
 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

1

COMP232

Data Structure

Lectures Note 1

Prepared by: Dr. Mamoun Nawahdah

2016

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

2

Table of Contents
Math Review ... 4

What is an Algorithm? .. 5

Recursion .. 6

Tower of Hanoi .. 11

Analysis of Algorithms ... 13

The Big-O Notation ... 17

Asymptotic Analysis .. 19

Analyzing Algorithm Examples .. 23

Linked List.. 28

Doubly Linked List ... 34

Radix Sort .. 41

Cursor Implementation of Linked Lists ... 43

Stacks .. 46

Iteration (Optional) ... 49

Balanced Delimiters .. 50

Processing Algebraic Expressions ... 52

Evaluate infix expressions: .. 52

Infix to Postfix Conversion .. 54

Evaluating Postfix Expressions .. 57

Queues .. 59

Trees .. 65

Binary Trees .. 66

Tree Traversal ... 68

Expression Trees ... 71

Binary Search Trees (BST) ... 73

AVL Trees .. 81

Single Rotation .. 81

Double Rotations .. 83

2-3 Trees ... 88

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

3

2-4 Trees ... 90

B-Trees .. 92

Splay Trees .. 95

Recursion (Time Analysis Revision) ... 98

Hash Tables ... 103

Separate Chaining ... 106

Open Addressing ... 107

Double Hashing ... 108

Priority Queues (Heaps) .. 110

HeapSort ... 117

Sorting ... 121

In Place vs. not in Place Sorting .. 121

Stable vs. Unstable Sort .. 121

Selection Sort .. 123

Insertion Sort .. 124

Shell Sort ... 125

Merge Sort .. 127

Bottom-up Merge Sort .. 131

Quick Sort .. 132

Counting Sort .. 137

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

4

Math Review

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

5

What is an Algorithm?

Definition:

 Algorithm is a finite list of well-defined instructions for

accomplishing some task that, given an initial state, will

terminate in a defined end-state.

Euclid’s Algorithm (300BC)

 Used to find Greatest common divisor (GCD) of two positive integers.

 GCD of two numbers, the largest number that divides both of them

without leaving a remainder.

Euclid’s Algorithm:

o Consider two positive integers ‘m’ and ‘n’, such that m>n

o Step1: Divide m by n, and let the reminder be r.

o Step2: if r=0, the algorithm ends, n is the GCD.

o Step3: Set, mn, nr , go back to step 1 .

Implement this iteratively and recursively

public static int iteratively (int m, int n){
 int r = m % n;
 while (r != 0) {
 m = n;
 n = r;
 r = m % n;
 }
 return n;
}

public static int recursively(int m, int n) {
 if (n==0)
 return m;
 return recursively(n, m % n);
 }

Why Algorithms?

o Gives an idea (estimate) of running time.

o Help us decide on hardware requirements.

o What is feasible vs. what is impossible.

o Improvement is a never ending process.

Correctness of an Algorithm:

 Must be proved (mathematically)

Step1: statement to be proven.

Step2: List all assumptions.

Step3: Chain of reasoning from assumptions to the statement.

 Another way is to check for incorrectness of an algorithm.

Step1: give a set of data for which the algorithm does not work.

Step2: usually consider small data sets.

Step3: Especially consider borderline cases.

Born: Uzbekistan

Died: 850 AD, Baghdad, Iraq

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

6

Recursion

Definition:

 A function that calls itself is said to be recursive.

 A function f1 is also recursive if it calls a function f2, which under some circumstances calls

f1, creating a cycle in the sequence of calls.

 The ability to invoke itself enables a recursive function to be repeated with different

parameter values.

 You can use recursion as an alternative to iteration (looping).

The Nature of Recursion:

Problems that lend themselves to a recursive solution have the following characteristics:

 One or more simple cases of the problem have a straightforward, non-recursive solution.

 The other cases can be redefined in terms of problems that are closer to the simple cases.

 By applying this redefinition process every time the recursive function is called, eventually

the problem is reduced entirely to the simple case(s), which are relatively easy to solve.

The recursive algorithms will generally consist of an “if statement” with the following form:

if this is a simple case

 solve it

else

 redefine the problem using recursion

Illustration:

Example:

Solve the problem of multiplying 6 by 3, assuming we only know addition:

 Simple case: any number multiplied by 1 gives us the original number.

 The problem can be split into the two problems:

1. Multiply 6 by 2.
1.1 Multiply 6 by 1.
1.2 Add (Multiply 6 by 1) to the result of problem 1.1.

2. Add (Multiply 6 by 1) to the result of problem 1.

Implement this recursively

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

7

Tracing a Recursive Function:

 Tracing an algorithm’s execution provides us with valuable insight into how that algorithm works.

 By drawing an activation frame corresponding to each call of the function.

 An activation frame shows the parameter values for each call and summarizes the execution of the

call.

multiply(6, 3):

Recursive Mathematical Functions:

 Many mathematical functions can be defined recursively.

 An example is the factorial of n (n!):

 0! is 1

 n! is n * (n 1)! , for n> 0

 Thus 4! is 4 *3!, which means 4 *3 *2 *1, or 24.

Implement this iteratively and recursively

Tracing the recursive function

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

8

Fibonacci Numbers:

 Leonardo Bonacci (1170 –1250)

• Problem:

– How many pairs of rabbits are alive in month n?

• Recurrence relation:

 rabbit(n) = rabbit(n-1) + rabbit(n-2)

 The Fibonacci sequence is defined as:

 Fibonacci 0 is 1

 Fibonacci 1 is 1

 Fibonacci n is Fibonacci n 2 + Fibonacci n 1, for n>1

Implement this recursively

Poor Solution to a Simple Problem:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

9

Why is this inefficient? Try F6

Self-Check:

 Write and test a recursive function that returns the value of the following recursive definition:

 f(x) = 0 if x = 0

 f(x) = f(x - 1) + 2 otherwise

What set of numbers is generated by this definition?

Design Guidelines:

 Method must be given an input value.

 Method definition must contain logic that involves this input, leads to different cases.

 One or more cases should provide solution that does not require recursion.

 else infinite recursion

 One or more cases must include a recursive invocation.

Stack of Activation Records:

 Each call to a method generates an activation record.

 Recursive method uses more memory than an iterative method.

 Each recursive call generates an activation record.

 If recursive call generates too many activation records, could cause stack overflow.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

10

Recursively Processing an Array:

Starting with array[first]:

Starting with array[last]:

Processing array from middle:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

11

Tower of Hanoi
Simple Solution to a Difficult Problem:

Rules:

 Move one disk at a time. Each disk moved must be topmost disk.

 No disk may rest on top of a disk smaller than itself.

 You can store disks on the 2nd pole temporarily, as long as you observe the previous two rules.

Tower of Hanoi flash @ https://www.mathsisfun.com/games/towerofhanoi.html

Sequence of moves for solving the Towers of Hanoi problem with three disks:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

12

The Tower of Hanoi problem can be decomposed into three sub-problems.

 Move the first n-1 disks from A to C with the assistance of tower B.

 Move disk n from A to B.

 Move n-1 disks from C to B with the assistance of tower A.

Solutions:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

13

Analysis of Algorithms
Once an algorithm is given for a problem and decided (somehow) to be correct, an important step is to

determine how much in the way of resources, such as time or space, the algorithm will require.

 Space Complexity memory and storage are very cheap nowadays.

 Time Complexity Different platforms different time. Absolute time is hard to measure as it

depends on many factors.

Example: moving between university buildings: it depends on who are walking, which way he/she use, etc.

time is not good measurement. Number of steps is a better one.

Example:

• Consider the problem of summing

Come up with an algorithm to solve this problem.

Counting Basic Operations

• A basic operation of an algorithm is the most significant contributor to its total time requirement.

How to calculate the time complexity?

 Measure execution time. Algorithm for small data size will take small time comparing to a large data.

 Calculate time required for an algorithm in terms of the size of input data. Does not work as the

same algorithm over the same data will not take the same time.

Run summing code 2 times and compare time

 Determine order of growth of an algorithm with respect to the size of input data.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

14

Order of time or growth of time:

Go back to summing result

In term of time complexity, we say that algorithm C is better than A and B

Types of Time Complexity

 Best case analysis too optimistic

 Average case analysis too complex (statistical methods)

 Worst case analysis it will not exceed this

RAM model of computation

We assume that:

 We have infinite memory

 Each operation (+,-,*,/,=) takes 1 unit of time

 Each memory access takes 1 unit of time

 All data is in the RAM

Linear
growth

Quadratic
growth

Constant
growth

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

15

Bubble Sort:

1. Each two adjacent elements are compared:

2. Swap with larger elements:

3. Move forward and swap with each larger item:

4. If there is a lighter element, then this item begins to bubble to the surface:

5. Finally the smallest element is on its place:

Make a demo using the following data set

12 8 7 5 2

After 1st round:

8 7 5 2 12

Worst case

analysis

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

16

After 2nd round:

7 5 2 8 12

For whole sorting algorithm: 16+12+8+4 for a data size of 5 elements:

= 4 (4 + 3 + 2 + 1) = 4 (n-1 + n-2 + …. + 2 + 1) = 4 (n-1*n/2) =

2 * n * (n-1) pn2 + qn + r p, q, and r are some constant.

Implement and test effectiveness of bubble sort algorithm

for (int i = 0; i < arr.length-1; i++) {
 for (int j = 0; j <arr.length-i-1 ; j++) {
 if(arr[j+1]<arr[j]){
 temp = arr[j];
 arr[j] = arr[j+1];
 arr[j+1] = temp;
 }
 }
}

i=0
i=1

:
:

i=n-1

j=n-1
j=n-2

:
:

j=0

n-1
n-2

:
:
1

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

17

The Big-O Notation

Assume the order of time of an algorithm is a quadratic time as displayed in the graph. Our job is to

find an upper bond for this function T(n). Consider a function c1n2 never over take T(n)

C2n2 such that its greater than T(n) for n>n0 . In this case we say that C2n2 is an upper bond of T(n)

But we can come up with many functions satisfy this condition. We need to be precise.

