E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

e ‘*‘%) X
BIRZEIT UNIVERSITY

COMP232
Data Structure

Lectures Note 1

Prepared by: Dr. Mamoun Nawahdah
2016

1

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Table of Contents

QTR REVIBW ...ttt ettt ettt s a e sttt e bt e ettt s st e e s a bt e e abee e s be e s abe e e ab e e e eas e e e me e e sa b e e e seeembeesabeeeasneesnreeeaneeesareeennes 4
Y o LA I g T AN Fdo T o] 4 I SRR 5
L= o0 YT} o PP PP PP PPPTTRPPRT 6
TOWET Of HANO. .ttt sttt st et st e bt et e s bt e s st e s ae e ea et e bt e st e e b eesae e e et e e aseeab e e bt e sbeeamtesmteenreebeenbeens 11
FAN Y LY o} N o T 1 Y0 0 L TSP PRUPPPR 13
LTS =17 @ I Lo Y o o SRR 17
FN Vg oY oY [oly 2N T 1LY £] O S USRU 19
ANAlyzZINg AlGOTTthM EXAMIPIES.....ueeii et e e e e et e e e s eata e e e santaee s sanbaeeesansaeeeeassaeeesaasaeessansseeesnnsneeeans 23
[0 1Te l NI AT S TS TOPTP PP SOPROPP 28
(B Te YUY o]V 1o =T N X S O R 34
2 [o) Yo o R T USROS UUTOTOPPRURRO 41
Cursor IMplementation Of LINKEA LIiStSuueiiiiiii ittt e e ettt e e e e e e s e ntreaeeeeeesseansaaaeeeaeessessstaaeeeeaeseansnssseaeeaannn 43
) 1o O TSV P PP PSP 46
=T =Y d o] ol (@] o1 o] o -1) SRR 49
2T ETaTol=Te l L] 114 V1 = o TSP P PP PRSPPI 50
Processing AlGEDIraic EXPrESSIONSeeiiiiuiiiiieiiiieieiitesieteeeeeteeeeeitteeeesaaeeeesaaeeeeesseeesassaeeaanssseeaasssaseeansseeesansssesansseeesnnsenes 52
EVAlUALE INTIX @XPIESSIONS ... utiiiiiiei e ittt eee s ee s ettt e et e e e e e et eteeeeeeses e sabaaaeeeesesaassstasseeaeesaaasssbasaeesasaaaasssssaseaeaseanansstasaeasaes 52
INFIX 1O POSEFIX CONVEISION ..ciiiiiiiiieiiie ettt ettt sttt et e st e ettt esa b e s sbe e e st e e s beeaabeesabeeeaseeesmbeesneeesaseesabeesanteesaneeennes 54
EVAlUting POStIiX EXPIrESSIONS .oiiiiiiiii ittt ettt ettt s s e e e sttt e e e s b tee e e st e ee s sabeeessbeeaeesabbeeeesntaaessasteeessseeeesnnsens 57

O LT =TT P PP 59
Trees. e e L A s e e e baes s aane 65
2T T T YA I ==L PSP P PP P RO PPPRPPPPPPPRPRRE 66
LR N 1T 5T | T PP UR P UPTOPR PR 68
EXPIESSION TIEES ...uuuuuuruuuuuruutuuuuutuuuuueurnsrrueeereneeaeeaeasesnresesnsanssssnsnsssssnsssnsssssssssssnsnsssssnsssssssnsssnsnsnsssnsesnsnnssnsssnsssnsssnsnsnsnsnnnnnnns 71
YT g R Y=Y [l o I W =TT (2 R I R 73
L I I =T =P PP OPPPPPPTRT 81
Y1 Y= [T 20] - 1 [o IR 81
(Do 0] o 13 Vo) - 1 A o] o[- PSPPSR 83
B I =TT TSP PSP PPRRP 88
2

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

B Il =TT ST P PSP PRRTP 90
2 I =TT TP PPRPPPI 92
Y o] B2V =TT SRR 95
Recursion (TiMe ANAlYSiS REVISION)ccuiiii ettt et e et e e et e e sstaeeeesaebeeeeanssaeeeansaaeeaanssaeeesnsseeseanssaeeannnsrees 98
HASN TADIES ..t b et st sttt et e b e s bt e s bt sat e sa s e e bt e bt e b e e e Rt e e R Rt et e e a bt e bt e nReenbeesaneeanesareeane 103
Y o= LI @ o ¥ 11011V SUER 106
(@] 1= TN [[T1 o= RS 107
(Do U] o] [=T a1 V- SRR 108

[gTo gAY O LR E N (o 1T T o 1) I SRR 110
[(=TT o] o A SO P PP PRPPPPPRPPPPPRPPIRS 117
o] 114 7= S P PP PP SO PPPPPPPPPPPPPPPPPPN 121
[N o Yo Y o Vot d o I o - Tt I Yo T o T V= USSR 121

)] o] LRV U 5] o] [Yo o O PSPPSR 121
Y= [Tot o B Yo o T PP P PP PR 123
(LTS =T T T] o TP PP PPRPTRT 124

) (1T LYo T AT TSP PP URO P PPRPP 125

Y =T =T Yo T o R S RSP R OO PR PPPRPPPPPPPPPRPPPRt 127
BOTLOM-UD IMIEIEE SOMT ... uuuuuiiieiieuietiiuitrutuutt esteareaeereraearerassesenrareresnnssssnsssssnsssssnsssssssssssssnsssssnsnsssnsssnsssssnsssnsssnsssnsnsnsnsnsnnnnnn 131

[0 100l QY o o A TP UUTOPOPTOPSOP 132
@10 YUY) T =0T o 137

3

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Math Review

1. log(nm) = logn + log m.
2. log(n/m) = logn — log m.
3. log(n") = rlogn.

4. log, n = log, n/log, a.

i , n(n+1)
T = —
=1 E
i 2 _ 2n3 +3n? +n _ n(2n+1)(n + l)'
=1 6 6
logn
Z n = nlogn.
i=]
e o n+l _ |
Za' = £ " fora 3 1.
. a-1
1=0
1 1
25 = -
i=1
and
Z2i = 21’1-!-1 =1
i=0
logn
d 2 = 2t _1=2n—1.
=0
Finally,
L n+2
o = 2—‘ .
i=1 a -

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
What is an Algorithm?

Definition: P ————

e Algorithm is a finite list of well-defined instructions for AL-KHWARIZMI S

accomplishing some task that, given an initial state, will
terminate in a defined end-state.
Euclid’s Algorithm (3005;() SREY
e Used to find Greatest common divisor (GCD) of two positive integers. N
e GCD of two numbers, the largest number that divides both of them

without leaving a remainder.

Euclid’s Algorithm: Born: Uzbekistan

o Consider two positive integers ‘m’ and ‘n’, such that m>n Died: 850 AD, Baghdad, Iraq
o Stepl: Divide m by n, and let the reminder be r.

o Step2:if r=0, the algorithm ends, n is the GCD.

o Step3:Set, m>n, n>r, go backtostepl.

Implement this iteratively and recursively

public static int iteratively (int m, int n){ public static int recursively(int m, int n) {
intr=m%n; if (n==0)
while (r 1= 0) { return m;
m =n; return recursively(n, m % n);
n=r; }
r=m%n;
}
return n;
}
Why Algorithms?

o Gives an idea (estimate) of running time.
o Help us decide on hardware requirements.
o What is feasible vs. what is impossible.
o Improvement is a never ending process.
Correctness of an Algorithm:
e Must be proved (mathematically)
Step1l: statement to be proven.
Step2: List all assumptions.
Step3: Chain of reasoning from assumptions to the statement.
e Another way is to check for incorrectness of an algorithm.
Stepl: give a set of data for which the algorithm does not work.
Step2: usually consider small data sets.
Step3: Especially consider borderline cases.

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Recursion
Definition:

e Afunction that calls itself is said to be recursive.

e Afunction fl is also recursive if it calls a function f2, which under some circumstances calls
f1, creating a cycle in the sequence of calls.

e The ability to invoke itself enables a recursive function to be repeated with different
parameter values.

e You can use recursion as an alternative to iteration (looping).

The Nature of Recursion:
Problems that lend themselves to a recursive solution have the following characteristics:
e One or more simple cases of the problem have a straightforward, non-recursive solution.
e The other cases can be redefined in terms of problems that are closer to the simple cases.
e By applying this redefinition process every time the recursive function is called, eventually
the problem is reduced entirely to the simple case(s), which are relatively easy to solve.

The recursive algorithms will generally consist of an “if statement” with the following form:

if this is a simple case
solve it

else

redefine the problem using recursion

Illustration:

size n (—>) sizen-1 size n-2 — size 2 size 1
problem problem problem problem problem
size ‘l
m
Example:

Solve the problem of multiplying 6 by 3, assuming we only know addition:
= Simple case: any number multiplied by 1 gives us the original number.
= The problem can be split into the two problems:
1. Multiply 6 by 2.
1.1 Multiply 6 by 1.
1.2 Add (Multiply 6 by 1) to the result of problem 1.1.
2. Add (Multiply 6 by 1) to the result of problem 1.

Implement this recursively

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Tracing a Recursive Function:
e Tracing an algorithm’s execution provides us with valuable insight into how that algorithm works.
e By drawing an activation frame corresponding to each call of the function.

e An activation frame shows the parameter values for each call and summarizes the execution of the

call.
multiply(6, 3):
m is 6
n is 3
3 == 1 isfaise
ans is 6 + multiply(6, 2) =
18. return (ans) |
nis2
2 == 1 isfaise
ans 8 6 + multiply(6, 1)
return (ans) |
misé
ES n is1
1 == 1 strue

pans is 6
return (ans)

Recursive Mathematical Functions:

+* Many mathematical functions can be defined recursively.
«* An example is the factorial of n (n!):

= 0Olis1

* pnlisn*(n 1), forn>0
«* Thus 4lis 4 *31 which means 4 *3 *2 *1, or 24.

Implement this iteratively and recursively
Tracing the recursive function

STUDENTS-HUB.com Uploaded By: anonymous

Prepared by: Dr. Mamoun Nawahdah

E Data Structure: Lectures Note 2016
& nis 3
ans is 3 factorial(2)
[return (ans) 1
2 nis 2
ans Is 2 2 factorial(l)
roturn (ans)

¥

ana I8 1 1 factorial(0n)

return (ans l‘

is |
a-o
-

1

(ans)

Fibonacci Numbers:
@ () 1 Pair
After one month @ b‘ 1 Pair
After two months @ @I @ @l 2 Pairs
| i amiia @ @l @@ @ 3 Pairs
@)~

After 4 munlh‘@ @ I®l Q‘

Leonardo Bonacci (1170 —1250)

5 Pairs

W

* Problem:
How many pairs of rabbits are alive in month n?

¢ Recurrence relation:
rabbit(n) = rabbit(n-1) + rabbit(n-2)

+»* The Fibonacci sequence is defined as:
= Fibonacci0 is 1
= Fibonaccil is 1
* Fibonacci n is

Fibonaccin 2 + Fibonacci n 1, for n>1

Implement this recursively

Poor Solution to a Simple Problem:
{lgorithm Fibonacci(n)

1 f
return

else
return |

T
STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Why is this inefficient? Try Fg

F, is computed 5 times F,
F, is computed 3 times / \
F, is computed 2 times F. F,
F. is computed once / Ny P N
F, is computed once F, F, F, F,
/7 N\ 7 N 7/ \ 7 N
F, f F, F, I F, F F,
/\N /\ /\ /\
F, F, F, Fy F, | F, F,
/ \
F, F

Self-Check:
+* Write and test a recursive function that returns the value of the following recursive definition:
. f(x)=0 ifx=0
. f(x)=f(x-1)+2 otherwise
What set of numbers is generated by this definition?

Design Guidelines:
¢ Method must be given an input value.
+» Method definition must contain logic that involves this input, leads to different cases.
+* One or more cases should provide solution that does not require recursion.
= else infinite recursion
+* One or more cases must include a recursive invocation.

Stack of Activation Records:
+* Each call to a method generates an activation record.
+* Recursive method uses more memory than an iterative method.
= Each recursive call generates an activation record.

¢ If recursive call generates too many activation records, could cause stack overflow.

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Recursively Processing an Array:

Starting with array(first]:

public static void displayArray(int array[], int first, int last)

{

System.out.print(array[first] + " ");
if (first < last)
displayArray(array, first + 1, last);
}

Starting with array[last]:

public static void displayArray(int array[], int first, int last)

{
if (first <= last)

displayArray(array, first, last - 1);
System.out.print (array[last] + " ");

}
}
Processing array from middle:
(@)
111 1 1
0 1 2 3 4 h) 6
(b)
111 11T 1]
int mid = (first + last) / 2; o 1 2 314 5 6 7

public static void displayArray(int array[], int first, int last)

{
if (first == last)
System.out.print(array[first] + " ");
else
{
int mid = (first + last) / 2;
displayArray(array, first, mid);
displayArray(array, mid + 1, last);
}
}

10

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note

2016

Prepared by: Dr. Mamoun Nawahdah

Tower of Hanoi

Simple Solution to a Difficult Problem:

Rules:

O

==

A B c

Original position

bena

e Move one disk at a time. Each disk moved must be topmost disk.

e No disk may rest on top of a disk smaller than itself.

e You can store disks on the 2" pole temporarily, as long as you observe the previous two rules.

