theta_{F}(s)}{(RCs + 1)} \Rightarrow \theta(t) = \theta_{F}(1 - e^{-tRC})$$

Second-order sensors

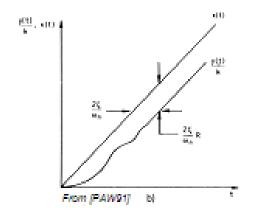
 Inputs and outputs are related by a second-order differential equation

$$a_2 \frac{d^2 y}{dt^2} + a_1 \frac{dy}{dt} + a_0 y(t) = x(t) \Rightarrow \frac{Y(s)}{X(s)} = \frac{1}{a_2 s^2 + a_1 s + a_0}$$

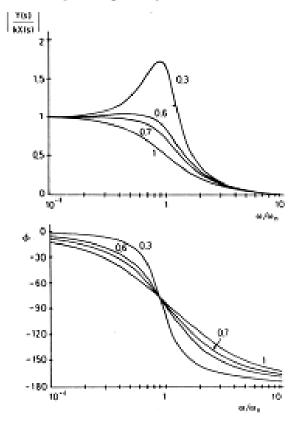

We can express this second-order transfer function as

$$\begin{split} \frac{Y(s)}{X(s)} &= \frac{k\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \\ &\text{with } k = \frac{1}{a_0}, \ \zeta = \frac{a_1}{2\sqrt{a_0 a_1}}, \ \omega_n = \sqrt{\frac{a_0}{a_2}} \end{split}$$

- Where
 - k is the static gain
 - ζ is known as the damping coefficient
 - wn is known as the natural frequency


Second-order step response

- Response types
 - Underdamped (ζ<1)
 - Critically damped ($\zeta = 1$)
 - Overdamped (ζ>1)
- Response parameters ••
 - Rise time (tr)
 - Peak overshoot (Mp)
 - Time to peak (tp)Settling time (ts)



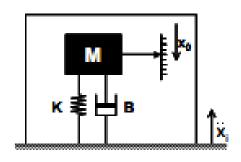
Second-order response

Ramp response

Frequency response

Example of second-order sensors

- A thermometer covered for protection
 - Adding the heat capacity and thermal resistance of the protection yields a second-order system with two real poles (overdamped)
- Spring-mass-dampen accelerometer
 - The armature suffers an acceleration
 - We will assume that this acceleration is orthogonal to the direction of gravity
 - x₀ is the displacement of the mass M with respect to the armature
 - The equilibrium equation is:


$$M(\ddot{x}_{i} - \ddot{x}_{0}) = Kx_{0} + B\dot{x}_{0}$$

$$\downarrow \downarrow$$

$$Ms^{2}X_{i}(s) = X_{0}(s)[K + Bs + Ms^{2}]$$

$$\downarrow \downarrow$$

$$\frac{X_{0}(s)}{s^{2}X_{i}(s)} = \frac{M}{K} \frac{K/M}{s^{2} + s(B/M) + K/M}$$

HOMEWORK: Using Matlab, develop an accelerometer

References

- R. Pallas-Areny and J. G. Webster, 1991, Sensors and Signal Conditioning, Wiley, New York
- G. Webster, 1999, The Measurement, Instrumentation and Sensors Handbook, CRC/IEEE Press, Boca Raton, FL.
- H. R. Taylor, 1997, Data Acquisition for Sensor Systems, Chapman and Hall, London, UK.
- Fraden, 1997, Handbook of Modern Sensors. Physics, Designs and Applications, AIP, Woodbury, NY
- Brignell and N. White, 1996, Intelligent Sensor Systems, 2nd Ed., IOP, Bristol, UK