Big Oh O(n2): f(n): there exist positive constants c and n0 such that 0 ≤ f(n) ≤ cn2 for all n ≥ n0

In general

O(g(n)) : f(n): there exist positive constants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0

Example 1:

5n2 + 6 O(n2) ???
Find cn2 c=6 and n0=3

 c=5.1 n0=8

Example 2:

5n + 6 O(n2) ???
Find cn2 c=11 and n0=1

Example 3:

n3 + 2n2 + 4n + 8 O(n2) ???
Find cn2 ≥ n3 + 2n2 + 4n + 8 ???

What does it mean?

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

18

Array element access:

Array element search:

Bubble sort algorithm:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

19

Asymptotic Analysis
Asymptotic (مقارب) analysis measures the efficiency of an algorithm as the input size becomes large.

It is actually an estimation technique. However, asymptotic analysis has proved useful to computer

scientists who must determine if a particular algorithm is worth considering for implementation.

 The critical resource for a program is -most often- running time.

 The growth rate for an algorithm is the rate at which the cost of the algorithm grows as the size of its

input grows.

o cn (for c any positive constant) linear growth rate or running time.

o n2
 quadratic growth rate

o 2n
 exponential growth rate.

Worst case? The advantage to analyzing the worst case is that you know for certain that the

algorithm must perform at least that well.

Example:

Assume: Algorithm A: time = 15n + 93

 Algorithm B: time = 2n2 + 1 which is faster?

Graph using Excel

We are interested for large n

* For sufficiently large n, algorithm A is faster

* In the long run constants do not mater.

Upper bound for the growth of the algorithm’s running time. It indicates the upper or

highest growth rate that the algorithm can have. big-O notation.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

20

For T(n) a non-negatively valued function, T(n) is in set O(f(n)) if there exist

two positive constants c and n0 such that T(n) ≤ cf(n) for all n > n0.

 Prove that 15n + 93 is O(n)

We must show +ve c and n0 such that 15n + 93 ≤ c(n) for n ≥ n0

<provided n= 93> 15n+n 16n ≤ cn <provided c = 16>

So for c=16 and n0 = 93 // proved

Graph using Excel

 Prove that 2n2+1 = O(n2)

Must show +ve c, n0 such that 2n2+1 ≤ c(n2) for n ≥ n0

2n2+1 <provided n=1>

2n2+ n2 3n2 <provided c=3>

2n2+1 ≤ 3n2

So, c=3 , n0=1 // proved

Graph using Excel

The lower bound for an algorithm is denoted by the symbol Ω, pronounced “big-

Omega” or just “Omega.”

For T(n) a non-negatively valued function, T(n) is in set Ω(g(n)) if there exist

two positive constants c and n0 such that T(n) ≥ cg(n) for all n > n0.

 Prove that 15n+93 is Ω(n)

We must show +ve c and n0 such that 15n+93 ≥ c(n) for n ≥ n0

<because 93 is +ve> ≥ c(n) <provided c=15> so any n0 > 0 will do

So c=15, n0=1 // proved

Graph using Excel

 Prove that 2n2+1 is Ω(n2)

Must show +ve c and n0 such that 2n2+1 ≥ cn2 for n ≥ n0

<because 1 is +ve>

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

21

So c=2, n0=1 // proved

Graph using Excel

When the upper and lower bounds are the same within a constant factor, we

indicate this by using Θ (big-Theta) notation.

T(n) = Θ(g(n)) iff T(n) = O(g(n)) and T(n) = Ω (g(n))

Example: Because the sequential search algorithm is both in O(n) and in Ω(n) in the average case,

we say it is Θ(n) in the average case.

Simplifying Rules

 Rule (2) is that you can ignore any multiplicative constants.

 Rule (3) says that given two parts of a program run in sequence, you need to consider only the

more expensive part.

 Rule (4) is used to analyze simple loops in programs.

Taking the first three rules collectively, you can ignore all constants and all lower-order

terms to determine the asymptotic growth rate for any cost function.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

22

Order of growth of some common functions:

O(1) ≤ O(log2n) ≤ O(n) ≤ O(n log2n) ≤ O(n2) ≤ O(n3) ≤ O(2n)

If the problem size is always small, you can probably ignore an algorithm’s efficiency

Limitations of big-O analysis:

 Overestimate.

 Analysis assumes infinite memory.

 Not appropriate for small amounts of input.

 The constant implied by the Big-Oh may be too large to be ignored (2N log N vs. 1000N)

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

23

 Analyzing Algorithm Examples

General Rules of analyzing algorithm code:

Rule 1 — for loops:

The running time of a for loop is at most the running time of the statements inside the for loop

(including tests) times the number of iterations.

Rule 2 — Nested loops:

Analyze these inside out. The total running time of a statement inside a group of nested loops

is the running time of the statement multiplied by the product of the sizes of all the loops.

Rule 3 — Consecutive Statements:

These just add (which means that the maximum is the one that counts.

Rule 4 — if/else:

if(condition)

 S1

else

 S2

The running time of an if/else statement is never more than the running time of the test plus

the larger of the running times of S1 and S2.

Rule 5 — methods call:

If there are method calls, these must be analyzed first.

Sorting Algorithm

1- Bubble Sort (revision) O(n2)

public static void bubble(int[] arr){
 int temp;
 for (int i = 0; i < arr.length-1; i++) {
 for (int j = 0; j <arr.length-i-1 ; j++) {
 if(arr[j+1]<arr[j]){
 temp = arr[j];
 arr[j] = arr[j+1];
 arr[j+1] = temp;
 }
 }
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

24

2- Selection Sort (revision) O(n2): named selection because every time we select the

smallest item.

public static void selection (int[] arr){
 int temp, minIndex;
 for (int i = 0; i < arr.length-1; i++) {
 minIndex = i;
 for (int j = i+1; j <arr.length ; j++) {
 if(arr[j]<arr[minIndex]){
 minIndex=j;
 }
 }
 if(i!= minIndex){
 temp = arr[i];
 arr[i] = arr[minIndex];
 arr[minIndex] = temp;
 }
 }
}

3- Insertion sort O(n2):

public static void insertion (int[] arr){
 int j, temp, current;
 for (int i = 1; i < arr.length; i++) {
 current = arr[i];
 j=i-1;
 while (j>=0 && arr[j]>current){
 arr[j+1] = arr[j];
 j--;
 }
 arr[j+1]=current;
 }
}

O(n2) sorting algorithms comparison:

(run demo @ http://www.sorting-algorithms.com/)

Bubble Sort Selection Sort Insertion Sort

Very inefficient

 Better than bubble sort

 Running time is independent
of ordering of elements

 Relatively good for small lists

 Relatively good for partially
sorted lists

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

25

Merge sort: recursive algorithm

Merge: take 2 sorted arrays and merge them together into one.

Example:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

26

Pseudo code:

Make sure of array boundaries

H.W: implement merge sort your own

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

27

Searching elements in an array:

Case 1: unordered array:

Case 2: ordered array: -Binary search-

Inserting and deleting items from ordered array

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

28

Linked List

Algorithm - abstract way to perform computation tasks

Data Structure - abstract way to organize information

Linked List:

Node:

Data

Next null

Node code:

public class Node<T> {
 private T data;
 private Node<T> next;

 public Node(T data) { this.data = data; }

 public void setData(T data) { this.data = data; }
 public T getData() { return data; }

 public Node<T> getNext() { return next; }
 public void setNext(Node<T> next) { this.next = next; }
}

Linked List Code:

public class LinkedList<T> {
 private Node<T> head;
}

Inserting a new node:

Inserting a Node into a Specified Position of a Linked List:
Three steps to insert a new node into a linked list
– Determine the point of insertion
– Create a new node and store the new data in it
– Connect the new node to the linked list by changing references

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

29

Case 1: To insert a node at the beginning of a linked list: (curr == head)
newNode.next = head;
head = newNode;

What’s the time complexity of inserting an item to the head?? O(1)

Case 2: To insert a node between two nodes:
newNode.next = curr;
prev.next = newNode;

Case 3: Inserting at the end of a linked list is a special case if curr is null:
newNode.next = curr;
prev.next = newNode;

Time Complexity O(n)

H.W. implement insert into a sorted linked list

Determining curr and prev
Determining the point of insertion or deletion for a sorted linked list of objects

for (prev = null , curr = head;
 (curr != null) && (newValue.compareTo(curr.item) > 0);

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

30

 prev = curr , curr = curr.next) ; // end for

Create a driver class to test linked list classes.

Override the toString methods first
Node toString:

@Override
public String toString() { return data.toString(); }

LinkedList toString:
@Override
public String toString() {
 String res = "";
 Node<T> curr = head;
 while (curr != null) {
 res += curr + " ";
 curr = curr.next;
 }
 return res + “NULL”;
}

Length of Linked List?

Case 1: If it’s empty:
Case 2: If not: Make a pointer and move over all the nodes and maintain a counter

Length code: Time Complexity O(n)
public int length() {
 int length = 0;
 Node<T> curr = head;
 while (curr != null) {
 length++;
 curr = curr.next;
 }
 return length;
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

31

Deleting Nodes:
Case 1: Deleting the head node:

Simply move the head to the head.next: head = head.next;

Now first Node has no reference to it Garbage

Time Complexity O(1)

Delete at head code: // make sure linked list is not empty
public Node<T> deleteAtStart() {
 Node<T> toDel =head;
 head = head.next;
 return toDel;
}

Case 2: Delete node N which curr references:

Set next in the node that precedes N to reference the node that follows N
 prev.next = curr.next; // prev.next = prev.next.next;

Searching for an Item in a Linked List:

Time Complexity: linear growth O(n)

Find code:

public Node<T> find(T data) {
 Node<T> curr = head;
 while (curr != null) {
 if (curr.getData() == data) // if (curr.getData().equals(data))
 return curr;
 curr = curr.next;
 }
 return null;
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

32

Variations of the Linked List:
1- Tail References (Doubly Ended Linked List)
– Remembers where the end of the linked list is.
– Therefore, we can add and delete at both ends.
– To add a node to the end of a linked list

tail.next = new Node(request, null);

public class DoubleEndedList<T> extends LinkedList<T> {
 private Node<T> tail;
 public Node<T> getTail() { return tail; }

 public void addAtEnd(T data) {
 Node<T> newNode = new Node<T>(data);
 if (head == null) { // empty
 head = newNode;
 tail = newNode;
 }

 else {
 tail.setNext(newNode);
 tail = newNode;
 }
 }
}

Make sure to override addAtStart to set the tail pointer correctly:
@Override
public void addAtStart(T data) {
 Node<T> newNode = new Node<T>(data);
 if (head == null) { // empty
 head = newNode;
 tail = newNode;
 }
 else{
 newNode.setNext(head);
 head = newNode;
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