Tower of Hanoi flash @ https://www.mathsisfun.com/games/towerofhanoi.html

Sequence of moves for solving the Towers of Hanoi problem with three disks:

©

=

A B C

Original position

.

@-

-
’ - -

I ~
] kS

|

A B

Step4:Move disk 3 fromAtoB

o
&3 =
A B &

ema

-

3
ﬁf -

A B &

Step 3:Move disk | from B to C

eaa

= ' &

A B G

Step 7: Move disk 1 from A to B

L ———

STUDENTS-HUB.com

Uploaded By: anonymous

11

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

The Tower of Hanoi problem can be decomposed into three sub-problems.

Prre— 0O

n =1 disks} 10 =1 disks1

|
I 1 : !
1 | 1 !
1 I 1 !
1 1 I !
I i l - . l :
: . : {, \\ :]
: = | I’ N 1 . :
i 1
— L e i==
A B C A B c
! Original position Step 2: Move disk n from A to B

@ — o —

n—1 disks

i H
1
1 : I I
1 | I |
I | 1 1
"""""""" >! I : - T—
- : o l
i . 1 I . 1
1 : 1 I 1
1= =
A B C A B (&
Step 1: Move the first n — 1 disks from Step 3: Move n - 1 disks from
A to C recursively C to B recursively
e Move the first n-1 disks from A to C with the assistance of tower B.
e Move disk n from A to B.
e Move n-1 disks from C to B with the assistance of tower A.
Solutions:
{/gorithm solveTowers(numberOfDisks, startPole, tempPole, endPole)
i f |]
Move disk from tart! le 10O «
e] se
\l,;'., “/-\‘.'_ from start! le 10O ern

12

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Analysis of Algorithms

Once an algorithm is given for a problem and decided (somehow) to be correct, an important step is to
determine how much in the way of resources, such as time or space, the algorithm will require.

e Space Complexity = memory and storage are very cheap nowadays. ¥
e Time Complexity v Different platforms =» different time. Absolute time is hard to measure as it

depends on many factors.

Example: moving between university buildings: it depends on who are walking, which way he/she use, etc.
time is not good measurement. Number of steps is a better one.

Example:

N
>

ol £}

St

* Consider the problem of summing #=1
Come up with an algorithm to solve this problem.

Algorithm A Algorithm B Algorithm C

sum = 0 sum = 0 sum =n * (n +1) /2
for i = 11w n for i =1twn
sum = sum + i {
for j = 11w i
sum = sum + 1

Counting Basic Operations

* A basic operation of an algorithm is the most significant contributor to its total time requirement.

Algorithm A Algorithm B Algorithm C

Additions n nn+1)/2 1
Multiplications 1
Divisions 1
Total basic operations n (n2+n)/2 3

How to calculate the time complexity?

e Measure execution time. x Algorithm for small data size will take small time comparing to a large data.
e Calculate time required for an algorithm in terms of the size of input data. * Does not work as the
same algorithm over the same data will not take the same time.

Run summing code 2 times and compare time
e Determine order of growth of an algorithm with respect to the size of input data. v/

STUDENTS-HUB.com Uploaded By: anonymous

13

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Order of time or growth of time:

Go back to summing result

n, A, B, B

1) Linear 7183/ Quadratic 7183, 82d constant
10) | 8rowth 2052 growth 4105, 104 growth
100) , 7183, 155974, 102%
1000) , 66700, 2983004, 3079
10000) , 411484, 149256917, 2052
100000) , 1903500, 13209223813, 1027

In term of time complexity, we say that algorithm C is better than A and B

Types of Time Complexity

e Best case analysis % too optimistic
e Average case analysis X too complex (statistical methods)
e Worst case analysis v" it will not exceed this

RAM model of computation

We assume that:
e We have infinite memory
e Each operation (+,-,*,/,=) takes 1 unit of time
e Fach memory access takes 1 unit of time
e All data is in the RAM

14

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Bubble Sort:

1. Each two adjacent elements are compared:

00000000

2. Swap with larger elements:

swap

00000 T ©

3. Move forward and swap with each larger item:

00000000
COOCBOOC

4. If there is a lighter element, then this item begins to bubble to the surface:

000 [©000

5. Finally the smallest element is on its place:

OOOOOOO

Make a demo using the following data set

1218|752
Worst case
N

After 1° round:

15

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

After 2" round:

For whole sorting algorithm: 16+12+8+4 for a data size of 5 elements:

=4(4+3+2+1) = 4(n-1+n2+..+2+1) =4 (n-1*n/2)=
2
2*n*(n-1)=> pn +qn+r =2 p, g, and r are some constant.

Implement and test effectiveness of bubble sort algorithm

for (inti=0;i<arr.length-1; i++) { i=0 j=n-1 n-1
for (int j = 0; j <arr.length-i-1 ; j++) { i=1 j=n-2 n-2
if(arr[j+1]<arr[j]){ : :
temp = arrlj]; : : :
arr[j] = arr[j+1]; i=n-1 j=0 1
arr[j+1] = temp;

}

}

}

16

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
The Big-O Notation

Assume the order of time of an algorithm is a quadratic time as displayed in the graph. Our job is to
find an upper bond for this function T(n). Consider a function c;n” € never over take T(n)

C,n such that its greater than T(n) for n>ng . In this case we say that C;n* is an upper bond of T(n)

But we can come up with many functions satisfy this condition. We need to be precise.

Tin)=pn’ s qn +r
g
E
| OBSERVATIONS:
| vYn>n,
0. no CoN% 2 pn?+qgn+r

Big Oh O(n?): f(n): there exist positive constants € and Ny such that 0 < f(n) < cn® forall n 2 ng
In general
O(g(n)) : f(n): there exist positive constants € and Ng such that 0 < f(n) < cg(n) forall n2ng

Example 1:
5n’+6 € O(n?) ??? v
Find cn® = ¢=6 and ng=3
= ¢=5.1 no=8

Example 2:
5n+6 € O(n%) ??? v
Find cn’ = ¢=11 and np=1

Example 3:
n*+2n’+4n+8 e O(n?) ??? x
Find cn? > n®+2n*+4n+872?? x

a,nm+a . Nml---oooooooo + a, € O(n™M)
logn<Vn< n< nlogn € n2< n®<2"<n!

What does it mean?
17

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

int[Ja={1,3,7,8,9, 2

4’
al4]
int[]b={5,8,1,.......... 25, 20 }100 Elements
—_— h
Array element access: ©(1) : Constant Time b[98]

I Ts ~ 50ms

= Tye ~100 ms
Array element search: Teearch = O(N) »

B

Aloop inside a loop in an algorithm usually represents a time complexity of
0(n?)

Bubble sort algorithm: R b s L

18

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Asymptotic Analysis

Asymptotic (<u%«) analysis measures the efficiency of an algorithm as the input size becomes large.

It is actually an estimation technique. However, asymptotic analysis has proved useful to computer
scientists who must determine if a particular algorithm is worth considering for implementation.

e The critical resource for a program is -most often- running time.
e The growth rate for an algorithm is the rate at which the cost of the algorithm grows as the size of its
input grows.
o ¢n (for c any positive constant) = linear growth rate or running time.
o n*> quadratic growth rate

o 2" exponential growth rate.

Worst case? The advantage to analyzing the worst case is that you know for certain that the
algorithm must perform at least that well.

Example:
Assume: Algorithm A: time =15n + 93
Algorithm B: time = 2n%+1 which is faster?
Graph using Excel

800

600
400 15n+93
I’/ 2n* +1
- /l
|
0 \

0246 81012141618

The “break-even point”

We are interested for large n

* For sufficiently large n, algorithm A is faster
* In the long run constants do not mater.

Upper bound for the growth of the algorithm’s running time. It indicates the upper or
highest growth rate that the algorithm can have. = big-O notation.

19

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
For T(n) a non-negatively valued function, T(n) is in set O(f(n)) if there exist

two positive constants ¢ and ng such that T(n) < ¢f(n) for all n > n,.

e Prove that 15n +93is O(n)
We must show +ve ¢ and ng such that 15n + 93 < ¢(n) for n2ng
<provided n=93> =» 15n+n=>» 16n<cn > <providedc=16>
Soforc=16 andny=93 = //proved
Graph using Excel

e Prove that 2n*+1 = O(n?)
Must show +ve ¢, ng such that 2n*+1 < ¢(n?) for n 2 ng
2n’+1 <provided n=1>
2n’+n*> & 3n> <provided c=3>
2n’+1 < 3n?
So, ¢=3, ne=1 //proved
Graph using Excel

Example 3.5 For a particular algorithm, T(n) = ¢;n? + ¢on in the av-
erage case where ¢; and ¢, are positive numbers. Then, ¢;n? + eon <
c1n? + con? < (¢1 + eo)n? forall n > 1. So, T(n) < en? for ¢ = ¢; + c»,
and ng = 1. Therefore, T(n) is in O(n?) by the second definition.

The lower bound for an algorithm is denoted by the symbol Q, pronounced “big-

Omega” or just “Omega.”

For T(n) a non-negatively valued function, T(n) is in set Q(g(n)) if there exist
two positive constants ¢ and ng such that T(n) 2 cg(n) for all n > ny.

e Prove that 15n+93 is Q(n)
We must show +ve ¢ and ng such that 15n+93 2 ¢(n) for n2ng
<because 93 is +ve>2 c¢(n) =» <provided c=15> < so any ng > 0 will do
So ¢=15, ng=1 // proved

Graph using Excel

e Prove that 2n’+1 is Q(n?)
Must show +ve ¢ and ng such that 2n’+1 2 cn® for n2 ng
<because 1 is +ve>

20

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
So ¢=2, np=1 // proved

Graph using Excel
Example 3.7 Assume T(n) = ¢;n? + con for ¢; and ¢ > 0. Then,
Co n? + con > rmg

for all n > 1. So, T(n) > cn? for ¢ = ¢; and ng = 1. Therefore, T(n) is
in £2(n?) by the definition.

When the upper and lower bounds are the same within a constant factor, we
indicate this by using O (big-Theta) notation.
T(n) = ©(g(n)) iff T(n)=0(g(n)) and T(n)=0(g(n))

Example: Because the sequential search algorithm is both in O(n) and in Q(n) in the average case,
we say it is @(n) in the average case.

Simplifying Rules
1. If f(n)isin O(g(n)) and g(n) is in O(h(n)), then f(n) is in O(h(n)).
2. If f(n)isin O(kg(n)) for any constant k& > 0, then f(n) is in O(g(n)).

3. If fi(n)is in O(gy(n)) and fa(n) is in O(g2(n)), then fi(n) + fa(n) isin

O(max(g1(n), g2(n))).
4. If fi(n) is in O(g;(n)) and fa(n) is in O(g2(n)), then fi(n)fa(n) is in
O(g1(n)g2(n)).

e Rule (2) is that you can ignore any multiplicative constants.

e Rule (3) says that given two parts of a program run in sequence, you need to consider only the
more expensive part.

e Rule (4) is used to analyze simple loops in programs.

Taking the first three rules collectively, you can ignore all constants and all lower-order
terms to determine the asymptotic growth rate for any cost function.

21

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Order of growth of some common functions:

0(1) < O(log;n) < O(n) < O(n log,n) < O(n?) < O(n%) < 0(2")

(b)
100 - 2" n3 n 2
n *log,n
c
X} 75 7
=
o
c
>
=
(<%
g
O
e
S 50 A
o
(@)}
-
o
=
©
= 25 4
n
log,n
1 Ll 1 I 1
5 10 15 20

If the problem size is always small, you can probably ignore an algorithm’s efficiency

Limitations of big-O analysis:
e Overestimate.
e Analysis assumes infinite memory.
e Not appropriate for small amounts of input.
e The constant implied by the Big-Oh may be too large to be ignored (2Nlog N vs. 1000N)

22

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Analyzing Algorithm Examples

General Rules of analyzing algorithm code:

Rule 1 — for loops:
The running time of a for loop is at most the running time of the statements inside the for loop

(including tests) times the number of iterations.

Rule 2 — Nested loops:
Analyze these inside out. The total running time of a statement inside a group of nested loops
is the running time of the statement multiplied by the product of the sizes of all the loops.

Rule 3 — Consecutive Statements:
These just add (which means that the maximum is the one that counts.

Rule 4 — if/else:
if(condition)
S1
else
S2

The running time of an if/else statement is never more than the running time of the test plus
the larger of the running times of S1 and S2.

Rule 5 — methods call:
If there are method calls, these must be analyzed first.