33

2- Circular Linked List
– Last node references the first node
– Every node has a successor

3- Dummy Head Nodes
– Always present, even when the linked list is empty
– Insertion and deletion algorithms initialize prev to reference the dummy head node, rather

than null

Processing Linked Lists Recursively:
• Traversal

– Recursive strategy to display a list
 Write the first node of the list
 Write the list minus its first node

public static void traversList(Node curr) {
 if(curr == null)
 System.out.println("NULL");
 else {
 System.out.print("[" + curr + "]-->");
 traversList(curr.next);
 }
}

– Recursive strategies to display a list backward
• writeListBackward strategy

 Write the last node of the list
 Write the list minus its last node backward

public static void traversListBackward(Node curr) {
 if(curr == null)
 System.out.print("NULL");
 else {
 traversListBackward(curr.next);
 System.out.print("<--[" + curr + "]");
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

34

Doubly Linked List
Node:

Date

Next null
null Prev

Doubly Linked List: Each node references both its predecessor and its successor:

Doubly Node Code:
public class DNode <T extends Comparable<T>>{
 T data;
 DNode next;
 DNode prev;

 public DNode(T data) { this.data = data; }
 public T getData() { return data; }
 public DNode getNext () { return next; }
 public DNode getPrev () { return prev; }

 public void setNext(DNode next) { this.next = next; }
 public void setPrev(DNode prev) { this.prev = prev; }
 public String toString() { return this.data.toString(); }
}

Doubly Linked List code:

public class DLinkedList <T extends Comparable<T>>{
 DNode head;
}

Override toString method code:
public String toString() {
 String res = "Head-->";
 DNode<T> curr = this.head;
 while (curr != null) {
 res += "["+curr + "]";
 curr = curr.getNext();
 if(curr!=null)
 res +="<=>";
 }
 return res + "-->NULL";
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

35

Insert a new node (not sorted)
Case 1: Insert at head:

public void insertAtHead(T data) {
 DNode<T> newNode = new DNode(data);
 if(head==null) // empty linkedlist
 head = newNode;
 else {
 newNode.setNext(this.head);
 head.setPrev(newNode);
 head = newNode;
 }
}

Case 2: Insert at end:
Student Activity: insert at last

public void insertAtEnd(T data) {
 DNode<T> newNode = new DNode(data);
 if (head == null) // empty linkedlist
 head = newNode;
 else { // find last node
 DNode<T> last = head;
 while(last.getNext() != null)
 last = last.getNext();
 last.setNext(newNode);
 newNode.setPrev(last);
 }
}

Length of a doubly linked list code:
public int length() {
 int length = 0;
 DNode<T> curr = this.head;
 while (curr != null) {
 length++;
 curr = curr.getNext();
 }
 return length;
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

36

Delete a node:

• To delete the node that curr pointer references

curr.prev.next = curr.next;

curr.next.prev = curr.prev;

Insert a new Node (Sorted):
• To insert a new node that newNode references before the node referenced by curr

newNode.next = curr; // 1

newNode.prev = curr.prev; // 2

curr.prev = newNode; // 3

newNode.prev.next = newNode; // 4

Circular doubly linked list with dummy head:

– Preceding reference of the dummy head node references the last node.

– next reference of the last node references the dummy head node.

– Eliminates special cases for insertions and deletions.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

37

Case Study: Insertion Sort using doubly linked list (Using NO extra space):

Review insertion sort logic and point to problem of insertion and time needed to shift the items
Worst case if the array is reverse sorted

Example: assume we need to sort the following doubly linked list:

Assumption: 1st node is sorted. We start from the 2nd element:

Here:

 The black pointer points to the current node to be sorted.

 The red pointer points to previous node of current node to be sorted.

 The green pointer points to next node of current node to be sorted.

Step 1: The red pointer keeps move backward until it reaches a node which has a value smaller than

the current node or reach NULL.

Step 2: the current item will be inserted after red pointer as follow:
Make sure you maintain references correctly.

To do so draw the expected outcome and follow the steps to change the pointers:

Initial state:

Final state:

Case 1: insert to head

Step 2.0: make new green pointer = black.next

Step 2.1: black.prev.next = green

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

38

Step 2.2:

if (green != null) green.prev = black.prev

Step 2.3: black.prev = red

Step 2.4:
if(red==null) black.next = black.next.prev
else black.next = red.next

Step 2.5:
If (red == null) black.next.prev = black
else red.next.prev = black

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

39

Step 2.6:
if (red == NULL) head = black

else red.next = black;

Step 2.7: black = green

Case 2: insert 4 in the middle
Practice yourself

Case 3: insert last element

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

40

Insertion Sort Code:

// Insertion Sort of a Doubly Linked List
public void sort() {
 DNode black = head.next;
 while (black != null) {
 DNode red = black.prev;
 while (red != null && (red.data.compareTo(black.data) > 0)) // step 1.0
 red = red.prev;

 DNode green = black.next; // step 2.0
 if (red != null || (head != black)) {
 black.prev.next = green; // step 2.1
 if (green!= null) {
 green.prev = black.prev; // step 2.2
 }
 black.prev = red; // step 2.3
 }
 if (red == null) { // set the black as head
 if (head != black) {
 black.next = head; // step 2.4
 black.next.prev = black; // step 2.5
 head = black; // step 2.6
 }
 } else { // red is not null
 black.next = red.next; // step 2.4
 red.next.prev = black; // step 2.5
 red.next = black; // step 2.6
 }
 black = green; // step 2.7
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

41

Radix Sort

What is Radix? The radix (or base) is the number of unique digits, including zero, used to represent

numbers in a positional numeral system.

For example, for the decimal system: radix is 10, Binary system: radix is 2.

Example Radix Sort:

Step 1: take the least significant digits (LSD) of the values to be sorted.

Step 2: sort the list of elements based on that digit.

Step 3: take the 2nd LSD and repeat step 2.

Then the 3rd LSD and so on.

Radix Sort Algorithm using linked lists:
 Consider the following array:

 Create an array of 10 linked lists as follow:

 0 to 9 refer to actual numbers.

 With input numbers, we will start with mod 10 then divide the resulted
number by 1.

Code:

 m=10 mod operation

 n=1 find the specific digit at that column
e.g. Arr[0] = 9
 9 % m = 9
 9 / n = 9

 In this case add Arr[0] to the 10th linked list

 Repeat for remaining array elements.

 If we reach the end of array: make a new array
by removing data from the head of each linked
list in order:

Is this sorted? NO

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

42

 Next step: consider the 2nd significant digit from the previous

resulted array:

Code:

 m = m * 10 = 100

 n = n * 10 = 10

e.g. Arr[0] = 10

10 % m = 10

 10 / n = 1

Result:

Is this sorted? Yes, in this case but we are not done yet

 Next step: consider the 3rd significant digit from the previous array:

Code:

 m = m * 10 = 1000

 n = n * 10 = 100

e.g. Arr[0] = 5

5 % m = 5

 5 / n = 0

Result:

Is this sorted? What is the time complexity?

HW: implement Radix sort using Doubly Linked List

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

43

Cursor Implementation of Linked Lists
 Reason 1: Many Languages do not support pointers (e.g. Basic, Fortran).

o If linked lists are required and pointers are not available, then an alternate implementation

must be used.

o The alternate method we will describe here is known as a cursor implementation.

 Reason 2: If data max length is known, using Array is faster.

Two features present in a pointer implementation of linked lists:

1. The data are stored in array are nodes, each array element (node) contains data and a pointer to

the next node.

2. A new node can be obtained from the system’s global memory by a call to malloc (memory

allocation) and released by a call to free methods.

Our cursor implementation must be able to simulate these two features:

 The logical way to satisfy 1st feature is to have a global array of nodes. For any cell in the array, its array

index can be used in place of an address. The following gives the type declarations for a cursor

implementation of linked lists:

public class Node<T extends Comparable<T>> {
 T data;
 int next;

 public Node(T data, int next) {
 this.data = data;
 this.next = next;
 }

 public void setData(T data) { this.data = data; }
 public T getData() { return data; }
 public int getNext() { return next; }
 public void setNext(int next) { this.next = next; }

 public String toString() { return "["+ data+ " , " + next + "]"; }
}

 We must now simulate 2nd feature by allowing the equivalent of malloc and

free for nodes in the array.

o To do this, we will keep a list (the freelist) of nodes that are not in

any list. The list will use node 0 as a header. The initial configuration

is shown in the following figure:

 A value of next is the equivalent of a pointer to next node.

 The following code to create an array of free nodes:

Node<T>[] cursorArray = new Node[11];

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

44

 The initialization of cursorArray is a straightforward loop:

public int initialization(){
 for(int i=0;i<cursorArray.length-1;i++)
 cursorArray[i] = new Node<>(null, i+1);
 cursorArray[cursorArray.length-1] = new Node<>(null, 0);
 return 0;
}

 To perform an malloc, the first element (after the header) is removed from the freelist:

public int malloc() {
 int p = cursorArray[0].next;
 cursorArray[0].next = cursorArray[p].next;
 return p;
}

 To perform a free, we place the cell at the front of the freelist:

public void free(int p){
 cursorArray[p] = new Node(null, cursorArray[0].next);
 cursorArray[0].next = p;
}

 The following are a list of functions to test whether a linked list is null, empty, or whether a

specific node is the last:

public boolean isNull(int l){
 return cursorArray[l]==null;
}

public boolean isEmpty(int l){
 return cursorArray[l].next == 0;
}

public boolean isLast(int p){
 return cursorArray[p].next == 0;
}

 To create a new linked list, first you have to allocate one free node using malloc function, then

make a new point that next points to 0 as follow:

public int createList(){
 int l = malloc();
 if(l==0)
 System.out.println("Error: Out of space!!!");
 else
 cursorArray[l] = new Node("-",0);
 return l;
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

45

 The following code is used to add a new data to a specific linked list:

public void insertAtHead(T data, int l){
 if(isNull(l)) // list not created
 return;
 int p = malloc();
 if(p!=0){
 cursorArray[p] = new Node(data, cursorArray[l].next);
 cursorArray[l].next = p;
 }
 else
 System.out.println("Error: Out of space!!!");
}

 The following code is used to travers a linked list:

public void traversList(int l) {
 System.out.print("list_"+l+"-->");
 while(!isNull(l) && !isEmpty(l)){
 l=cursorArray[l].next;
 System.out.print(cursorArray[l]+"-->");
 }
 System.out.println("null");
}

 The following code is used to find a specific data in a linked list:

public int find(T data, int l){
 while(!isNull(l) && !isEmpty(l)){
 l=cursorArray[l].next;
 if(cursorArray[l].data.equals(data))
 return l;
 }
 return -1; // not found
}

 Sometimes you need the previous location of a specific data in a linked list:

public int findPrevious(T data, int l){
 while(!isNull(l) && !isEmpty(l)){
 if(cursorArray[cursorArray[l].next].data.equals(data))
 return l;
 l=cursorArray[l].next;
 }
 return -1; // not found
}

 The following code is used to delete some data from a linked list:

 public Node delete(T data, int l){
 int p = findPrevious(data, l);
 if(p!=-1){
 int c = cursorArray[p].next;
 Node temp = cursorArray[c];
 cursorArray[p].next = temp.next;
 free(c);
 }
 return null;
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

46

Stacks

Stack is an abstract data type that serves as a collection of elements, with two principal operations:

 push adds an element to the collection;

 pop removes the last element that was added.