Sorting Algorithm

1- Bubble Sort (revision) = O(n?)

public static void bubble(int[] arr){
int temp;
for (inti=0;i<arr.length-1; i++) {
for (intj = 0; j <arr.length-i-1 ; j++) {
if(arr[j+1]<arr([j]){
temp =arrl[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
}

23

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note

2016

Prepared by: Dr. Mamoun Nawahdah

2- Selection Sort (revision) & O(n?): named selection because every time we select the

smallest item.

public static void selection (int[] arr){
int temp, minindex;
for (inti=0; i< arr.length-1; i++) {
minindex = i;
for (intj = i+1; j <arr.length ; j++) {
if(arr[jl<arr[minindex]){
minlndex=j;
}
}
if(i!= minIndex){
temp = arrli];
arr[i] = arr[minindex];
arr[minindex] = temp;
}
}
}

3- Insertion sort & O(n?):

public static void insertion (int[] arr){
int j, temp, current;
for (inti=1;i<arr.length; i++) {
current = arr[i];
j=i-1;
while (j>=0 && arr[j]>current){
arr[j+1] = arr[j];
=

}
}

}

arr[j+1]=current;

0(n?) sorting algorithms comparison:

(run demo @ http://www.sorting-algorithms.com/)

Bubble Sort

Selection Sort

Insertion Sort

Very inefficient

Better than bubble sort .
Running time is independent .
of ordering of elements

Relatively good for small lists
Relatively good for partially
sorted lists

STUDENTS-HUB.com

24

Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Merge sort: recursive algorithm

Merge: take 2 sorted arrays and merge them together into one.

Example:

2lafslefe
zleleie, alrlee

MERGESORT

MERGE

MERGE MERGE
 MERGE MERGE MERGE MERGE

. . - ."!IU"'. - . .

25

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

start=0 | end= A length - 1

Pseudo-code :
MergeSort (A, start, end) MergeSort (A, 0,7) [l
if start < end
middle = Floor[(start + end)/2] middle = 3
MergeSort(A, start, middle) MergeSort (A, 0,3) [l
MergeSort(A, middie+1, end)
Pseudo code: Merge(A, start, middle, end)

Pseudo-code (Merge) :
Merge (A, start, mid, end)

'“'ok idm e n1=mid-stén+1
n, =end - mid
Let left[0..n,] and right[0..n,] be new temp arrays
fori=0ton,-1
left [i] =A[start+1i]

% |eft . right
i j 8 forj= 0ton,1
right[j] =A[mid+1+]]
i.j=0

for k = start to end
ifleft [i] <right[j]
Al[k] = left[i]
i=i+1
else A[k]=right[j]
=i+

Make sure of array boundaries

H.W: implement merge sort your own

26

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Searching elements in an array:

af=5 : o(1)
find(8) : O(n)
Case 1: unordered array: delete (item) : O(n)

3 7 20| 32 45
I 1 !

find (60)
Finding Index

| 52| =3 == ai3=32
LTT“J = 5 wemmp a[5] = 55

(2] -0 b

Case 2: ordered array: -Binary search-

First Search ©on find (item) = O(log,n)
Second Search % n ‘ log,n
Third Search 3 27=n == (-1) = log;n 2 1

. 1024 10
(1) u: Saatbh 2 1048576 (Million) 20
i Search v 4= % 1099511627776 (Trillion) 40

Inserting and deleting items from ordered array

Insert (52)

Insert (item) = O (n)
Search (item) = O (log,n)

Delete (55)
Delete (item) = O (n)

27

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Linked List

Algorithm - abstract way to perform computation tasks
Data Structure - abstract way to organize information

—t—>»| 12 —1t—>»p| 3 —1t—»| 25 —t+—>»| 18 M

Linked List: head

Node:

Data
Next = null

Node code:

public class Node<T> {
private T data;
private Node<T> next;

public Node(T data) { this.data = data; }

public void setData(T data) { this.data = data; }
public T getData() { return data; }

public Node<T> getNext() { return next; }
public void setNext(Node<T> next) { this.next = next; }

Linked List Code:

public class LinkedList<T> {
private Node<T> head;

}

Inserting a new node:
Inserting a Node into a Specified Position of a Linked List:
Three steps to insert a new node into a linked list
— Determine the point of insertion
— Create a new node and store the new data in it
— Connect the new node to the linked list by changing references

28

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Case 1: To insert a node at the beginning of a linked list: (curr == head)
newNode.next = head;
head = newNode;

head| +t+—-——-———"—————— - 3 - > 6 —t—» sses —| 100

7 [
1 curr
prev

newNode

What’s the time complexity of inserting an item to the head?? = 0(1)

Case 2: To insert a node between two nodes:
newNode.next = curr;
prev.next = newNode;

—» 20 ._ __________ »| 40 > oo —» 100

o
;

newNode

Case 3: Inserting at the end of a linked list is a special case if curr is null:
newNode.next = curr;
prev.next = newNode;

Formerly null

vee —»| 96 | o—t—>| 100 /*»’——» 102

A

. L

prev curr newNode

Time Complexity & O(n)
H.W. =>» implement insert into a sorted linked list

Determining curr and prev
Determining the point of insertion or deletion for a sorted linked list of objects

for (prev = null, curr = head;
(curr I=null) && (newValue.compareTo(curr.item) > 0);

29
7

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
prev = curr, curr = curr.next) ; // end for

Create a driver class to test linked list classes.
Override the toString methods first
Node toString:
@Override
public String toString() { return data.toString(); }

LinkedList toString:
@Override
public String toString() {
String res ="=»";
Node<T> curr = head;
while (curr != null) {
res+=curr+"-=>";
curr = curr.next;

}

return res + “NULL”;

}
Length of Linked List?

3
it H dTI Length: 0
Case 1: If it's empty: ea

Case 2: If not: Make a pointer and move over all the nodes and maintain a counter
Length: 6

BEEEEEE
lHeadT '

Length code: Time Complexity & O(n)
public int length() {
int length = 0;
Node<T> curr = head;
while (curr != null) {
length++;
curr = curr.next;

}

return length;

30

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Deleting Nodes:
Case 1: Deleting the head node:

3y

—»| 5 - » 10 —F—» sese — 100

head

]

prev curr

Simply move the head to the head.next: head = head.next;
Now first Node has no reference to it =» Garbage

Time Complexity & O(1)

Delete at head code: // make sure linked list is not empty
public Node<T> deleteAtStart() {
Node<T> toDel =head;
head = head.next;
return toDel;

}

Case 2: Delete node N which curr references:

ﬂ;dem
E—b 5 /—m-:- 8 » 10 ot ssess —»l 100

head A next A

prev curr

Set next in the node that precedes N to reference the node that follows N
prev.next = curr.next; // prev.next = prev.next.next;

Searching for an Item in a Linked List:

Search (data) I
Search (12)

Time Complexity: linear growth =» 0(“)
Find code:
public Node<T> find(T data) {
Node<T> curr = head;
while (curr 1= null) {
if (curr.getData() == data) // if (curr.getData().equals(data))
return curr;
curr = curr.next;

}

return null;

31

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016

Variations of the Linked List:
1- Tail References (Doubly Ended Linked List)
— Remembers where the end of the linked list is.

— Therefore, we can add and delete at both ends.

— To add a node to the end of a linked list
tail.next = new Node(request, null);

Prepared by: Dr. Mamoun Nawahdah

Y

head

tail

private Node<T> tail;
public Node<T> getTail() {

public class DoubleEndedList<T> extends LinkedList<T> {

return tail; }

public void addAtEnd(T data) {

Node<T> newNode = new Node<T>(data);

if (head == null) { // empty
head = newNode;
tail = newNode;

}
else {
tail.setNext(newNode);
tail = newNode;

}

Make sure to override addAtStart to set the tail pointer correctly:

STUDENTS-HUB.com

@Override
public void addAtStart(T data) {
Node<T> newNode = new Node<T>(data);
if (head == null) { // empty
head = newNode;
tail = newNode;
}
else{
newNode.setNext(head);
head = newNode;

}

32

Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

2- Circular Linked List
— Last node references the first node
— Every node has a successor

® | head

L)

3- Dummy Head Nodes
— Always present, even when the linked list is empty

— Insertion and deletion algorithms initialize prev to reference the dummy head node, rather

than null

B_; — | | > 5| > e —| Y

head Dummy head nade

Processing Linked Lists Recursively:
e Traversal
— Recursive strategy to display a list
Write the first node of the list
Write the list minus its first node

public static void traversList(Node curr) {
if(curr == null)
System.out.printin("NULL");
else {
System.out.print("[" + curr + "]-->");
traverslList(curr.next);

}

}

— Recursive strategies to display a list backward
e writeListBackward strategy
Write the last node of the list
Write the list minus its last node backward

public static void traversListBackward(Node curr) {
if(curr == null)
System.out.print("NULL");
else {
traverslListBackward(curr.next);
System.out.print("<--[" + curr + "]");

}

}

STUDENTS-HUB.com

33

Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Node:

Doubly Linked List

Date
Next = null
null€& Prev

Doubly Linked List: Each node references both its predecessor and its successor:

Able

Jones |+« « o [*[&s| Smith

o] Baker | =+« "]

.

.

Ay

of Wilson | & = =

T

:

head

Doubly Node Code:

public class DNode <T extends Comparable<T>>{
T data;
DNode next;
DNode prev;

public DNode(T data) { this.data = data; }
public T getData() { return data; }

public DNode getNext () { return next; }
public DNode getPrev () { return prev; }

public void setNext(DNode next) { this.next = next; }
public void setPrev(DNode prev) { this.prev = prev; }
public String toString() { return this.data.toString(); }

Doubly Linked List code:

public class DLinkedList <T extends Comparable<T>>{
DNode head;

}

Override toString method code:

public String toString() {
String res = "Head-->";
DNode<T> curr = this.head;
while (curr != null) {
res +="["+curr + "1";
curr = curr.getNext();
if(curr!=null)
res +="<=>";
}

return res + "-->NULL";

STUDENTS-HUB.com

34

Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Insert a new node (not sorted)
Case 1: Insert at head:

oo

public void insertAtHead(T data) {
DNode<T> newNode = new DNode(data);
if(head==null) // empty linkedlist
head = newNode;
else {
newNode.setNext(this.head);
head.setPrev(newNode);
head = newNode;

}

}

Case 2: Insert at end:
Student Activity: insert at last

public void insertAtEnd(T data) {
DNode<T> newNode = new DNode(data);
if (head == null) // empty linkedlist
head = newNode;
else { //find last node
DNode<T> last = head;
while(last.getNext() != null)
last = last.getNext();
last.setNext(newNode);
newNode.setPrev(last);
}
}

Length of a doubly linked list code:
public int length() {
int length = 0;
DNode<T> curr = this.head;
while (curr != null) {
length++;
curr = curr.getNext();

}

return length;

STUDENTS-HUB.com

35

Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Delete a node:

* To delete the node that curr pointer references

1
Node N
.| Baker [+« |*IZ=2%] | Jones | == oo | [<o %, Smith | oo o [Pl
jk_//
2
L]
curr

curr.prev.next = curr.next;
curr.next.prev = curr.prev;

Insert a new Node (Sorted):
* Toinsert a new node that newNode references before the node referenced by curr

<l Baker |e oo JE~TTTT T Smith |+ oo o [l
d
\4‘ y’
A
2 A
[Jones L Y
L
T curr
!
newNode
newNode.next = curr; //1
newNode.prev = curr.prey; //2
curr.prev = newNode; //3
newNode.prev.next = newNode; // 4

Circular doubly linked list with dummy head:

listHead
T <1.| Able <l Baker | =« « « [*[31| Jones | = « « « |*fl| Smith | = « « o "3 L |Wilson| « « « - l
LDummy head node j

— Preceding reference of the dummy head node references the last node.
— next reference of the last node references the dummy head node.
— Eliminates special cases for insertions and deletions.

36

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Case Study: Insertion Sort using doubly linked list (Using NO extra space):

Review insertion sort logic and point to problem of insertion and time needed to shift the items
Worst case if the array is reverse sorted

Example: assume we need to sort the following doubly linked list:
IIIIII--. B r—r 4 r— 3 ---IIIII

Assumption: 1% node is sorted. We start from the 2" element:

-'|'U!:.l: I—H

Head

Here:
e The black pointer points to the current node to be sorted.
e The red pointer points to previous node of current node to be sorted.
e The green pointer points to next node of current node to be sorted.

Step 1: The red pointer keeps move backward until it reaches a node which has a value smaller than

the current node OF reach NULL.
Step 2: the current item will be inserted after red pointer as follow:
Make sure you maintain references correctly.