• Last In, First Out LIFO

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

47

Single Linked List Implementation:

Each of the following operation involves top of stack

 push

 pop

 peek

Head or Tail for topNode??

Head of linked list easiest, fastest to access Let this be the top of the stack

public class LinkedStack<T extends Comparable<T>> {
 private Node<T> topNode;

 public void push(T data) {
 Node<T> newNode = new Node<T>(data);
 newNode.setNext(topNode);
 topNode = newNode;
 }

 public Node<T> pop() {
 Node<T> toDel = topNode;
 if(topNode != null)
 topNode = topNode.getNext();
 return toDel;
 }

 public Node<T> peek() { return topNode; }

 public int length() {
 int length = 0;
 Node<T> curr = topNode;
 while (curr != null) {
 length++;
 curr = curr.getNext();
 }
 return length;
 }

 public boolean isEmpty() { return (topNode == null); }

 public void clear() { topNode = null; }
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

48

Array-Based Implementation:

• End of the array easiest to access

 Let this be top of stack

 Let first entry be bottom of stack

public class ArrayStack <T> {
 private Object[] s;
 private int n=-1;

 public ArrayStack(int capacity){
 s = new Object[capacity];
 }

 public boolean isEmpty(){ return n ==-1;}
 public int getN(){ return n;}

 public void push(T data){
 s[++n] = data;
 }

 public Object pop(){
 if(!isEmpty())
 return s[n--];
 return null;
 }

 public String toString() {
 String res = "Top-->";
 for(int i=n; i>=0;i--)
 res+="["+s[i]+"]-->";
 return res+"Null";
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

49

Iteration (Optional)

Design challenge: Support iteration over stack items by client, without revealing the internal

representation of the stack.

 Java solution. Make stack implement the java.lang.Iterable interface.

Iterator<String> itt = ls.iterator();
while (itt.hasNext())
 System.out.println(itt.next());

for(String s: ls)
 System.out.println(s);

import java.util.Iterator;
public class LinkedStack<T extends Comparable<T>> implements Iterable<T> {
 :
 public Iterator<T> iterator(){
 return new ListIterator();
 }

 private class ListIterator implements Iterator<T>{
 private Node<T> curr = topNode;
 public boolean hasNext(){return curr!=null;}
 public void remove(){}
 public T next(){
 T t = curr.data;
 curr = curr.next;
 return t;
 }
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

50

Balanced Delimiters

Problem: Find out if delimiters (“[{(]})”) are paired correctly Compilers

Example 1: The contents of a stack during the scan of an expression that contains the balanced

delimiters { [()] }

Example 2: The contents of a stack during the scan of an expression that contains the unbalanced

delimiters { [(]) }

Example 3: The contents of a stack during the scan of an expression that contains the unbalanced

delimiters [()] }

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

51

Example 4: The contents of a stack during the scan of an expression that contains the unbalanced

delimiters { [()]

Algorithm to process balanced expression:

H.W. implement check balance algorithm using linked list/array stacks

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

52

Processing Algebraic Expressions

• Infix: each binary operator appears between its operands a + b

• Prefix: each binary operator appears before its operands + a b

• Postfix: each binary operator appears after its operands a b +

Evaluate infix expressions:

Example: evaluate a + b * c when a is 2, b is 3, and c is 4:

Step 1: Fill the two stacks until reaching the end of the expression:

Step 2: performing the multiplication:

Step 3: performing the addition:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

53

Algorithm to evaluate infix expression:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

54

Infix to Postfix Conversion

Example 1: Converting the infix expression a + b * c to postfix form

Example 2: Successive Operators with Same Precedence: a - b + c

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

55

Example 3: Successive Operators with Same Precedence: a ^ b ^ c

Example 4: The steps in converting the infix expression a / b * (c + (d – e)) to postfix form

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

56

Infix-to-postfix Algorithm:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

57

Evaluating Postfix Expressions

 When an operand is seen, it is pushed onto a stack.

 When an operator is seen, the appropriate numbers of operands are popped from the stack, the

operator is evaluated, and the result is pushed back onto the stack.

o Note that the 1st item popped becomes the (right hand side) rhs parameter to the binary

operator and that the 2nd item popped is the (left hand side) lhs parameter; thus parameters

are popped in reverse order.

o For addition and multiplication, the order does not matter, but for subtraction and division, it

does.

 When the complete postfix expression is evaluated, the result should be a single item on the stack that

represents the answer.

Example 1: The stack during the evaluation of the postfix expression a b / when a is 2 and b is 4

Example 2: The stack during the evaluation of the postfix expression a b + c / when a is 2, b is 4, and c is 3

Self exercises:

 2 3 4 + * 6 - 8.0

 2 3 + 7 9 / - 4.222

 10 2 8 * + 3 - 23.0

 1 2 - 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - -8.67

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

58

Algorithm for evaluating postfix expressions.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

59

Queues
• A queue is another name for a waiting line:

• Used within operating systems and to simulate real-world events.

 Come into play whenever processes or events must wait

• Entries organized first-in, first-out.

Terminology

• Item added first, or earliest, is at the front of the queue

• Item added most recently is at the back of the queue

• Additions to a software queue must occur at its back.

• Client can look at or remove only the entry at the front of the queue

Tail
Last

Back

FIFO: First In First Out Head
First
Front

The ADT Queue

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

60

Linked-list Representation of a Queue

public class linkedQueue <T extends Comparable<T>> {
 private Node<T> first;
 private Node<T> last;

 public boolean isEmpty(){ return (first==null) && (last==null); }
 public void clear(){
 first = null;
 last = null;
 }
}

 The definition of enqueue Performance is O(1):

o Adding a new node to an empty chain

o Adding a new node to the end of a nonempty chain that has a tail reference

public void enqueue(T data){
 Node<T> newNode = new Node<T>(data);
 if(isEmpty())
 first=newNode;
 else
 last.next = newNode;
 last = newNode;
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

61

 Retrieving the front entry:

public T getFront(){
 if(!isEmpty())
 return first.data;
 return null;
}

 Removing the front entry (dequeue):

o A queue of more than one entry:

o A queue of one entry:

public T dequeue(){
 T front = getFront();
 if(!isEmpty())
 first = first.next;
 if(first==null)
 last = null;
 return front;
}

Circular Linked Implementations of a Queue
A circular linked chain with an external reference to its last node that

a) has more than one node; b) has one node; c) is empty

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

62

Array implementation of a Queue

・ enqueue(): add new item at after last (tail).

・ dequeue(): remove item from first (head).

enqueue(8)

enqueue (12)

After a number of enqueues:
dequeue(): returns the item pointed by head and advances head pointer

dequeue()

enqueue (27) ?? How to advance tail?? We have space at the beginning?? Shift??

First
Last

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

63

Circular Queue

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

64

• To detect circular queue-full and queue-empty conditions

– Keep a count of the queue items

• To initialize the circular queue, set:

– front to -1

– back to -1

– count to 0

• Inserting into a circular queue:

If(count < MAX_QUEUE) // free

 back = (++back) % MAX_QUEUE;

items[back] = newItem;

++count;

If(count == 1) // first item

 front = back;

• Deleting from a circular queue:

 If(count > 0) // not empty

front = (++front) % MAX_QUEUE;

--count;

 If(count == 0) // empty

 front = back = -1

HW: Queue implementations using linked List and Arrays.

DE Queue (Double Ended Queue)

Allows add/remove elements from both head/tail.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

65

Trees
Revision:

 Sorted Arrays Sorted Linked List

Search Fast O(log n) Slow O(n)

Insert Slow O(n) Slow O(n)

Delete slow O(n) Slow O(n)

Tree

 A tree is a collection of N nodes, one of which is the root, and N 1 edges.

 Every node except the root has one parent.

 Nodes with no children are known as leaves.

 An internal node (parent) is any node that has at least one non-empty child.

 Nodes with the same parent are siblings.

 The depth of a node in a tree is the length of the path from the root to the node.

 The height of a tree is the number of levels in the tree.

Example: Family Trees (one parent)

Example: File system tree

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

66

Binary Trees
 A binary tree is a tree in which no node can have more than two children:

 Binary Tree Node:

(a) Each node in a full binary tree is either:

(1) an internal node with exactly two non-empty children or

(2) a leaf.

(b) A complete binary tree has a restricted shape obtained by starting at the root and filling the tree by

levels from left to right.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

67

 The maximum number of nodes in a full binary tree as a function of the tree’s height = 2h-1

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

68

Implementation:

public class TNode<T extends Comparable<T>> {
 T data;
 TNode left;
 TNode right;

 public TNode(T data) { this.data = data; }
 public void setData(T data) { this.data=data; }
 public T getData() { return data; }
 public TNode getLeft() { return left; }
 public void setLeft(TNode left) { this.left = left; }
 public TNode getRight() { return right; }
 public void setRight(TNode right) { this.right = right;}
 public boolean isLeaf(){ return (left==null && right==null); }
 public boolean hasLeft(){ return left!=null; }
 public boolean hasRight(){ return right!=null; }
 public String toString() { return "[" + data + "]"; }
}

Tree Traversal

Definition: visit, or process, each data item exactly once.

 In-Order Traversal: Visit root of a binary tree between visiting nodes in root’s subtrees.

o Recursive implementation:

public void traverseInOrder() { traverseInOrder(root); }
public void traverseInOrder(TNode node) {
 if (node != null) {
 if (node.left != null)
 traverseInOrder(node.left);
 System.out.print(node + " ");
 if (node.right != null)
 traverseInOrder(node.right);
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

69

o Using a stack to perform an in-order traversal iteratively: (Optional)

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

70

 Pre-Order Traversal: Visit root before we visit root’s subtrees.

 Post-Order Traversal: Visit root of a binary tree after visiting nodes in root’s

subtrees.

 Level-Order Traversal: Begin at root and visit nodes one level at a time.

 The visitation order of a level-order traversal:

 Level-order traversal is implemented via a queue.

 The traversal is a breadth-first search.

HW: implement level-order traversal

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

71

Expression Trees

 The leaves of an expression tree are operands, such as constants or variable names, and the other

nodes contain operators.

 It is also possible for a node to have only one child, as is the case with the unary minus operator.

 We can evaluate an expression tree by applying the operator at the root to the values obtained by

recursively evaluating the left and right subtrees.

Algorithm for evaluation of an expression tree:

Constructing an expression tree:

The construction of the expression tree takes place by reading the postfix expression one symbol at a

time:

 If the symbol is an operand, one-node tree is created and a pointer is pushed onto a stack.

 If the symbol is an operator,

o Two pointers trees T1 and T2 are popped from the stack

o A new tree whose root is the operator and whose left and right children point to T2 and

T1 respectively is formed .

o A pointer to this new tree is then pushed to the Stack.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

72

Example: (a b + c d e + * *)
 Since the first two symbols are operands, one-

node trees are created and pointers are pushed
to them onto a stack.

 The next symbol is a '+'. It pops two pointers, a
new tree is formed, and a pointer to it is
pushed onto to the stack.

 Next, c, d, and e are read. A one-node tree is

created for each and a pointer to the
corresponding tree is pushed onto the stack.

 Continuing, a '+' is read, and it merges the last
two trees.

 Now, a '*' is read. The last two tree pointers
are popped and a new tree is formed with a '*'
as the root.

 Finally, the last symbol is read. The two trees
are merged and a pointer to the final tree
remains on the stack.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

73

Binary Search Trees (BST)
 Problem: searching in binary tree takes O(n).

 Solution: forming a binary search tree.

 In a binary search tree for every node , X, in the tree, the values of all the items in its left subtree are

smaller than the item in X, and the values of all the items in its right subtree are larger (or equal if

duplication is allowed) than the item in X.

Binary Tree

Binary Search Tree

 Every node in a binary search tree is the root of a binary search tree.

 Search for an item:

Example: find(52) , find(39) , find(35)

public TNode find(T data) { return find(data, root); }
public TNode find(T data, TNode node) {
 if (node!= null) {
 int comp = node.data.compareTo(data);
 if (comp == 0)
 return node;
 else if (comp > 0 && node.hasLeft()) return find(data, node.left);
 else if (comp < 0 && node.hasRight()) return find(data, node.right);
 }
 return null;
}

Efficiency: Searching a binary search tree of height h is O(h)

However, to make searching a binary search tree as efficient as possible, tree must be as short as possible.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

74

Finding Max and Min Values:

 The find Min operation is performed by following left nodes as long as there is a left child.

 The find Max operation is similar.

public TNode largest() { return largest(root); }
public TNode<T> largest(TNode node) {
 if(node!= null){
 if(!node.hasRight())
 return (node);
 return largest(node.right);
 }
 return null;
}

public TNode smallest() { return smallest(root); }
public TNode<T> smallest(TNode node) {
 if(node!= null){
 if(!node.hasLeft())
 return (node);
 return smallest(node.left);
 }
 return null;
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

75

Insert in Binary Search Tree:
Example: insert(63)

public void insert(T data) {
 if (isEmpty())
 root = new TNode(data);
 else
 insert(data, root);
}
public void insert(T data, TNode node) {
 if (data.compareTo((T) node.data) >= 0) { // insert into right subtree
 if (!node.hasRight())
 node.right = new TNode(data);
 else
 insert(data, node.right);
 } else { // insert into left subtree
 if (!node.hasLeft())
 node.left = new TNode(data);
 else
 insert(data, node.left);
 }
}

Deleting a Node:

Case 1: Node to be deleted is a leaf. Two possible configurations of a leaf node N:
Being a left child or a right child:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

76

Example: delete(34)

public TNode delete(T data) {
 TNode current = root;
 TNode parent = root;
 boolean isLeftChild = false;

 if (isEmpty()) return null;// tree is empty
 while (current != null && !current.data.equals(data)) {
 parent = current;
 if (data.compareTo((T)current.data) < 0) {
 current = current.left;
 isLeftChild = true;
 } else {
 current = current.right;
 isLeftChild = false;
 }
 }
 if (current == null) return null; // node to be deleted not found

 // case 1: node is a leaf
 if (!current.hasLeft() && !current.hasRight()) {
 if (current == root) // tree has one node
 root = null;
 else {
 if (isLeftChild) parent.left = null;
 else parent.right = null;
 }
 }

 // other cases
 return current;
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

77

Case 2: If a node has one child, it can be removed by having its parent bypass it.

Example: delete (72)

Note: The root is a special case because it does not have a parent.

// Case 2 broken down further into 2 separate cases
else if (current.hasLeft()) { // current has left child only
 if (current == root) {
 root = current.left;
 } else if (isLeftChild) {
 parent.left = current.left;
 } else {
 parent.right = current.left;
 }
} else if (current.hasRight()) { // current has right child only
 if (current == root) {
 root = current.right;
 } else if (isLeftChild) {
 parent.left = current.right;
 } else {
 parent.right = current.right;
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

78

Case 3:
o Two possible configurations of a node N that has two children:

o A node with two children is replaced by using the smallest item in the right subtree

(Successor).

Example: delete(33)

What if node 34 has a right child (e.g. 36)?

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

79

// case 3: node to be deleted has 2 children
else {
 Node successor = getSuccessor(current);
 if (current == root)
 root = successor;
 else if (isLeftChild) {
 parent.left= successor;
 } else {
 parent.right = successor;
 }
 successor.left = current.left;
}

private Node getSuccessor(Node node) {
 Node parentOfSuccessor = node;
 Node successor = node;
 Node current = node.right;
 while (current != null) {
 parentOfSuccessor = successor;
 successor = current;
 current = current.left;
 }
 if (successor != node.right) { // fix successor connections
 parentOfSuccessor.left = successor.right;
 successor.right = node.right;
 }
 return successor;
}

Soft Delete (lazy deletion):
When an element is to be deleted, it is left in the tree and simply marked as being deleted.

 If a deleted item is reinserted, the overhead of allocating a new cell is avoided.

Tree Height:

public int height() { return height(root); }
public int height(TNode node) {
 if (node == null) return 0;
 if (node.isLeaf()) return 1;
 int left = 0;
 int right = 0;
 if (node.hasLeft()) left = height(node.left);
 if (node.hasRight()) right = height(node.right);
 return (left > right) ? (left + 1) : (right + 1);
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

80

Efficiency of Operations:

• For tree of height h

 The operations add, delete, and find are O(h)
• If tree of n nodes has height h = n

 These operations are O(n)
• Shortest tree is complete

 Results in these operations being O(log n)

Unbalanced Tree:
 The order in which you add entries to a binary search tree affects the shape of the tree.

Example: add 5, 7, 12, 15, 25, 27, 42, 47, 50

 If you add entries into an initially empty binary search tree, do not add them in sorted order.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

81

AVL Trees
• An AVL tree (Georgy Adelson-Velsky and Evgenii Landis' tree) is a BST with the additional balance

property that, for any node in the tree, the height of the left and right subtrees can differ by at most 1.
• Complete binary trees are balanced.

Single Rotation

Example: After inserting (a) 60; (b) 50; and (c) 20 into an initially empty BST, the tree is not balanced;
(d) a corresponding AVL tree rotates its nodes to restore balance

Example: (a) Adding 80 to the tree does not change the balance of the tree;

(b) a subsequent addition of 90 makes the tree unbalanced ;
(c) a left rotation restores its balance

Case 1: Single Right Rotation (left-left addition)

Before and after an addition to an AVL subtree that requires a right rotation to maintain its balance.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

82

Example: a) before and b) after a right rotation restores balance to an AVL tree

Case 2: Single Left Rotation (right-right addition)

Before and after an addition to an AVL subtree that requires a left rotation to maintain its balance

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

83

Double Rotations

A double rotation is accomplished by performing two single rotations:
1. A rotation about node N’s grandchild G (its child’s child)
2. A rotation about node N’s new child

Case 3: Right-Left Double Rotations (right-left addition)

Example: (a) Adding 70 destroys tree’s balance; to restore the balance, perform both

(b) a right rotation and (c) a left rotation

Before and after an addition to an AVL subtree that requires both

a right rotation and a left rotation to maintain its balance

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

84

Case 4: Left-Right Double Rotations (left-right addition)

Example:

(a) The AVL tree after additions that maintain its balance;

(b) after an addition that destroys the balance;
(c) after a left rotation;
(d) after a right rotation

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

85

Before and after an addition to an AVL subtree that requires both

a left rotation and a right rotation to maintain its balance

• Four rotations cover the only four possibilities for the cause of the imbalance at node N
• The addition occurred at:

 The left subtree of N’s left child (case 1: right rotation)
 The right subtree of N’s left child (case 4: left-right rotation)
 The left subtree of N’s right child (case 3: right-left rotation)
 The right subtree of N’s right child (case 2: left rotation)

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

86

Rebalance Code Implementation
• Pseudo-code to rebalance the tree:

private TNode rebalance(TNode nodeN){
 int diff = getHeightDifference(nodeN);
 if (diff > 1) { // addition was in node's left subtree
 if(getHeightDifference(nodeN.left)>0)
 nodeN = rotateRight(nodeN);
 else
 nodeN = rotateLeftRight(nodeN);
 }
 else if (diff < -1){ // addition was in node's right subtree
 if(getHeightDifference(nodeN.right)<0)
 nodeN = rotateLeft(nodeN);
 else
 nodeN = rotateRightLeft(nodeN);
 }
 return nodeN;
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

87

Insert Code Implementation:
public void insert(T data) {
 if(isEmpty()) root = new TNode<>(data);
 else {
 TNode rootNode = root;
 addEntry(data, rootNode);
 root = rebalance(rootNode);
 }
}

public void addEntry(T data, TNode rootNode){
 assert rootNode != null;
 if(data.compareTo((T)rootNode.data) < 0){ // right into left subtree
 if(rootNode.hasLeft()){
 TNode leftChild = rootNode.left;
 addEntry(data, leftChild);
 rootNode.left=rebalance(leftChild);
 }
 else rootNode.left = new TNode(data);
 }
 else { // right into right subtree
 if(rootNode.hasRight()){
 TNode rightChild = rootNode.right;
 addEntry(data, rightChild);
 rootNode.right=rebalance(rightChild);
 }
 else rootNode.right = new TNode(data);
 }
}

Delete Code Implementation:

public TNode delete(T data) {
 TNode temp = super.delete(data);
 if(temp!= null){
 TNode rootNode = root;
 root = rebalance(rootNode);
 }
 return temp;
}

An AVL Tree versus a BST:

Example: The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty (a) AVL tree; (b) BST

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

88

2-3 Trees
• Definition: general search tree whose interior nodes must have either 2 or 3 children.