To do so draw the expected outcome and follow the steps to change the pointers:

gl = ==

Initial state: kHO&df

g — =P

|1

o i

Final state:

Case 1: insert to head

Step 2.0: make new green pointer = black.next

—E=
Step 2.1: = black.prev.next = green

37

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

=
L

il = =G
Step 2.2: — >

if (sreen !=null) green.prev = black.prev

r‘ 9 < I
Step 2.3: black.prev Ed
Pravious \’rmn

| = sl
Step 2.4: " >

if(red==null) black.next = black.next.prev
else black.next = red.next

-w*.@.-v—)
Step 2.5: B B >

If (red == null) black.next.prev = black
else red.next.prev = black

38

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
\le
Previous \

}f

Head

Step 2.6:
if (red ==NULL) head = black
else red.next = black;

Previous

Previous

Step 2.7: black = green

Case 2: insert 4 in the middle

Practice yourself

Case 3: insert last element

e e
EECEE -

39

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Insertion Sort Code:

// Insertion Sort of a Doubly Linked List
public void sort() {
DNode black = head.next;
while (black != null) {
DNode red = black.prev;
while (red != null && (red.data.compareTo(black.data) > 0)) //step 1.0
red = red.prev;

DNode green = black.next; // step 2.0
if (red != null | | (head != black)) {
black.prev.next = green; // step 2.1
if (green!=null) {
green.prev = black.prev; // step 2.2
}
black.prev = red; // step 2.3
}

if (red ==null) { //set the black as head
if (head != black) {

black.next = head; // step 2.4
black.next.prev = black; // step 2.5
head = black; // step 2.6
}
telse{ //redisnotnull
black.next = red.next; // step 2.4
red.next.prev = black; // step 2.5
red.next = black; // step 2.6
}
black = green; //step 2.7

STUDENTS-HUB.com

40

Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Radix Sort

What is Radix? The radix (or base) is the number of unique digits, including zero, used to represent
numbers in a positional numeral system.
For example, for the decimal system: radix is 10, Binary system: radix is 2.
Example Radix Sort:
Step 1: take the least significant digits (LSD) of the values to be sorted.
Step 2: sort the list of elements based on that digit.
Step 3: take the 2™ LSD and repeat step 2.
Then the 3™ LSD and so on.

sf 6’3‘b 3 297

2 ‘ | |8|21 477

821| |630 572
| — — | —

4 2 630

6 ‘ 6@7 713
TE 417L ﬁ? 821

Radix Sort Algorithm using linked lists:

~I
—

ider the followi 0 =
e Consider the following array: 1
9 (1791393810 |5 | 36 2 >
e Create an array of 10 linked lists as follow: 3 |2
e 0to9refertoactual numbers. 4 2>
e With input numbers, we will start with mod 10 then divide the resulted > 2
number by 1. 6 =
Code: 7 =
e m=10 = mod operation 8 >
e n=1 = find the specific digit at that column 9 |-
e.g. Arr[0]=9
d%m=9__ 0|=>10
9 / n=9 1 I 9
e In this case add Arr[0] to the 10" linked list 21>
e Repeat for remaining array elements. e
e |f we reach the end of array: make a new array 41>
by removing data from the head of each linked 5|25
list in order: 6|36
10 |5 36 (|38 |9 |[179] 139 < 712
8|->38
Is this sorted? NO 9|29 21792139

41

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

e Next step: consider the 2" significant digit from the previous

resulted array: 0|=2>5-2>9
Code: 1]->10
e m=m*10=100 2|2

3|—)36—)38—)139
e n=n*10=10 N

e.g. Arr[0] =10 51>
10%m=10\ / 6>
10/n=1 7> 179

Result: 8|2

51 9 10 (36|38 | 139|179 °12

Is this sorted? Yes, in this case but we are not done yet

e Next step: consider the 3" significant digit from the previous array:

Code: 0| >5->9->10-> 36> 38
e m=m*10=1000 1|->139->179
e n=n*10=100 ;::))
e.g. Arr[0] =5 e
5% m=5 5| >
T 5/n-0 / 6:—>
71>
Result: / 8| >
5 9 10 {36 |38 | 139|179 91

Is this sorted? What is the time complexity?

HW: implement Radix sort using Doubly Linked List

42

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Cursor Implementation of Linked Lists

e Reason 1: Many Languages do not support pointers (e.g. Basic, Fortran).
o Iflinked lists are required and pointers are not available, then an alternate implementation
must be used.
o The alternate method we will describe here is known as a cursor implementation.
e Reason 2: If data max length is known, using Array is faster.

Two features present in a pointer implementation of linked lists:
1. The data are stored in array are nodes, each array element (node) contains data and a pointer to
the next node.
2. A new node can be obtained from the system’s global memory by a call to malloc (memory
allocation) and released by a call to free methods.

Our cursor implementation must be able to simulate these two features:
e The logical way to satisfy 1* feature is to have a global array of nodes. For any cell in the array, its array
index can be used in place of an address. The following gives the type declarations for a cursor
implementation of linked lists:

public class Node<T extends Comparable<T>> {
T data;
int next;

public Node(T data, int next) {
this.data = data;
this.next = next;

}

public void setData(T data) { this.data = data; }
public T getData() { return data; }

public int getNext() { return next; }

public void setNext(int next) { this.next = next; }

public String toString() { return "["+ data+ ", " + next + "]"; }

e We must now simulate 2™ feature by allowing the equivalent of malloc and ---=--===——————-
free for nodes in the array.
o To do this, we will keep a list (the freelist) of nodes that are not in
any list. The list will use node 0 as a header. The initial configuration
is shown in the following figure: 2>>->->

e Avalue of next is the equivalent of a pointer to next node.

=]
=
b=
b=
=] o N = W N -

e The following code to create an array of free nodes:
Node<T>[] cursorArray = new Node[11]; |

=]

=

[
[
w

W 0 -~ v 0 &= W N = O
=]
=
-
=

o

= B - |

e e

=

=

o =
o

43

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
e The initialization of cursorArray is a straightforward loop:
public int initialization(){
for(int i=0;i<cursorArray.length-1;i++)
cursorArray[i] = new Node<>(null, i+1);
cursorArray[cursorArray.length-1] = new Node<>(null, 0);
return O;

}

e To perform an malloc, the first element (after the header) is removed from the freelist:

public int malloc() {
int p = cursorArray[0].next;
cursorArray[0].next = cursorArray[p].next;
return p;

}

e To perform a free, we place the cell at the front of the freelist:

public void free(int p){
cursorArray[p] = new Node(null, cursorArray[0].next);
cursorArray[0].next = p;

}

e The following are a list of functions to test whether a linked list is null, empty, or whether a
specific node is the last:

public boolean isNull(int I){
return cursorArray[l]==null;

}

public boolean isEmpty(int I){
return cursorArray[l].next == 0;

}

public boolean isLast(int p){
return cursorArray[p].next == 0;

}

e To create a new linked list, first you have to allocate one free node using malloc function, then
make a new point that next points to 0 as follow:

public int createList(){
int | = malloc();

if(I==0)

System.out.printin("Error: Out of space!!!");
else

cursorArray[l] = new Node("-",0);
return [;

44

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

e The following code is used to add a new data to a specific linked list:

public void insertAtHead(T data, int |){

if(isNull(l)) // list not created
return;

int p = malloc();

if(p!=0){
cursorArray[p] = new Node(data, cursorArray[l].next);
cursorArray(l].next = p;

}

else
System.out.printin("Error: Out of space!!!");

}
e The following code is used to travers a linked list:

public void traversList(int 1) {
System.out.print("list_"+l+"-->");
while(lisNull(l) && lisEmpty(l)){
I=cursorArray[l].next;
System.out.print(cursorArray[l]+"-->");
}
System.out.printin("null");

}
e The following code is used to find a specific data in a linked list:

public int find(T data, int I){
while(lisNull(l) && lisEmpty(l)){
I=cursorArray[l].next;
if(cursorArray[l].data.equals(data))
return [;

}
return -1; // not found

}
e Sometimes you need the previous location of a specific data in a linked list:

public int findPrevious(T data, int I){
while(lisNull(l) && lisEmpty(l))}{
if(cursorArray[cursorArray[l].next].data.equals(data))
return [;
I=cursorArray[l].next;

}

return -1; // not found

}
e The following code is used to delete some data from a linked list:

public Node delete(T data, int I){

int p = findPrevious(data, 1);

if(p!=-1){
int c = cursorArray[p].next;
Node temp = cursorArray|c];
cursorArray[p].next = temp.next;
free(c);

}

return null;

45

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Stacks

Stack is an abstract data type that serves as a collection of elements, with two principal operations:
® push adds an element to the collection;
" pop removes the last element that was added.

Push L‘ /" Pop

|

e Last In, First Out = LIFO

ABsTRACT DATA TYPE: STACK

DATA
e A collection of objects in reverse chronological order and having the same data type
OPERATIONS
PseupocobE UML DEscripTION

push(newEntry) +push(newEntry: T): void Task: Adds a new entry to the top of the
stack.
Input: newEntry is the new entry.
Output: None.

pop() +popO: T Task: Removes and retums the stack’s top
entry.
Input: None.
Output: Returns the stack’s top entry.
Throws an exception if the stack 1s
empty before the operation.
peek() +peek(): T Task: Retrieves the stack’s top entry
without changing the stack mn any
way.
Input: None,
Output: Retums the stack’s top entry.
Throws an exception 1f the stack
15 empty.

isEmpty () +isEmpty(): boolean Task: Detects whether the stack 1s empty.
Input: None
Output: Retumns true if the stack 1s empty.

clear() +clear(): void Task: Removes all entries from the stack.
Input: None.
Output: None.

STUDENTS-HUB.com Uploaded By: anonymous

46

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Single Linked List Implementation:
Each of the following operation involves top of stack

= push
" pop
= peek

Head or Tail for topNode??
Head of linked list easiest, fastest to access = Let this be the top of the stack

Chain

[~ SIS CIED)

topNode

Top entry of stack @
o
>

Stack
public class LinkedStack<T extends Comparable<T>> {
private Node<T> topNode;

public void push(T data) {
Node<T> newNode = new Node<T>(data);
newNode.setNext(topNode);
topNode = newNode;

}

public Node<T> pop() {
Node<T> toDel = topNode;
if(topNode != null)
topNode = topNode.getNext();
return toDel;

}
public Node<T> peek() { return topNode; }

public int length() {
int length = 0;
Node<T> curr = topNode;
while (curr != null) {
length++;
curr = curr.getNext();
}

return length;

}

public boolean isEmpty() { return (topNode == null); }

public void clear() { topNode = null; }

47

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Array-Based Implementation:
* End of the array easiest to access
= Let this be top of stack
= Let first entry be bottom of stack

0 1 2 3
Array ? ? ? ? 3
\ topIndex
Q Top entry of stack
Stack

public class ArrayStack <T> {
private Object[] s;
private int n=-1;

public ArrayStack(int capacity){
s = new Object[capacity];

}

public boolean isEmpty(){ return n ==-1;}
public int getN(){ return n;}

public void push(T data){
s[++n] = data;

}

public Object pop(){
if(lisEmpty())
return s[n--|;
return null;

}

public String toString() {
String res = "Top-->";
for(int i=n; i>=0;i--)
ress="["+s[il+"]-->";
return res+"Null";

}

}

48

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Iteration (Optional)

Design challenge: Support iteration over stack items by client, without revealing the internal

representation of the stack.

e Java solution. Make stack implement the java.lang.lterable interface.
Iterable interface

Q. What is an Iterable ? -
public interface Iterable<Item> {

A. Has a method that returns an Iterator. Iterator<Item> iterator():
}
Q. What is an Iterator ? Iterator interface
A. Has methods hasNext() and next(). public interface Iterator<Item> {
Q. Why make data structures Iterable ? me::x:a(;'f'“to‘
- 2 : optional; use
A. Java supports elegant client code. void remove(); +— 4t vour i
}

import java.util.lterator;
public class LinkedStack<T extends Comparable<T>> implements Iterable<T> {

public Iterator<T> iterator(){
return new Listlterator();

}

private class Listlterator implements Iterator<T>{
private Node<T> curr = topNode;
public boolean hasNext(){return curr!=null;}
public void remove(){}
public T next(){
Tt = curr.data;
curr = curr.next;

return t;

}

}

}

Iterator<String> itt = Is.iterator(); for(String s: Is)

while (itt.hasNext()) System.out.printin(s);
System.out.printIn(itt.next());

first current

| |

times ——> of — best —> the — was — it — il

49

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Balanced Delimiters

Problem: Find out if delimiters (“[{(]})”) are paired correctly =» Compilers

Example 1: The contents of a stack during the scan of an expression that contains the balanced
delimiters{[()]}

{ [(2 E g Delfmflers in expression
l l l Delimiters popped from stack
{RURUEL
[[[
{ { { { {
After After After After After After

push('{') push('[') push('(") popQ) pop(O) pop()

Example 2: The contents of a stack during the scan of an expression that contains the unbalanced
delimiters {[(]) }

Delimiters are not a pair

[(\] Delimiters in expression
l l l Delimiter popped from stack
(
[[
{ { {
After After After After

push('{') push('[") push('(") popO)
Example 3: The contents of a stack during the scan of an expression that contains the unbalanced
delimiters [()]}

A pair of parentheses

\ A pair of brackets
) N1}

([Delimiters popped from stack

(
[[[Stack is empty when
} is encountered

After After After After
push('[') push(' (") popO popO

Delimiters in expression

50

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Example 4: The contents of a stack during the scan of an expression that contains the unbalanced

delimiters {[()]

A pair of parentheses

\ A pair of brackets
\ Delimiters in exnression

cHmnuers mn ex pression

~a
r
e

Delimiters popped from stack

Lo BN -
—_— N\
—_— e

[[
{ { { { { {

After After After After After
push('{") push('[") push(C'(') popQ popO

Brace is left over in stack

Algorithm to process balanced expression:

Algorithm checkBalance(expression)

isBalanced true
while ((isBalanced true) and not at end of expression) {
nextCharacter next character in expression

switch (nextCharacter)
case "(': case '"[': case '{
Push nextCharacter onto stack

break

case ')': case ']': case
if (stack is empty)
isBalanced false
else {
openDelimiter top entry of stack
/’()‘,U stack
isBalanced true or false according to whether openDelimiter
and nextCharacter are a pair of delimiters

break

]

if (stack is not empty) isBalanced false

return isBalanced

H.W. implement check balance algorithm using linked list/array stacks

51

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Processing Algebraic Expressions

* Infix: each binary operator appears between its operands a + b
* Prefix: each binary operator appears before its operands +ab
* Postfix: each binary operator appears after its operands a b +

Evaluate infix expressions:

C1+(CC2+3)*(4*5)))

\ \

operand operator

Two-stack algorithm. [E. W. Dijkstra]
« Value: push onto the value stack.
« Operator: push onto the operator stack.
« Left parenthesis: ignore.
« Right parenthesis: pop operator and two values;
push the result of applying that operator
to those values onto the operand stack.
Example: evaluate a+b * cwhenais 2, bis 3, and cis 4:
Step 1: Fill the two stacks until reaching the end of the expression:

i

W s

0o

Step 2: performing the multiplication:
* 4

T

Step 3: performing the addition:

RN \

I::
—— . [
— [
— . [

52

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Algorithm to evaluate infix expression:
Algorithm evaluateInfix(infix)

operatorStack = a new empty stack
valueStack = anew empty stack
while (infix has characters lefi to process) {
nextCharacter = next nonblank character of infix
switch (nextCharacter) {
case variable:
valueStack. push(value of the variable nextCharacter)

break

case 'A'
operatorStack.push(nextCharacter)
break

case '+' : case '-' : case '*' : case '/’

while (loperatorStack.isEmpty() and

precedence of nextCharacter <= precedence of operatorStack.peek()) {

// Execute {J‘J?:’F'H!(Jf' ar iop f;_h'/ (I[Jt'_‘l'r‘l[(}!'S'L';_iCk

topOperator = operatorStack.pop(Q)

operandTwo = valueStack.pop()

operandOne = valueStack.pop(Q)

result = the result of the operation in topOperator and its operands
operandOne and operandTwo

valueStack.push(result)

}
operatorStack.push(nextCharacter)
break
case "(’
operatorStack.push(nextCharacter)
break
case ')' : // Stackis not empty if infix expression is valid
topOperator = operatorStack.pop()
while (topOperator != "(') {
operandTwo = valueStack.pop()
operandOne = valueStack.pop()
result = the result of the operation in topOperator and its operands
operandOne and operandTwo
valueStack.push(result)
topOperator = operatorStack.pop()
}
break

default: break // Ignore unexpected characters
}
}

while (loperatorStack.isEmpty()) {

topOperator = operatorStack.pop()
operandTwo = valueStack.pop()
operandOne = valueStack.pop()
result = the result of the operation in topOperator and its operands
operandOne and operandTwo
valueStack.push(result)
}

return valueStack.peek()

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Infix to Postfix Conversion

* Operand Append each operand to the end of the output expression.
* Operator A Push A onto the stack.
* Operator +. -. *, or / Pop operators from the stack. appending them to the output

expression, until the stack is empty or its top entry has a lower
precedence than the new operator. Then push the new operator

onto the stack.

Open parenthesis Push (onto the stack.

Close parenthesis Pop operators from the stack and append them to the output

expression until an open parenthesis is popped. Discard both

parentheses.

Example 1: Converting the infix expression a + b * ¢ to postfix form

Next Character in Postfix Form Operator Stack
Infix Expression (bottom to top)
a a
+ a +
b ab +
= ab +
c abc +*
abc* +
abc*+

Example 2: Successive Operators with Same Precedence:a-b + ¢

Next Character in Postfix Operator Stack
Infix Expression Form (bottom to top)
a a
p— a —
b ab =
+ ab—
ab— +
c ab—c +
ab—=c+
STUDENTS-HUB.com Uploaded By

54

: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Example 3: Successive Operators with Same Precedence:a”b ~ ¢

Next Character in Postfix Operator Stack
Infix Expression Form (bottom to top)
a a
A a A
b ab A
A a b AA
C abc 23
abec?)
a'behh

Example 4: The steps in converting the infix expressiona /b * (c+ (d —e)) to postfix form

Next Character Postfix Operator Stack
from Infix Form (bottom to top)
Expression
a a
/ a /
b ab /
* ab/
ab/ *
(ab/ *(
¢ ab/c *(
+ ab/c *(+
(ab/c *(+(
d ab/cd *(+(
- ab/cd *(+ (-
e ab/cde *(+ (—
) ab/cde — *(+ (
ab/cde — *(+
) ab/cde — + *(
ab/cde — + *

ab/cde— +*

55

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Infix-to-postfix Algorithm:

Algorithin convertToPostfix(infix)
operatorStack = a new empty stack
postfix = a new empiy string
while (infix has characters left to parse) {
nextCharacter = next nonblank character of infix
switch (nextCharacter) {

case variable:
Append nextCharacter ro postfix

break

case 'A'
operatorStack.push(nextCharacter)
break

case '+' : case '-' : case '*' : case "/'

while (!operatorStack.isEmpty() and
precedence of nextCharacter <= precedence of operatorStack.peek()){

Append operatorStack.peek () fo postfix
operatorStack.pop()

}
operatorStack.push(nextCharacter)
break
case '('
operatorStack.push(nextCharacter)
break
case ')' : // Stackis not empty if infix expression is valid
topOperator = operatorStack.pop()
while (topOperator != "('){
Append topOperator to postfix
topOperator = operatorStack.pop()
break
default: break // Ignore unexpected characters

}
while (loperatorStack.isEmpty()) {

topOperator = operatorStack.pop()
Append topOperator fo postfix

return postfix

56

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Evaluating Postfix Expressions

e When an operand is seen, it is pushed onto a stack.
e When an operator is seen, the appropriate numbers of operands are popped from the stack, the
operator is evaluated, and the result is pushed back onto the stack.

o Note that the 1% item popped becomes the (right hand side) rhs parameter to the binary
operator and that the 2" item popped is the (left hand side) lhs parameter; thus parameters
are popped in reverse order.

o For addition and multiplication, the order does not matter, but for subtraction and division, it
does.

e When the complete postfix expression is evaluated, the result should be a single item on the stack that
represents the answer.

Example 1: The stack during the evaluation of the postfix expressionab/ whenais2andbis 4

a b / / /4 /4 2/4 2/4

I

Example 2: The stack during the evaluation of the postfix expressionab +c/whenais2,bis4,and cis 3
a b - + +4 +4 2+4 2+4 c / / /3 /3 6/3 6/3

N R 20 PP
ML WL UL R L UL

Self exercises:

o
o
(]
(8]
=)

o 234+*6- = 8.0
e 23+79/- = 4.222
e 1028*+3- = 23.0
e 12-45A3*6*722AN /- = -8.67

57

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Algorithm for evaluating postfix expressions.

Algorithm evaluatePostfix(postfix)

// Evaluates a pos [Jix expression

valueStack = a new empty stack
while (postfix has characters left to parse)

{

nextCharacter = next nonblank character of postfix
switch (nextCharacter)

{

case variable:
valueStack.push(value of the variable nextCharacter)

break
case '+' : case '-' : case '*' : case '/' : case
operandTwo = valueStack.pop()

operandOne = valueStack.pop()
result = the result of the operation in nextCharacter and its operands

operandOne and operandTwo
valueStack.push(result)
break
default: break // Ignore unexpected characters
}

.h'

58

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Queues

* A queue is another name for a waiting line:

* Used within operating systems and to simulate real-world events.
= Come into play whenever processes or events must wait
* Entries organized first-in, first-out.
Terminology
* Item added first, or earliest, is at the front of the queue
* Item added most recently is at the back of the queue
e Additions to a software queue must occur at its back.
* Client can look at or remove only the entry at the front of the queue

W

Tail FIFO: First In First Out Head
Last First
Back Front
The ADT Queue
DAta

e A collection of objects in chronological order and having the same data type

OPERATIONS
PSEUDOCODE UML DEscRrIPTION

enqueue (newEntry) +enqueue(newEntry: integer): void Task: Adds a new entry to the back of
the queue.

dequeue() +dequeue(): T Task: Removes and returns the entry at
the front of the queue.

getFront() +getFront(): T Task Retrieves the queue’s front entry
without changing the queue 1n
any way.

isEmpty() +isEmpty(): boolean Task Detects whether the queue 1s empty

clearQ) +clear(): void Task: Removes all entries from the queue.

59

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Linked-list Representation of a Queue

Cpa €S g CH S o €U ES g €U Dy -1

firstNode TastNode
Y Y Y
Entry at front Entry at back
of queue of queue

public class linkedQueue <T extends Comparable<T>> {
private Node<T> first;
private Node<T> last;

public boolean isEmpty(){ return (first==null) && (last==null); }
public void clear(){
first = null;
last = null;
}
}

e The definition of enqueue Performance is O(1):

o Adding a new node to an empty chain
(a) (b)

B O H =D~

firstNode 1 TastNode firstNode TastNode

4]

newNode

o Adding a new node to the end of a nonempty chain that has a tail reference

: CIo Clo
h @

TastNode newNode

[o—-C [
g

TastNode newNode

-t —

(b)

After executing

e lastNode.setNextNode (newNode) ;

(©)

After executing

By/él .) TastNode = newNode;

TastNode newNode

.o —>

public void enqueue(T data){
Node<T> newNode = new Node<T>(data);
if(isEmpty())
first=newNode;
else
last.next = newNode;
last = newNode;

60

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
e Retrieving the front entry:
public T getFront(){
if(lisEmpty())
return first.data;
return null;

}

e Removing the front entry (dequeue):

o A queue of more than one entry:
(a)

Cpd CHES aa CHES g CU S o a €U KDy -1

firstNode TlastNode

D O o D

Entry at front Entry at back
of queue of queue
(b)
E/—\Q. s R —,. 4_E|
N
firstNode i ! iastiode
front Returned Entry at front Entry at back
to client of queue of queue

o A queue of one entry:
(a) (b)

Cingd €Dy) (<]]

firstNode v TastNode firstNode TastNode
Entry at front front Returned
of queue to client

public T dequeue(){
T front = getFront();
if(lisEmpty())
first = first.next;
if(first==null)
last = null;
return front;

}
Circular Linked Implementations of a Queue
A circular linked chain with an external reference to its last node that

a) has more than one node; b) has one node; c) is empty
(a) (b) (c)

e rac e ar

h @

TastNode TastNode TastNode

61

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Array implementation of a Queue
0 Y Y e Y I v [5 O 3 [2

TE maxSize = 8
int[] queueArray = new int[maxSize]
First int head = -1
Last int tail = -1

* enqueue(): add new item at after last (tail).
+ dequeue(): remove item from first (head).

S Y [Em S o) 3 [O S |

enqueue(8)

enqueue(8) n =

O 0O 6 60 6 6 @6 0

enqueue (12) Tg T§,

After a number of enqueues: g Tg

dequeue(): returns the item pointed by head and advances head pointer
0 0O &6 6 6 6 6

=
0 II

Gl

dequeue()

enqueue (27) ?? How to advance tail?? We have space at the beginning?? Shift??

62

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note

2016 Prepared by: Dr. Mamoun Nawahdah
Circular Queue
front
MAX_QUEUE — 1 0
2
4 1
)
7
3
back
Delete » Delete » Insert9
MAX QUEUE-1 ___ ,front MAX QUEUE-1 0 MAX QUEUVE-1 0
/</\>< 1 /</\>\ 1
front front
1 /2 /2
7 7 91 7
Ta T 3 4 3
back
back back
Queue with single item —— Delete item—queue becomes empty
MAX_QUEUE —1 0 MAX_QUEUE —1 0
1/2 5 2
91 7 P
4 T 3 front 4T 3
back back
front
Queue with single empty slot ——— Insert 9—queue becomes full
MAX QUEUE =1 0 MAX QUEUE =1 0
L2 L2
6 1 6 1
4 6 4 6
(b)
5 2 3/ 5 2 3/
4 8 9| 8
front 4 T 3 front 4T 3
back back
63

STUDENTS-HUB.com

Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

* To detect circular queue-full and queue-empty conditions
— Keep a count of the queue items

* Toinitialize the circular queue, set:
— frontto-1
— backto -1
— counttoO

* Inserting into a circular queue:
If(count < MAX_QUEUE) // free
back = (++back) % MAX_QUEUE;
items[back] = newltem;

++count;
If(count == 1) // first item
front = back;

* Deleting from a circular queue:
If(count > 0) // not empty
front = (++front) % MAX_QUEUE;
--count;
If(count == 0) // empty
front = back = -1

HW: Queue implementations using linked List and Arrays.

DE Queue (Double Ended Queue)

Allows add/remove elements from both head/tail.

64

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Trees
Revision:
Sorted Arrays Sorted Linked List
Search Fast O(logn) Slow O(n)
Insert Slow O(n) Slow O(n)
Delete slow O(n) Slow O(n)
Tree
Root
Siblings:

children of node A

Subtree of 7’
node B

.......................

e Atreeis a collection of N nodes, one of which is the root, and N 1 edges.

e Every node except the root has one parent.

e Nodes with no children are known as leaves.

e Aninternal node (parent) is any node that has at least one non-empty child.

e Nodes with the same parent are siblings.