 A 2-node contains one data item s and has two children.

 A 3-node contains two data items, s and l, and has three children.

Adding Entries to a 2-3 Tree:

Adding (a) 60 and (b) 50; (c), (d) adding 20 causes the 3-node to split

The 2-3 tree after adding (a) 80; (b) 90; (c) 70

Adding 55 to the 2-3 tree, causes a leaf and then the root to split

The 2-3 tree, after adding 10, 40, 35

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

89

Splitting Nodes during Addition:

 Splitting a leaf to accommodate a new entry when the leaf’s parent contains:

(a) one entry:

(b) two entries:

 Splitting an internal node to accommodate a new entry:

 Splitting the root to accommodate a new entry:

Searching a 2-3 Tree:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

90

2-3 tree: performance:

2-3 tree is a perfect balanced tree: Every path from root to a leaf has same length.

Tree height:

・Worst case: log N. [all 2-nodes]

・Best case: log3 N ≈ .631 log N. [all 3-nodes]

・Between 12 and 20 for a million nodes.

・Between 18 and 30 for a billion nodes.

2-3 tree: implementation?

Direct implementation is complicated, because:

・Maintaining multiple node types is cumbersome.

・Need multiple compares to move down tree.

・Need to move back up the tree to split 4-nodes.

・Large number of cases for splitting.

exercise: 50 60 70 40 30 20 10 80 90 100

2-4 Trees
• Sometimes called a 2-3-4 tree.

 General search tree

 Interior nodes must have either two, three, or four children

 Leaves occur on the same level

 A 4-node contains three data items s, m, and l and has four children.

Adding Entries to a 2-4 Tree

The 2-4 tree, after (a) adding 20, 50, and 60 (b) adding 80 and splitting the root; (c) adding 90

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

91

Adding 70

The 2-4 tree after adding (a) 55; (b) 10; (c) 40

Adding 5

The 2-4 tree after (a) splitting the leftmost 4-node; (b) adding 35

Comparing AVL, 2-3, and 2-4 Trees:

Three balanced search trees obtained by adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35:

(a) AVL tree; (b) 2-3 tree; (c) 2-4 tree

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

92

B-Trees

B-trees (Bayer-McCreight, 1972)

• Definition: multiway search tree of order m

 A general tree whose nodes have up to m children each

• A binary search tree is a multiway search tree of order 2. In a binary search tree, we need one key to

decide which of two branches to take. In an M-ary search tree, we need M 1 keys to decide which

branch to take.

• 2-3 trees and 2-4 trees are balanced multiway search trees of orders 3 and 4, respectively.

• As branching increases, the depth decreases. Whereas a complete binary tree has height that is

roughly log2 N, a complete M-ary tree has height that is roughly logM N.

• The B-tree is the most popular data structure for disk bound searching.

• To make this scheme efficient in the worst case, we need to ensure that the M-ary search tree is

balanced in some way.

• Additional properties to maintain balance:

 The root has either no children or between 2 and m children.

 Other interior nodes (non-leaves) have between m/2 and m children each.

 All leaves are on the same level.

A B-tree of order M is an M-ary tree with the following properties: (B+ tree)

1. The data items are stored at leaves.

2. The non-leaf nodes store up to M 1 keys to guide the searching; key i represents the smallest key

in subtree i+1.

3. The root is either a leaf or has between two and M children.

4. All non-leaf nodes (except the root) have between M/2 and M children.

5. All leaves are at the same depth and have between L/2 and L data items, for some L (the

determination of L is described shortly).

Example: The following is an example of a B+ tree of order 5 and L=5

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

93

Add items from the B+ tree:

• Insert 57: A search down the tree reveals that it is not already in the tree. We can then add it to the

leaf as a fifth item:

• Insert 55: The leaf where 55 wants to go is already full. Solution: split them into two leaves:

Note: The node splitting in the previous example worked because the parent did not have its full

complement of children.

• Insert 40: We have to split the leaf containing the keys 35 through 39, and now 40, into two leaves.

o The parent has six children now split the parent.

Note:

o When the parent is split, we must update the values of the keys and also the parent’s parent.

o if the parent already has reached its limit of children? In that case, we continue splitting nodes up

the tree until either we find a parent that does not need to be split or we reach the root. Then we

split the root and this will generate a new level.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

94

Remove items from the B+ tree:

• We can perform deletion by finding the item that needs to be removed and then removing it.

o The problem is that if the leaf it was in had the minimum number of data items, then it is

now below the minimum.

• Remove 99: Since the leaf has only two items, and its neighbor is already at its minimum of three,

we combine the items into a new leaf of five items.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

95

Splay Trees

Recall: Asymptotic analysis examines how an algorithm will perform in worst case.

Amortized analysis examines how an algorithm will perform in practice or on average.

The 90–10 rule states that 90% of the accesses are to 10% of the data items.

However, balanced search trees do not take advantage of this rule.

 The 90–10 rule has been used for many years in disk I/O systems.

 A cache stores in main memory the contents of some of the disk blocks. The hope is that when

a disk access is requested, the block can be found in the main memory cache and thus save the

cost of an expensive disk access.

 Browsers make use of the same idea: A cache stores locally the previously visited Web pages.

Splay Trees:

 Like AVL trees, use the standard binary search tree property.

 After any operation on a node, make that node the new root of the tree.

A simple self-adjusting strategy (that does not work)

The easiest way to move a frequently accessed item toward the root is to rotate it continually with its

parent. Moving the item closer to the root, a process called the rotate-to-root strategy.

 If the item is accessed a second time, the second access is cheap.

Example: Rotate-to-root strategy applied when node 3 is accessed

o As a result of the rotation:

 future accesses of node 3 are cheap

 Unfortunately, in the process of moving node 3 up two levels, nodes 4 and 5 each move

down a level.

o Thus, if access patterns do not follow the 90–10 rule, a long sequence of bad accesses can

occur.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

96

The basic bottom-up splay tree

Splaying cases:

 The zig case (normal single rotation)

If X is a non-root node on the access path on which we are rotating and the parent of X is the root

of the tree, we merely rotate X and the root, as shown:

Otherwise, X has both a parent P and a grandparent G, and we must consider two cases and symmetries.

 zig-zag case:

 This corresponds to the inside case for AVL trees.

 Here X is a right child and P is a left child (or vice versa: X is a left child and P is a right child).

 We perform a double rotation exactly like an AVL double rotation, as shown:

 zig-zig case:

 The outside case for AVL trees.

 Here, X and P are either both left children or both right children.

 In this case, we transform the left-hand tree to the right-hand tree (or vice versa).

 Note that this method differs from the rotate-to-root strategy.

o The zig-zig splay rotates between P and G and then X and P, whereas the rotate-to-root

strategy rotates between X and P and then between X and G.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

97

Splaying has the effect of roughly halving the depth of most nodes on the access path and increasing

by at most two levels the depth of a few other nodes.

Example: Result of splaying at node 1 (three zig-zigs)

Exercise: perform rotate-to-root strategy

Basic splay tree operations

A splay operation is performed after each access:

 After an item has been inserted as a leaf, it is splayed to the root.

 All searching operations incorporate a splay. (find, findMin and findMax)

 To perform deletion, we access the node to be deleted, which puts the node at the root. If it is deleted,

we get two subtrees, L and R (left and right). If we find the largest element in L, using a findMax

operation, its largest element is rotated to L’s root and L’s root has no right child. We finish the remove

operation by making R the right child of L’s root. An example of the remove operation is shown below:

Example: The remove operation applied to node 6:

 First, 6 is splayed to the root, leaving two subtrees;

 A findMax is performed on the left subtree, raising 5 to the root of the left subtree;

 Then the right subtree can be attached (not shown).

 The cost of the remove operation is two splays.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

98

Recursion (Time Analysis Revision)
Example 1: Write a recursive method to calculate the sum of squares of the first n natural numbers. n is to

be given as an input.
public int sumOfSquares(int n) {
 if (n==1)
 return 1;

 return (n*n) + sumOfSquares(n-1);
}

Recursion may sometimes be very intuitive and simple, but it may not be the best thing to do.

Example 2: Fibonacci sequence:

 F(n) = n if n=0, 1 ; F(n) = F(n-1) + F(n-2) if n > 1

0 1 1 2 3 5 8 13 ..

F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7) ..

Solution 1: Iterative

public static int fib1(int n){

 if(n<=1) return n;

 int f1 = 0, f2 = 1, res=0;

 for(int i=2; i<=n; i++){

 res =f1+f2;

 f1=f2;

 f2=res;

 }

 return res;

}

Solution 2: Recursion

public static int fib2(int n){

 if(n<=1) return n;

 return (fib2(n-1)+fib2(n-2));

 }

Test for n=6 and n=40

Why recursive solution is taking much time?