® The depth of a node in a tree is the length of the path from the root to the node.

® The height of a tree is the number of levels in the tree.

Example: Family Trees (one parent)
Example: File system tree

myStuff

,«// \ \\>
home work play school

Sd 60 b

65

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Binary Trees

e A binary tree is a tree in which no node can have more than two children:
Root

Tlcfl Trig_,hl

where }"1efl and T

right
Crlgle
/ Y \ Reference to another node, if any

-

Data object

are binary trees.

e Binary Tree Node:

(a) Full tree (b) Complete tree (¢) Tree that is not full
and not complete

(2) (i)
® (© (1) ()
OE ®6 ® OO o
Left children: B, D, F
Right children: C,E, G
©® @

(a) Each node in a full binary tree is either:

(1) an internal node with exactly two non-empty children or

(2) a leaf.
(b) A complete binary tree has a restricted shape obtained by starting at the root and filling the tree by
levels from left to right.

e e

(a) This tree is full (b) This tree is complete
(but not complete). (but not full).

66

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

h
e The maximum number of nodes in a full binary tree as a function of the tree’s height = 2 -1

Full Tree Height Number
of Nodes
O 1 1=21-1

— o S

=22-1
3 7=23-1
4 15=24-1
Number of
nodes per level
5 31 =2%-1

67

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Implementation:

public class TNode<T extends Comparable<T>> {
T data;
TNode left;
TNode right;

public TNode(T data){ this.data = data; }

public void setData(T data) { this.data=data; }
public T getData() { returndata; }

public TNode getLeft() { return left; }

public void setLeft(TNode left) { this.left = left; }
public TNode getRight() { return right; }

public void setRight(TNode right) { this.right = right;}
public boolean isLeaf(){ return (left==null && right==null); }
public boolean haslLeft(){ return left!=null; }

public boolean hasRight(){ return right!=null; }
public String toString() { return "[" + data +"]"; }

Tree Traversal
Definition: visit, or process, each data item exactly once.
= In-Order Traversal: Visit root of a binary tree between visiting nodes in root’s subtrees.

ON

el

33 52 65 12 25 27 33 34 39 48 52 60 65 72 78 90

1.Traverse the left sub tree. £
2.Visit the root. @
3.Traverse the right sub tree.

©

o Recursive implementation:

public void traverselnOrder() { traverselnOrder(root); }
public void traverselnOrder(TNode node) {
if (node = null) {
if (node.left != null)
traverselnOrder(node.left);
System.out.print(node + " ");
if (node.right != null)
traverselnOrder(node.right);

68

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
o Using a stack to perform an in-order traversal iteratively: (Optional)

Traversal order: d b

VA VA

7 7 '
d
Stack after b b b e
each push f ; flallalla a a
or pop

public void iterativelnorderTraverse()

{
StackInterface<BinaryNodeInterface<T>> nodeStack = new LinkedStack<>();
BinaryNode<T> currentNode = root;
while (!nodeStack.isEmpty() || (currentNode != null))
{
Find leftmost node with no left child
while (currentNode != null)
{
nodeStack.push(currentNode);
currentNode = currentNode.getlLeftChild();
} // end while
// Visit leftmost node, then traverse its right subtree
if (!nodeStack.isEmpty())
{
BinaryNode<T> nextNode = nodeStack.pop(Q);
assert nextNode != null; // Since nodeStack was not empty
before the pop
System.out.printin(nextNode.getData());
currentNode = nextNode.getRightChild();
} // end if
} end while
3 end iterativelnorderlraverse

STUDENTS-HUB.com Uploaded By: anonymous

69

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
= Pre-Order Traversal: Visit root before we visit root’s subtrees.

1.Visit the root.
2.Traverse the left sub tree.

3.Traverse the right sub tree.

52 33 65 52 33 25 12 27 39 34 48 65 60 78 72 90

= Post-Order Traversal: Visit root of a binary tree after visiting nodes in root’s
subtrees.

1.Traverse the left sub tree.
2.Traverse the right sub tree.
3.Visit the root.

33 65 52 12 27 25 34 48 39 33 60 72 90 78 65

= Level-Order Traversal: Begin at root and visit nodes one level at a time.

e The visitation order of a level-order traversal:

e Level-order traversal is implemented via a queue.
e The traversal is a breadth-first search.
HW: implement level-order traversal

70

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Expression Trees

(a) a/b (b) a* (¢) a*(b+c) d) a*(b+c*d)/e
® © @O &
) @

e The leaves of an expression tree are operands, such as constants or variable names, and the other
nodes contain operators.

e |tis also possible for a node to have only one child, as is the case with the unary minus operator.

e We can evaluate an expression tree by applying the operator at the root to the values obtained by
recursively evaluating the left and right subtrees.

Algorithm for evaluation of an expression tree:

Algorithm evaluate(expressionTree)
if (expressionTree is empty)

return 0
else
{
firstOperand = evaluate(/eft subtree of expressionTree)
secondOperand = evaluate(right subtree of expressionTree)
operator = the root of expressionTree
return the result of the operation operator and its operands firstOperand
and secondOperand
}

Constructing an expression tree:

The construction of the expression tree takes place by reading the postfix expression one symbol at a
time:
e |f the symbol is an operand, one-node tree is created and a pointer is pushed onto a stack.
e |f the symbol is an operator,
o Two pointers trees T1 and T2 are popped from the stack

o A new tree whose root is the operator and whose left and right children point to T2 and
T1 respectively is formed .

o A pointer to this new tree is then pushed to the Stack.

71

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note
Example:

2016
(ab+cde+**)

Prepared by: Dr. Mamoun Nawahdah

Since the first two symbols are operands, one-
node trees are created and pointers are pushed
to them onto a stack.

The next symbol is a '+'. It pops two pointers, a
new tree is formed, and a pointer to it is
pushed onto to the stack.

Next, ¢, d, and e are read. A one-node tree is
created for each and a pointer to the
corresponding tree is pushed onto the stack.

Continuing, a '+'is read, and it merges the last
two trees.

Now, a '"*'is read. The last two tree pointers
are popped and a new tree is formed with a '*'
as the root.

Finally, the last symbol is read. The two trees
are merged and a pointer to the final tree
remains on the stack.

STUDENTS-HUB.com

72

Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Binary Search Trees (BST)

e Problem: searching in binary tree takes O(n).

e Solution: forming a binary search tree.

e In a binary search tree for every node , X, in the tree, the values of all the items in its left subtree are
smaller than the item in X, and the values of all the items in its right subtree are larger (or equal if

duplication is allowed) than the item in X.

Binary Search Tree

Binary Tree

e Every node in a binary search tree is the root of a binary search tree.

e Search for an item:

Example: find(52), find(39) , find(35)
public TNode find(T data) { return find(data, root); }
public TNode find(T data, TNode node) {

if (node!= null) {
int comp = node.data.compareTo(data);

if (comp ==0)
return node;
else if (comp > 0 && node.haslLeft()) return find(data, node.left);
else if (comp < 0 && node.hasRight()) return find(data, node.right);
}
return null;

}

Efficiency: Searching a binary search tree of height h is O(h)
However, to make searching a binary search tree as efficient as possible, tree must be as short as possible.

73
7

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Finding Max and Min Values:

SMAIL I FST I ARGFST

e The find Min operation is performed by following left nodes as long as there is a left child.
e The find Max operation is similar.

public TNode largest() { return largest(root); }
public TNode<T> largest(TNode node) {
if(node!= null){
if(Inode.hasRight())
return (node);
return largest(node.right);

}

return null;

}

public TNode smallest() { return smallest(root); }
public TNode<T> smallest(TNode node) {
if(node!= null){
if(!node.haslLeft())
return (node);
return smallest(node.left);

}

return null;

74

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Insert in Binary Search Tree:
Example: insert(63)

Insert (63)

public void insert(T data) {
if (isEmpty())
root = new TNode(data);
else
insert(data, root);
}
public void insert(T data, TNode node) {
if (data.compareTo((T) node.data) >= 0) { // insert into right subtree
if (Inode.hasRight())
node.right = new TNode(data);
else
insert(data, node.right);
}else { // insert into left subtree
if (Inode.hasLeft())
node.left = new TNode(data);
else
insert(data, node.left);

Deleting a Node:

Case 1: Node to be deleted is a leaf. Two possible configurations of a leaf node N:
Being a left child or a right child:

Before After

(b)

—>

Node N Node N

75

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Example: delete(34)

Delete (34)

Case 1 : Node to be deleted is a leaf.

public TNode delete(T data) {
TNode current = root;
TNode parent = root;
boolean isLeftChild = false;

if (isEmpty()) return null;// tree is empty
while (current != null && !current.data.equals(data)) {
parent = current;
if (data.compareTo((T)current.data) < 0) {
current = current.left;
isLeftChild = true;
} else {
current = current.right;
isLeftChild = false;
}
}

if (current == null) return null; // node to be deleted not found

// case 1: node is a leaf
if (Icurrent.hasLeft() && !current.hasRight()) {
if (current == root) // tree has one node

root = null;
else {
if (isLeftChild) parent.left = null;
else parent.right = null;
}
}
// other cases

return current;

76

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Case 2: If a node has one child, it can be removed by having its parent bypass it.

Two possible configurations before removal After removal

E Node C)\

Example: delete (72)

Case 2 : Node to be deleted has one child.
Note: The root is a special case because it does not have a parent.
// Case 2 broken down further into 2 separate cases
else if (current.hasLeft()) { // current has left child only
if (current == root) {
root = current.left;
} else if (isLeftChild) {
parent.left = current.left;
}else {
parent.right = current.left;
}
} else if (current.hasRight()) { // current has right child only
if (current == root) {
root = current.right;
} else if (isLeftChild) {
parent.left = current.right;
}else {
parent.right = current.right;

}

}

77

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Case 3:
o Two possible configurations of a node N that has two children:

(@) ®) /
n i < el [
Node P ¥ NodeP Y

fNodeN fNodeN ')
g\lode Cc, i 5 Node Cj, i %ode C, i 5 Node C,)\

o A node with two children is replaced by using the smallest item in the right subtree

(Successor).
Example: delete(33)

Delete (33) (52 Delete (33)

Delete (33)

Delete (33)

78

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
// case 3: node to be deleted has 2 children
else {
Node successor = getSuccessor(current);
if (current == root)
root = successor;
else if (isLeftChild) {
parent.left= successor;
} else {
parent.right = successor;

}

successor.left = current.left;

}

private Node getSuccessor(Node node) {

Node parentOfSuccessor = node;

Node successor = node;

Node current = node.right;

while (current != null) {
parentOfSuccessor = successor;
successor = current;
current = current.left;

}

if (successor != node.right) { // fix successor connections
parentOfSuccessor.left = successor.right;
successor.right = node.right;

}

return successor;

Soft Delete (lazy deletion):
When an element is to be deleted, it is left in the tree and simply marked as being deleted.
e |f a deleted item is reinserted, the overhead of allocating a new cell is avoided.

Tree Height:

public int height() { return height(root); }
public int height(TNode node) {
if (node == null) return 0;
if (node.isLeaf()) return 1;
int left = 0;
int right = 0;
if (node.hasLeft()) left = height(node.left);
if (node.hasRight()) right = height(node.right);
return (left > right) ? (left + 1) : (right + 1);

79

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Efficiency of Operations:

* Fortree of height h

= The operations add, delete, and find are O(h)
e If tree of n nodes has height h=n

= These operations are O(n)
* Shortest tree is complete

= Results in these operations being O(log n)

Unbalanced Tree:
e The order in which you add entries to a binary search tree affects the shape of the tree.

Example: add 5, 7, 12, 15, 25, 27, 42, 47, 50

© ® .
O,
®
@
Unbalanced

e If you add entries into an initially empty binary search tree, do not add them in sorted order.

Balanced

80

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
AVL Trees

* An AVL tree (Georgy Adelson-Velsky and Evgenii Landis' tree) is a BST with the additional balance
property that, for any node in the tree, the height of the left and right subtrees can differ by at most 1.
* Complete binary trees are balanced.

Single Rotation

(a) (b) (c) (d)

60) (60) (60 (s0)
f\/v /e \'\
© % D ©

-
_()/
Unbalanced Balanced

Example: After inserting (a) 60; (b) 50; and (c) 20 into an initially empty BST, the tree is not balanced;
(d) a corresponding AVL tree rotates its nodes to restore balance

(a) (b) (©)

Balanced Unbalanced Balanced
Example: (a) Adding 80 to the tree does not change the balance of the tree;
(b) a subsequent addition of 90 makes the tree unbalanced ;
(c) a left rotation restores its balance

Case 1: Single Right Rotation (left-left addition)
(a) Before addition (b) After addition (c) After right rotation

Before and after an addition to an AVL subtree that requires a right rotation to maintain its balance.