Do analyze the 2 algorithms in term of calculating F(n)

In Solution 1:

We have F(0) and F(1) given

Then we calculate F(2) using F(1) and F(0)

 F(3) using F(2) and F(1)

F(4) using F(3) and F(2)

:

F(n) using F(n-1) and F(n-2)

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

99

In Solution 2:

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

F(1) F(0)

Note: we are calculating the same value multiple times!!

n F(2) F(3) ..

5 3 2

6 5

8 13

:

40 63245986

Exponential growth

 Time and Space complexity Analysis of recursion

Example: recursive factorial

 fact(n){

 If (n==0) return 1;

 Return n * fact(n-1);

}

 Calculate operation costs:

o If statement takes 1 unit of time

o Multiplication (*) takes 1 unit of time

o Subtraction (-) takes 1 unit of time

o Function call

 So T(0) = 1

T(n) = 3 + T(n-1) for n > 0

To solve this equation, reduce T(n) in term of its base conditions.

T(n) = T(n-1) + 3

 = T(n-2) + 6

 = T(n-3) + 9

 :

 = T(n-k) + 3k

For T(0) n-k = 0 n = k

Therefore T(n) = T(0) + 3n

 = 1 + 3n O(n)

Space analysis:

 Recursive Tree

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

100

 Fact(5) Fact(4) Fact(3) Fact(2) Fact(1) Fact(0)

Each function call will cause to save current function state into memory (call stack, push):

Fact(1)

Fact(2)

Fact(3)

Fact(4)

Fact(5)

 Each return statement will retrieve previous saved function state from memory (pop):

So needed space is proportional to n O(n)

Fibonacci sequence time complexity analysis

public static int fib2(int n){

 if(n<=1) return n;

 return (fib2(n-1)+fib2(n-2));

 }

 Calculate operation costs:

o If statement takes 1 unit of time

o 2 subtractions (-) takes 2 unit of time

o 1 addition (+) takes 1 unit of time

o 2 function calls

 So T(0) = T(1) = 1

T(n) = T(n-1) + T(n-2) + 4 for n > 1

To solve this equation, reduce T(n) in term of its base conditions.

For approximation assume T(n-1) ≈ T(n-2) in reality T(n-1) > T(n-2)

 T(n) = 2 T(n-2) + 4 c = 4

 = 2 T(n-2) + c T(n-2) = 2 T(n-4) + c

 = 2 { 2 T(n-4) + c } + c

 = 4 T(n-4) + 3c

 = 8 T(n-6) + 7c

 = 16 T(n-8) + 15c

 :

 = 2k T(n-2k) +(2k-1)c

For T(0) n-2k = 0 k = n/2

Therefore T(n) = 2n/2 T(0) + (2n/2 - 1) c 2n/2 (1+c) - c

 T(n) is proportional to 2n/2 O(2n/2) lower bound analysis

Similarly, for approximation assume T(n-2) ≈ T(n-1) in reality T(n-2) < T(n-1)

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

101

 T(n) = 2 T(n-1) + c T(n-1) = 2 T(n-2) + c

 = 2 { 2 T(n-2) + c } + c

 = 4 T(n-2) + 3c

 = 8 T(n-3) + 7c

 = 16 T(n-4) + 15c

 :

 = 2k T(n-k) +(2k-1)c

For T(0) n-k = 0 k = n

Therefore T(n) = 2n T(0) + (2n - 1) c 2n (1+c) - c

T(n) is proportional to 2n O(2n) upper bound analysis worst case analysis

While for iterative solution O(n)

Recursion with memorization

Solution: don’t calculate something already has been calculated.

Algorithm:

 fib(n){

 If (n<=1) return n

 If(F[n] is in memory) return F[n]

 F[n] = fib(n-1) + fib(n-2)

 Return F[n]

 }

Time complexity O(n)

Calculate Xn using recursion

Iterative solution: O(n)
Xn = X * X * X * X * …. * X

n-1 multiplication

Recursive solution 1: O(n)

Xn = X * Xn-1 if n > 0
X0 = 1 if n > 0

Recursive solution 2: O(log n)

Xn = Xn/2 * Xn/2 if n is even
Xn = X * Xn-1 if n is odd

X0 = 1 if n > 0

res = 1
for i1 to n
 res res * x

pow(x, n){
 if n==0 return 1
 return x * pow(x, n-1)
}

pow(x, n){
 if n==0 return 1
 if n%2 == 0 {
 y pow(x, n/2)
 return y * y
 }
 return x * pow(x, n-1)
}

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

102

Recursive solution 1: Time analysis

T(1) = 1

T(n) = T(n-1) + c

 = (T(n-2) + c) + c T(n-2) + 2c

 = T(n-3) + 3c

 :

 = T(n-k) + kc

For T(0) n-k = 0 n = k

T(n) = T(0) + nc 1 + nc O(n)

Recursive solution 2: Time analysis

 Xn = Xn/2 * Xn/2 if n is even

 Xn = X * Xn-1 if n is odd

 Xn = 1 if n == 0

 Xn = X * 1 if n == 1

If even T(n) = T(n/2) + c1

If odd T(n) = T(n-1) + c2

If 0 T(0) = 1

If 1 T(1) = c3

If odd, next call will become even:

T(n) = T((n-1)/2) + c1 + c2

If even

T(n) = T(n/2) + c

 = T(n/4) + 2c

 = T(n/8) + 3c

 :

 = T(n/2k) + k c

For T(1) T(0) + c 1

n/2k = 1 n = 2k k = log n

 = c3 + c log n O(log n)

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

103

Hash Tables
• Hashing: is a technique that determines element index using only element’s distinct search key.
• Hash function:

 Takes a search key and produces the integer index of an element in the hash table.
 Search key-maps, or hashes, to the index.

Example 1: Phone numbers (xxx-xxxx).

・Bad: first three digits. // identical for same area

・Better: last four digits. // distinct
Example 2: Social Security numbers (ID number).

・Bad: first three digits. // identical for same period

・Better: last three digits. // distinct

Practical challenge: Need different approaches for each key type.

Simple algorithms for the hash operations that add and retrieve:

Typical Hashing
Typical hash functions perform two steps:

1. Convert search key to an integer called the hash code.
2. Compress hash code into the range of indices for hash table.

• Typical hash functions are not perfect:
 Can allow more than one search key to map into a

single index.
 Causes a collision in the hash table.

Example: Consider table (array) size = 101
 getHashIndex(555-1264) = 52
 getHashIndex(555-8132) = 52 also!!!

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

104

Hash Functions
• A good hash function should:

 Minimize collisions
 Be fast to compute

• To reduce the chance of a collision

 Choose a hash function that distributes entries uniformly throughout hash table.

Java’s hash code conventions
All Java classes inherit a method hashCode(), which returns a 32-bit int.

Default implementation: Memory address.
Customized implementations: Integer, Double, String, File, URL, Date, …
User-defined types: Users are on their own.

Java library implementations:
Integer

Boolean

Double

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

105

String

Horner's method to hash a String of length L:

Example:

Implementing hash code: user-defined types

Hash code design
"Standard" recipe for user-defined types:

・Combine each significant field using the 31x + y rule.

・If field is a primitive type, use wrapper type hashCode().

・If field is null, return 0.

・If field is a reference type, use hashCode().

・If field is an array, apply to each entry. or use Arrays.deepHashCode()
Example:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

106

Compressing a Hash Code
Hash code: An int between -231 and 231 - 1.

Hash function: returns an int between 0 and M-1 (for use as array index).
• Common way to scale an integer

 Use Java % operator hash code % m

• Avoid m as power of 2 or 10

• Best to use an odd number for m

• Prime numbers often give good distribution of hash values

Resolving Collisions
• Collisions: Two distinct keys hashing to same index.
• Two choices:

 Change the structure of the hash table so that each array location can represent more than one
value. (Separate Chaining)

 Use another empty location in the hash table. (Open Addressing)

Separate Chaining

• Alter the structure of the hash table:
 Each location can represent more than one value.

 Such a location is called a bucket

• Decide how to represent a bucket: list, sorted list; array; linked nodes; vector; etc.

Where to insert a new entry into a linked bucket?

(a) If unsorted (apply 90-10 rule): add new entry to the beginning of chain

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

107

(b) If sorted:

Time Complexity

Worst case: all keys mapped to the same location one long list of size N
Find(key) O(n)

Best case: hashing uniformly distribute records over the hash table each list long = N/M = α
(α is load factor)

Find(key) O(1 + α)
Design Consequences

・M too large too many empty chains.

・M too small chains too long.

・Typical choice: M ≈ N / 5 constant-time ops.

Open Addressing

 Linear Probing
• When a new key collides, find next empty slot, and put it there.
• Hash: Map key to integer k between 0 and M-1.
• Insert: Put at table index k if free; if not try k+1, k+2, etc.

 If reaches end of table, go to beginning of table (Circular hash table)

• Hash function: h(k , i) = (h(k , 0)+i) % m

• Array size M must be greater than number of key-value pairs N.
Example: Linear hash table demo: take last 2 digits of student’s ID and run a demo

Clustering problem: A contiguous block of items will be easily formed which in turn will affect

performance.

Knuth’s Parking Problem
 Model: Cars arrive at one-way street with M parking spaces. If space k is taken, try k+1, k+2, etc.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

108

 Quadratic Probing
• Linear probing looks at consecutive locations beginning at index k
• Quadratic probing, considers the locations at indices k + j2

 Uses the indices k, k+1, k + 4, k + 9, …

 Hash function: h(k , i) = (h(k , 0)+i2) % m

 For linear probing it is a bad idea to let the hash table get nearly full, because performance
degrades.

 For quadratic probing, the situation is even worse: There is no guarantee of finding an empty cell
once the table gets more than half full, or even before the table gets half full if the table size is not
prime.

 Standard deletion cannot be performed in a probing hash table, because the cell might have

caused a collision to go past it. (instead soft deletion is used)

Double Hashing

• Linear probing and quadratic probing add increments to k to define a probe sequence
 Both are independent of the search key

• Double hashing uses a second hash function to compute these increments
 This is a key-dependent method.
 The 2nd hash function must never evaluate to zero.

The 1st three locations in a probe sequence generated by double hashing for the search key 16

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

109

Potential Problem with Open Addressing
• Note that each location is either occupied, empty (null), or available (removed)

 Frequent additions and removals can result in no locations that are null
• Thus searching a probe sequence will not work
• Consider separate chaining as a solution

Time Complexity

Rehashing

 If the table gets too full, the running time for the operations will start taking too long and insertions
might fail for open addressing hashing with quadratic resolution.

 A solution, then, is to build another table that is about twice as big (with an associated new hash
function) and scan down the entire original hash table, computing the new hash value for each (non-
deleted) element and inserting it in the new table.

 This entire operation is called rehashing.
o This is obviously a very expensive operation; the running time is O(N), since there are N

elements to rehash and the table size is roughly 2N, but it is actually not all that bad, because it
happens very infrequently.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

110

Priority Queues (Heaps)
A priority queue is a data structure that allows at least the following two operations:

 Insert: which does the obvious thing;

 deleteMin (or deleteMax): which finds, returns, and removes the minimum (or maximum) element in
the priority queue.

Simple Implementations:

 Unsorted Linked list, performing insertions at the front in O(1) and traversing the list, which
requires O(N) time, to delete the minimum/maximum.

 Sorted Linked list, performing insertions in O(N) and O(1) to delete the minimum/maximum.

 Binary search tree: this gives an O(log N) average running time for both operations.

Binary Heap

A heap is a binary tree that is completely filled, with the possible exception of the bottom level, which
is filled from left to right.
Such a tree is known as a complete binary tree.

A complete binary tree of height h has between

2h
 and 2h+1–1 nodes.

As complete binary tree is so regular, therefore, it can be represented as an array:

・Parent of node at i is at i/2.

・Children of node at i are at 2i (left child) and 2i+1 (right child).

Heap-order property:
 In a min heap, for every node X, the key in the parent of X is smaller than (or equal to) the key

in X, with the exception of the root (which has no parent). Therefore, the minimum element
can always be found at the root.

 In a max heap, for every node X, the key in the parent of X is larger than (or equal to) the key

in X, with the exception of the root (which has no parent). Therefore, the maximum element
can always be found at the root.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

111

Interface for the max-heap

An Array to Represent a Heap

Promotion (ترفیع) in a max heap

Scenario: Child's key becomes larger than its parent's key.
To eliminate the violation:

・Exchange key in child with key in parent.

・Repeat until heap order restored.
Example:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

112

Insertion in a max heap
Insert: Add node at end, then swim it up.
Cost: At most 1 + log N compares.
Example 1: insert S

Example 2: insert 85

Method 1: The steps in adding 85 to the previous max-heap

Method 2: A revision of the steps shown in the previous figure, to avoid swaps:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

113

The following figures shows array representation of the steps in the previous figures:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

114

Demotion (رتبة إنزال) in a max heap

Scenario: Parent's key becomes smaller than one (or both) of its children's.
To eliminate the violation:

・Exchange key in parent with key in larger child.

・Repeat until heap order restored.
Example 1:

Delete the maximum in a max heap (Removing the root)
Delete max: Exchange root with node at end, and then sink it down.
Cost: At most 2 log N compares.
Example 1: delete T

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

115

Example 2: delete root (max)

Creating a Heap

The steps in adding 20, 40, 30, 10, 90, and 70 to an initially empty heap

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

116

Binary heap: Java implementation

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

117

HeapSort
Basic plan:

・Create max heap with all N keys.

・Repeatedly remove the maximum key.

Heapsort demo:
 First pass. Build heap using bottom-up method:

Array in arbitrary (random) order

 N=11

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

118

 Second pass:
o Remove the maximum, one at a time.
o Leave in array, instead of nulling out.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

119

Heapsort: trace

Heapsort: mathematical analysis

 Heap construction uses ≤ 2 N compares and exchanges.

 Heapsort uses ≤ 2 N lg N compares and exchanges.

Heapsort Significance: In-place sorting algorithm with N log N worst-case.
Heapsort is optimal for both time and space, but it makes poor use of cache memory and not stable.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

120

Heapsort: Java implementation

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

121

Sorting
In Place vs. not in Place Sorting

In place sorting algorithms are those, in which we sort the data array, without using any

additional memory.
What about selection, bubble, insertion sort algorithms?

 Well, our implementation of these algorithms is IN PLACE.

 The thing is, if we use a constant amount of extra memory (like one temporary
variable/s), the sorting is In-Place.

But in case extra memory (merging sort algorithm), which is proportional to the input data size, is

used, then it is NOT IN PLACE sorting.
 But because memory these days is so cheap, that we usually don't bother about using

extra memory, if it makes the program run faster.

Stable vs. Unstable Sort

3 5 2 1 5’ 10 Unsorted Array

1 2 3 5 5’ 10 Stable sort

1 2 3 5’ 5 10 Unstable Sort

Example: Insertion Sort Code:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

122

Example:

Unsorted Array 1) Sorted By Age

Name Age Name Age

Bob 25 Stuart 21

Kevin 24 Kevin 24

Stuart 21 Bob 25

Kevin 28 Kevin 28

2) Sorted By

Name (Stable)
 3) Sorted By Name

(Unstable)

Name Age Name Age

Bob 25 Bob 25

Kevin 24 Kevin 28

Kevin 28 Kevin 24

Stuart 21 Stuart 21

http://www.sorting-algorithms.com/

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

123

Selection Sort

 In iteration i, find index min of smallest remaining entry.

 Swap a[i] and a[min].

Demo:

Java implementation:

Mathematical analysis:

 Selection sort uses (N – 1) + (N – 2) + ... + 1 + 0 ≈ N2/2 compares and N exchanges.

Trace of selection sort:

 Running time insensitive
to input: Quadratic

time, even if input is
sorted.

 Data movement is

minimal: Linear
number of
exchanges.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

124

Insertion Sort

 In iteration i, swap a[i] with each larger entry to its left.
Demo:

Java implementation:

Mathematical analysis:

 To sort a randomly-ordered array with distinct keys, insertion sort uses ≈ ¼N2 compares and
≈ ¼N2 exchanges on average.

 Expect each entry to move halfway back.

Trace of insertion sort:

 Best case: If the array is
in ascending order,
insertion sort makes N-1
compares and 0
exchanges.

 Worst case: If the array is
in descending order (and
no duplicates), insertion
sort makes ≈ ½N2
compares and ≈ ½N2
exchanges.

 For partially-sorted
arrays, insertion sort runs
in linear time.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

125

Shell Sort

Idea: Move entries more than one position at a time by h-sorting the array.
an h-sorted array is h interleaved sorted subsequences:

Shell sort: [Shell 1959] h-sort array for decreasing sequence of values of h.

How to h-sort an array? Insertion sort, with stride length h.

Shell sort example: increments 7, 3, 1

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

126

Shell sort: which increment sequence to use?

 Powers of two: 1, 2, 4, 8, 16, 32, ... No

 Powers of two minus one: 1, 3, 7, 15, 31, 63, … Maybe

 3x+1: 1, 4, 13, 40, 121, 364, … OK. Easy to compute

Java implementation

Analysis

 The worst-case number of compares used by shell sort with the 3x+1 increments is O(N3/2).

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

127

Merge Sort

 Divide array into two halves.

 Recursively sort each half.

 Merge two halves.

Java implementation:

Merging:

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

128

Java implementation:
Merge Sort:

Merge Sort: trace

Merge Sort: Empirical Analysis

 Good algorithms are better than supercomputers.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

129

Divide-and-conquer recurrence: number of compares

Merge Sort analysis: memory (array accesses)

 Mergesort uses extra space proportional to N.

 The array aux[] needs to be of size N for the last merge.

Practical Improvements:
 Use insertion sort for small subarrays:

o Mergesort has too much overhead for tiny subarrays.
o Cutoff to insertion sort for ≈ 7 items.

 Stop if already sorted:
o Is biggest item in first half ≤ smallest item in second half?
o Helps for partially-ordered arrays.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

130

 Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the
input and auxiliary array in each recursive call.

Complexity of sorting

・ Compares? Mergesort is optimal with respect to number compares.

・ Space? Mergesort is not optimal with respect to space usage.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

131

Bottom-up Merge Sort

Basic plan:
o Pass through array, merging subarrays of size 1.
o Repeat for subarrays of size 2, 4, 8, 16,

Java implementation

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

132

Quick Sort

Basic plan:
o Shuffle the array. (shuffle needed for performance guarantee)
o Partition so that, for some j

– entry a[j] is in place
– no larger entry to the left of j
– no smaller entry to the right of j

o Sort each piece recursively.

Quicksort t-shirt

Quicksort partitioning demo
Repeat until i and j pointers cross.

・ Scan i from left to right so long as (a[i] < a[lo]).

・ Scan j from right to left so long as (a[j] > a[lo]).

・ Exchange a[i] with a[j] .

When pointers (i and j)cross.

・ Exchange a[lo] with a[j] .

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

133

Quicksort: Java code for partitioning

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

134

Quicksort trace

Quicksort: Empirical Analysis

Quicksort: Compare analysis

Best case: Number of compares is ≈ N log N

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

135

Worst case: Number of compares is ≈ ½N2

Average-case analysis: Complicated 2N log N

Quicksort: summary of performance characteristics

Worst case: Number of compares is quadratic.

・ N + (N - 1) + (N - 2) + … + 1 ≈ ½ N2

・ but this rarely to happen.
Average case: Number of compares is ≈ 1.39 N lg N

・ 39% more compares than Mergesort

・ But faster than Mergesort in practice because of less data movement.
Random shuffle

・ Probabilistic guarantee against worst case.
Quicksort is an in-place sorting algorithm.
Quicksort is not stable.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

136

Quicksort: practical improvements
1- Insertion sort small subarrays:

・ Even quicksort has too much overhead for tiny subarrays.

・ Cutoff to insertion sort for ≈ 10 items.

・ Note: could delay insertion sort until one pass at end.

2- Median of sample:

・ Best choice of pivot item = median.

・ Estimate true median by taking median of sample.

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

137

Counting Sort

If we know some information about data to be sorted (e.g. students’ marks [Range 55 to 99]), we can
achieve linear time sorting

Example: assume data range from 1 to 10

Time analysis:

Note: K is typically small comparing to n

Bad Situation: what if K is larger than n ??

Uploaded By: anonymousSTUDENTS-HUB.com

 Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

138

Uploaded By: anonymousSTUDENTS-HUB.com

	LecturesNote1
	LecturesNote2