81

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Example: a) before and b) after a right rotation restores balance to an AVL tree
(b) C

Unbalanced Balanced

Algorithm rotateRight(nodeN)

nodeC = /eft child of nodeN

Set nodeN s /eft child to nodeC’s right child
Set nodeC’s right child to nodeN

return nodeC

Case 2: Single Left Rotation (right-right addition)

(a) Before addition (b) After addition (c) After left rotation
Y B N E B (> 7 %
C N M
h h
h+1
v T, -
Tz] Tl T.'! T3
Ty

Before and after an addition to an AVL subtree that requires a left rotation to maintain its balance

Algorithm rotatelLeft(nodeN)

nodeC = right child of nodeN

Set nodeN’s right child to nodeC’s left child
Set nodeC’s left child to nodeN

return nodeC

82

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Double Rotations

A double rotation is accomplished by performing two single rotations:
1. A rotation about node N’s grandchild G (its child’s child)
2. Arotation about node N’s new child

Case 3: Right-Left Double Rotations (right-left addition)

(a) After adding 70 (b) After right rotation (c) After left rotation

Example: (a) Adding 70 destroys tree’s balance; to restore the balance, perform both
(b) a right rotation and (c) a left rotation

(a) Before addition (b) After addition
N 'y
C
G
h+1
T,
LM 7, o &
T‘i

(d) After left rotation

I, T, T r; T,
Before and after an addition to an AVL subtree that requires both
a right rotation and a left rotation to maintain its balance

83

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Algorithm rotateRightLeft(nodeN)

nodeC = right child of nodeN
Set nodeN s right child to the node returned by rotateRight(nodeC)
return rotatelLeft(nodeN)

Case 4: Left-Right Double Rotations (left-right addition)
Example:
(a) After adding 55, 10, and 40 (b) After adding 35

Imbalance at
this node

(a) The AVL tree after additions that maintain its balance;
(b) after an addition that destroys the balance;
(c) after a left rotation;
(d) after a right rotation

84

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
(a) Before addition (b) After addition

h+1

Before and after an addition to an AVL subtree that requires both
a left rotation and a right rotation to maintain its balance

Algorithm rotateLeftRight(nodeN)

nodeC = /eft child of nodeN
Set nodeN s left child to the node returned by rotateLeft(nodeC)
return rotateRight(nodeN)

* Four rotations cover the only four possibilities for the cause of the imbalance at node N
* The addition occurred at:

= The left subtree of N’s left child (case 1: right rotation)

» The right subtree of N’s left child (case 4: left-right rotation)

= The left subtree of N’s right child (case 3: right-left rotation)

» The right subtree of N’s right child (case 2: left rotation)

85

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Rebalance Code Implementation
* Pseudo-code to rebalance the tree:

Algorithm rebalance(nodeN)
if (nodeN’s left subtree is taller than its right subtree by more than 1)

{ . n nodel
if (the left child of nodeN has a left subtree that is taller than its right subtree)
rotateRight(nodeN) Add f f left
else
rotatelLeftRight(nodeN)
}
else if (nodeN’s right subtree is taller than its left subtree by more than 1)
{ teN -
if (the right child of nodeN has a right subtree that is taller than its left subtree)
rotatelLeft(nodeN) -
else
rotateRightLeft(nodeN)
}

private TNode rebalance(TNode nodeN){
int diff = getHeightDifference(nodeN);
if (diff > 1) { // addition was in node's left subtree
if(getHeightDifference(nodeN.left)>0)
nodeN = rotateRight(nodeN);
else
nodeN = rotateLeftRight(nodeN);
}
else if (diff < -1){ // addition was in node's right subtree
if(getHeightDifference(nodeN.right)<0)
nodeN = rotateLeft(nodeN);
else
nodeN = rotateRightLeft(nodeN);
}

return nodeN;

}

86

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Insert Code Implementation:
public void insert(T data) {
if(isEmpty()) root = new TNode<>(data);
else {
TNode rootNode = root;
addEntry(data, rootNode);
root = rebalance(rootNode);

}

}

public void addEntry(T data, TNode rootNode){
assert rootNode != null;
if(data.compareTo((T)rootNode.data) < 0){ // right into left subtree
if(rootNode.hasLeft()){
TNode leftChild = rootNode.left;
addEntry(data, leftChild);
rootNode.left=rebalance(leftChild);
}
else rootNode.left = new TNode(data);
}
else { //right into right subtree
if(rootNode.hasRight()){
TNode rightChild = rootNode.right;
addEntry(data, rightChild);
rootNode.right=rebalance(rightChild);
}
else rootNode.right = new TNode(data);

}

}
Delete Code Implementation:

public TNode delete(T data) {
TNode temp = super.delete(data);
if(temp!= null){
TNode rootNode = root;
root = rebalance(rootNode);
}

return temp;

}

An AVL Tree versus a BST:
(a)

Example: The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty (a) AVL tree; (b) BST
87

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
2-3 Trees
» Definition: general search tree whose interior nodes must have either 2 or 3 children.
= A 2-node contains one data item s and has two children.
= A 3-node contains two data items, s and /, and has three children.

2N BB

<s > <s > >/
<

Adding Entries to a 2-3 Tree:
(a) (b) () (d)

(50)
Spli
@ Gao) > @ @

Adding (a) 60 and (b) 50; (c), (d) adding 20 causes the 3-node to split

‘=-»‘§Mﬁ¥@@®

The 2-3 tree after adding (a) 80; (b) 90; (c) 70
(a) (b)

@)
i
@ ®® ® ® @® @

Adding 55 to the 2-3 tree, causes a leaf and then the root to split

()

The 2-3 tree, after adding 10, 40, 35

STUDENTS-HUB.com Uploaded By: anonymous

88

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Splitting Nodes during Addition:

e Splitting a leaf to accommodate a new entry when the leaf’s parent contains:

(a) one entry:
(a)
Parent
Split
D) == (OO O

Parent pqm Parent must split

Split /
COC OHOCnD)=—> D (i\@

(b) two entries:
(b)

e Splitting an internal node to accommodate a new entry:

)
- G} @

T, T, T, T, T, T, T, T,

e Splitting the root to accommodate a new entry:

Split

Gan) = G0

Searching a 2-3 Tree:

89

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
2-3 tree: performance:

2-3 tree is a perfect balanced tree: Every path from root to a leaf has same length.
Tree height:
* Worst case: log N. [all 2-nodes]
* Best case: logs N = .631 log N. [all 3-nodes]
* Between 12 and 20 for a million nodes.
* Between 18 and 30 for a billion nodes.

2-3 tree: implementation?
Direct implementation is complicated, because:
* Maintaining multiple node types is cumbersome.
* Need multiple compares to move down tree.
* Need to move back up the tree to split 4-nodes.
* Large number of cases for splitting.

exercise: 50 60 70 40 30 20 10 80 90 100

2-4 Trees
* Sometimes called a 2-3-4 tree.
= General search tree
= |nterior nodes must have either two, three, or four children
= Leaves occur on the same level
= A 4-node contains three data items s, m, and I and has four children.

<s >s >m >
<m <I
Adding Entries to a 2-4 Tree

(a) (b) (c)

20 50 60 @
20 60 80 60 80 90

The 2-4 tree, after (a) adding 20, 50, and 60 (b) adding 80 and splitting the root; (c) adding 90

90

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Adding 70
(a) (b) (¢)

(00) (10 20) (5560 70) (10 20 40) (55 60 70)

The 2-4 tree after adding (a) 55; (b) 10; (c) 40

Adding 5
(a) (b)

(20 50 80) (20 50 80)

HEeD® @50 EanD®

The 2-4 tree after (a) splitting the leftmost 4-node; (b) adding 35

Comparing AVL, 2-3, and 2-4 Trees:
(a) (b)

(60)

(19 (963

Three balanced search trees obtained by adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35:
(a) AVL tree; (b) 2-3 tree; (c) 2-4 tree

91

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
B-Trees

B-trees (Bayer-McCreight, 1972)
* Definition: multiway search tree of order m

= Ageneral tree whose nodes have up to m children each
* A binary search tree is a multiway search tree of order 2. In a binary search tree, we need one key to
decide which of two branches to take. In an M-ary search tree, we need M 1 keys to decide which
branch to take.
e 2-3trees and 2-4 trees are balanced multiway search trees of orders 3 and 4, respectively.
* As branching increases, the depth decreases. Whereas a complete binary tree has height that is
roughly log, N, a complete M-ary tree has height that is roughly logy N.
* The B-tree is the most popular data structure for disk bound searching.
* To make this scheme efficient in the worst case, we need to ensure that the M-ary search tree is
balanced in some way.
* Additional properties to maintain balance:
* The root has either no children or between 2 and m children.

= QOther interior nodes (non-leaves) have between |_m/2—| and m children each.

= All leaves are on the same level.

A B-tree of order M is an M-ary tree with the following properties: (B+ tree)

1. The dataitems are stored at leaves.

2. The non-leaf nodes store up to M 1 keys to guide the searching; key i represents the smallest key
in subtree i+1.

3. Theroot is either a leaf or has between two and M children.

4. All non-leaf nodes (except the root) have between M/2 and M children.

5. All leaves are at the same depth and have between L/2 and L data items, for some L (the
determination of L is described shortly).

Example: The following is an example of a B tree of order 5 and L=5

41|66|(87
| i }

8 118112635 481151154 7211781183 921197
2| 8 [|18[]26(|35]|(41(|48(|51]||54 66(172|178]|83 87119297
4 (1101120(128(136((421149|152|156 6873|179 |84 89(193|(98
6 |[12((22([30([|37((44||50(|53||58 69(|74|181]||85 901(1951]|99

14(1241131||38]||46 59 70(176
16 321(39

92

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note
Add items from the B tree:

leaf as a fifth item:

2016

Prepared by: Dr. Mamoun Nawahdah

Insert 57: A search down the tree reveals that it is not already in the tree. We can then add it to the

1 411166||87 |
| L
I i l |
|8|IS|26|35| I4S|51|54 172|?8|83] |92|9?|
2118 1(118]126(|35((41|]48||51(154 66((72(178]|83 8711921197
4 [110(]20((281|1361|42({49|(52|156 68|173(]79||84 89|193| |98
6 |(|12((22((301|371144|150|(53|157 69|174(/81|85 90|(95](99
141124 1131||38((46 58 701(176
16 321139 59

Insert 55: The leaf where 55 wants to go is already full. Solution: split them into two leaves:

| 411166||87 |
| 1
|) l |
|8|18 26 35| 48 51|54 S?J ?21'}’8|83| |92|9'}'|
21 8 [18](26]|(35]|141|148(151(|54]11571|66||72||78]|83 871192197
4 ((10/120]1281136||42((49((52[155]1158]|68||73|179]||84 891193||98
6 ([12((221(30](37]1441150(153(156]11591(69||74||81]|85 90(|95((99
14|1241131||38|]46 701176
L6/ |132](39]

Note: The node splitting in the previous example worked because the parent did not have its full

complement of children.

o The parent has six children now = split the parent.

Insert 40: We have to split the leaf containing the keys 35 through 39, and now 40, into two leaves.

Note:
o When the parent is split, we must update the values of the keys and also the parent’s parent.

if the parent already has reached its limit of children? In that case, we continue splitting nodes up
the tree until either we find a parent that does not need to be split or we reach the root. Then we

O

||| 26|||4l 66|87
|

} }
|48 51 54|57| |72|?8|83| [92 9?|
4111481511541 157||66]|72(|78]|83 871192197
421149(15211551158((68|]73(179]| |84 891193||98
4411501153(1561159((69]|74(|81]|85 901(195((99
46 70176

split the root and this will generate a new level.
93

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note
Remove items from the B" tree:

2016

Prepared by: Dr. Mamoun Nawahdah

* We can perform deletion by finding the item that needs to be removed and then removing it.
o The problem is that if the leaf it was in had the minimum number of data items, then it is

now below the minimum.

* Remove 99: Since the leaf has only two items, and its neighbor is already at its minimum of three,

we combine the items into a new leaf of five items.

1|26
J
[
48 |78
2 41 721(78
4 42 73|79
6 44 74|81
46 76

STUDENTS-HUB.com

94

Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Splay Trees
Recall: Asymptotic analysis examines how an algorithm will perform in worst case.

Amortized analysis examines how an algorithm will perform in practice or on average.

The 90-10 rule states that 90% of the accesses are to 10% of the data items.
However, balanced search trees do not take advantage of this rule.
e The 90-10 rule has been used for many years in disk 1/O systems.

e A cache stores in main memory the contents of some of the disk blocks. The hope is that when
a disk access is requested, the block can be found in the main memory cache and thus save the
cost of an expensive disk access.

e Browsers make use of the same idea: A cache stores locally the previously visited Web pages.

Splay Trees:

e Like AVL trees, use the standard binary search tree property.

e After any operation on a node, make that node the new root of the tree.

A simple self-adjusting strategy (that does not work)
The easiest way to move a frequently accessed item toward the root is to rotate it continually with its
parent. Moving the item closer to the root, a process called the rotate-to-root strategy.

e |[f the item is accessed a second time, the second access is cheap.
Example: Rotate-to-root strategy applied when node 3 is accessed

R _ @ @

@ ®

0lo @ OO
O

o As aresult of the rotation:
= future accesses of node 3 are cheap

= Unfortunately, in the process of moving node 3 up two levels, nodes 4 and 5 each move
down a level.

o Thus, if access patterns do not follow the 90-10 rule, a long sequence of bad accesses can
occur.

95

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
The basic bottom-up splay tree

Splaying cases:
e The zig case (normal single rotation)

If X is a non-root node on the access path on which we are rotating and the parent of X is the root
of the tree, we merely rotate X and the root, as shown:

@) ®
® ¢ —= A B
A B B C

Otherwise, X has both a parent P and a grandparent G, and we must consider two cases and symmetries.
e zig-zag case:
e This corresponds to the inside case for AVL trees.

e Here Xis aright child and P is a left child (or vice versa: X is a left child and P is a right child).
e We perform a double rotation exactly like an AVL double rotation, as shown:

(G) (X)
AN
A
B C

A B C D

e zig-zig case:
e The outside case for AVL trees.
e Here, Xand P are either both left children or both right children.
e In this case, we transform the left-hand tree to the right-hand tree (or vice versa).
e Note that this method differs from the rotate-to-root strategy.

o The zig-zig splay rotates between P and G and then X and P, whereas the rotate-to-root
strategy rotates between X and P and then between X and G.

(G) (X)
k) D — A (A
X C B (6)

A B C D

96
7

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Splaying has the effect of roughly halving the depth of most nodes on the access path and increasing
by at most two levels the depth of a few other nodes.

Example: Result of splaying at node 1 (three zig-zigs)

Exercise: perform rotate-to-root strategy

Basic splay tree operations
A splay operation is performed after each access:

e After an item has been inserted as a leaf, it is splayed to the root.

e All searching operations incorporate a splay. (find, findMin and findMax)

e To perform deletion, we access the node to be deleted, which puts the node at the root. If it is deleted,
we get two subtrees, L and R (left and right). If we find the largest element in L, using a findMax
operation, its largest element is rotated to L’s root and L’s root has no right child. We finish the remove
operation by making R the right child of L's root. An example of the remove operation is shown below:

Example: The remove operation applied to node 6:
e First, 6 is splayed to the root, leaving two subtrees;
o A findMax is performed on the left subtree, raising 5 to the root of the left subtree;
e Then the right subtree can be attached (not shown).

@)) ®
——- D—=+=@ O+ O
O 60 @ & 0

@) o &

e The cost of the remove operation is two splays.

97

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Recursion (Time Analysis Revision)
Example 1: Write a recursive method to calculate the sum of squares of the first n natural numbers. nis to
be given as an input.

public int sumOfSquares(int n) {
if (n==1)
return 1;
return (n*n) + sumOfSquares(n-1);

}

Recursion may sometimes be very intuitive and simple, but it may not be the best thing to do.
Example 2: Fibonacci sequence:
F(n) = nif n=0,1 ; F(n)=F(n-1) +F(n-2) ifn>1
0 1 1 2 3 5 8 13
F(0) | F(1) | F(2) | F(3) | F(4) | F(5) | F(6) | F(7)

Solution 1: Iterative
public static int fib1(int n){
if(n<=1) return n;
intfl=0, f2=1, res=0;
for(int i=2; i<=n; i++){
res =f1+f2;
f1=f2;
f2=res;
!
return res;
}
Solution 2: Recursion
public static int fib2(int n){
if(n<=1) return n;
return (fib2(n-1)+fib2(n-2));

Test for n=6 and n=40
Why recursive solution is taking much time?
Do analyze the 2 algorithms in term of calculating F(n)

In Solution 1:
We have F(0) and F(1) given
Then we calculate F(2) using F(1) and F(0)

F(3) using F(2) and F(1)

F(4) using F(3) and F(2)

F(n) using F(n-1) and F(n-2)
98

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
In Solution 2:

F(5)
F(4) F(3)
F(3f// F(2) F(2) F(1)
F(2) F(1) F@1) F0O) F(1) F(0)
F(1) F(0)

Note: we are calculating the same value multiple times!!

n F(2) F(3)
5 3 2
6 5

8 13

40 | 63245986
X

Exponential growth

Time and Space complexity Analysis of recursion
Example: recursive factorial
fact(n){
If (n==0) return 1;
Return n * fact(n-1);
!
e Calculate operation costs:
If statement takes 1 unit of time
Multiplication (*) takes 1 unit of time

O

O

Subtraction (-) takes 1 unit of time
Function call
e So TO0) = 1
T(n) = 3+ T(n-1) forn>0

To solve this equation, reduce T(n) in term of its base conditions.

T(n) =T(n-1) +3
=T(n-2) +6
=T(n-3) +9

O

=T(n-k) + 3k
For T(0) = n-k=0 = n=k
Therefore T(n) T(0) + 3n
1 +3n = 0O(n)

Space analysis:
Recursive Tree
99

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Fact(5) = Fact(4) =2 Fact(3) 2 Fact(2) =2 Fact(1) > Fact(0)

Each function call will cause to save current function state into memory (call stack, push):

Fact(1)
Fact(2)
Fact(3)
Fact(4)
Fact(5)
Each return statement will retrieve previous saved function state from memory (pop):

So needed space is proportionalton = 0O(n)

Fibonacci sequence time complexity analysis
public static int fib2(int n){
if(n<=1) return n;
return (fib2(n-1)+fib2(n-2));
}
e Calculate operation costs:
If statement takes 1 unit of time

(@]

2 subtractions (-) takes 2 unit of time
1 addition (+) takes 1 unit of time
2 function calls
e So T(0) =T(1) = 1
T(n) = T(n-1) +T(n-2)+4 forn>1
To solve this equation, reduce T(n) in term of its base conditions.

O

O

For approximation assume T(n-1) = T(n-2) =>» inreality T(n-1) > T(n-2)
T(n) = 2T(n-2) +4 2> c=4
= 2T(n-2) +c 2> T(n-2)= 2T(n-4)+c
= 2{2T(n-4)+c}+c
= 4 T(n-4) + 3c
= 8 T(n-6) + 7c

= 16 T(n-8) + 15c

2 T(n-2k) +(2k-1)c
ForT(0) = n-2k =0 =» k=n/2
Therefore T(n) = 2"27(0)+(2"%-1)c > 2"% (1+c) - ¢
T(n) is proportional to 2"? > O(Z"/Z) € lower bound analysis

Similarly, for approximation assume T(n-2) = T(n-1) =>» inreality T(n-2) < T(n-1)

STUDENTS-HUB.com Uploaded By: anonymous

100

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
T(n) = 2T(n-1) +c > T(n-1)= 2T(n-2) +c
= 2{2T(n-2)+c}+c
= 4 T(n-2) +3c
= 8 T(n-3)+7c
= 16 T(n-4) + 15c

= 2X T(n-k) +(2"-1)c
ForT(0) = n-k =0 = k=n
Therefore T(n) =2"T(O)+(2"-1)c = 2" (1+c) - ¢
T(n) is proportionalto 2" 2> 0(2") <€ upper bound analysis = worst case analysis

While for iterative solution = O(n)

Recursion with memorization

Solution: don’t calculate something already has been calculated.

Algorithm:
fib(n){
If (h<=1) returnn
If(F[n] is in memory) return F[n]
F[n] = fib(n-1) + fib(n-2)
Return F[n]
}

Time complexity = 0O(n)
Calculate X" using recursion

lterative solution: O(n) Recursive solution 1: O(n) Recursive solution 2: O(log n)
X" = XEXEXEX* L *X X" = X*X"ifn>0 X" = XV2* X" if nis even
n-1 multiplication X*=1 ifn>0 X" = X * X" if nis odd
X’=1 ifn>0
res=1 pow(x, n){ pow(x, n){
fori€<1ton if n==0 return 1 if n==0 return 1
res € res * x return x * pow(x, n-1) if N%2==0{
} y € pow(x, n/2)
returny *y
}
return x * pow(x, n-1)
}

101

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Recursive solution 1: Time analysis

T(1) =1
T(n) = T(n-1)+c
= (T(n-2) +c)+c = T(n-2)+2c
= T(n-3) + 3c
= T(n-k) + kc
ForT(0) = n-k=0=> n=k
T(n) =T(0) +nc & 1+nc & O(n)

Recursive solution 2: Time analysis

o X" = XV2x X2 if nis even
o X" = x*x™! if nis odd
e X" =1 if n==
e X" = X*1 if n==

If even=>» T(n) = T(n/2) +cl
Ifodd=>» T(n) = T(n-1) +c2
If 0> T(0) = 1
If 1 T(1) =c3

If odd, next call will become even:
T(n) = T((n-1)/2) +cl+c2

If even

T(n) = T(n/2) +c
= T(n/4) + 2c
= T(n/8) + 3c
= T(n/2" +kc

ForT(1)=» T(0) +c = 1
n2=1=> n=2 > k =logn
=c3 + c log n = O(logn)

102

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Hash Tables

* Hashing: is a technique that determines element index using only element’s distinct search key.

* Hash function:

= Takes a search key and produces the integer index of an element in the h
= Search key-maps, or hashes, to the index.

ash table.

Example 1: Phone numbers (xxx-xxxx).

+ Bad: first three digits. // identical for same area
* Better: last four digits. // distinct
Example 2: Social Security numbers (ID number).

* Bad: first three digits. // identical for same period

o h(555-1214) == =ens >
* Better: last three digits. // distinct

0——>\\1 50 Main Street

Practical challenge: Need different approaches for each key type.

Simple algorithms for the hash operations that add and retrieve:

Algorithm add(key, value)

1 Key Hash table

hashTable[index] value
Algorithm getValue(key)
return hashTable|

Typical Hashing

Typical hash functions perform two steps:

1. Convert search key to an integer called the hash code.
2. Compress hash code into the range of indices for hash table.

Algorithm getHashIndex(phoneNumber)

return

» Typical hash functions are not perfect:

= Can allow more than one search key to map into a
single index.
® Causes a collision in the hash table.
Example: Consider table (array) size = 101

» getHashindex(555-1264) = 52 h(5551264) ==-=-- >

e—1 > 150 Main Street)

o
* getHashindex(555-8132) = 52 also!!! h(S) ==

Collision

ash table

STUDENTS-HUB.com UpIoaoTed By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Hash Functions
* A good hash function should:
= Minimize collisions
= Be fast to compute
* Toreduce the chance of a collision

* Choose a hash function that distributes entries uniformly throughout hash table.

Java’s hash code conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int.
Default implementation: Memory address.
Customized implementations: Integer, Double, String, File, URL, Date, ...
User-defined types: Users are on their own.

Java library implementations:
Integer public final class Integer
{

private final int value;

public int hashCode()
{ return value; }

}

Boolean public final class Boolean
{

private final boolean value;

public int hashCode()

{
if (value) return 1231;

else return 1237;

}

Double public final class Double
{

private final double value;

public int hashCode()

{
Tong bits = doubleToLongBits(value);
return (int) (bits A (bits >>> 32));

X |
|

convert to |EEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

STUDENTS-HUB.com Uploaded By

104

. anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
String public final class String

{

private final char[] s;

public int hashCode()

{
int hash = 0; 'a' 97
for (int i = 0; i < lengthQ; i++)
hash = s[i] + (31 * hash); b 98
return hash; '\ o' 99
} ith character of s

}

Horner's method to hash a String of length L:
h=s[0] =315 ...+ s[E-3] - 312 + S[E-2]° 31" -+ s[L—1]:31%

Example:
String s = "call"; C a] 1
int code = s.hashCode(); «—— 3045982 =99-313 +97-312+ 108-31' + 108-31°

=108 +31-(108 + 31 - (97 + 31 - (99)))

Implementing hash code: user-defined types
Hash code design
"Standard" recipe for user-defined types:

* Combine each significant field using the 31x + y rule.
* If field is a primitive type, use wrapper type hashCode().
* If field is null, return O.
* If field is a reference type, use hashCode().
- If field is an array, apply to each entry. < or use Arrays.deepHashCode()

Example:

public final class Transaction {
private final String who;
private final Date when;
private final double amount;

public int hashCode()

{ g

int hash = 17: for reference types,

hash = 31*hash + who.hashCode(): use hashCode()
hash = 31*hash + when.hashCode(); <« for primitive types
hash = 31*hash + ((Double) amount).hashCode(); s hashcoda O '

return hash; of wrapper type

nonzero constant

&

} typically a small prime

105

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Compressing a Hash Code
Hash code: An int between -2! and 2% - 1.

Hash function: returns an int between 0 and M-1 (for use as array index).
* Common way to scale an integer

» Use Java % operator = hash code % m
* Avoid m as power of 2 or 10
+ Best to use an odd number for m
» Prime numbers often give good distribution of hash values

private int hash(Key key)
{ return (key.hashCode() & Ox7fffffff) % M; }

Resolving Collisions
* Collisions: Two distinct keys hashing to same index.
* Two choices:
= Change the structure of the hash table so that each array location can represent more than one
value. (Separate Chaining)
= Use another empty location in the hash table. (Open Addressing)

Separate Chaining
» Alter the structure of the hash table:
= Each location can represent more than one value.

» Such alocation is called a bucket
* Decide how to represent a bucket: list, sorted list; array; linked nodes; vector; etc.

Node

~4—Cp | ¢
1A
COCO O

Key Value

Hash table
Where to insert a new entry into a linked bucket?
(a) If unsorted (apply 90-10 rule): add new entry to the beginning of chain

. (20)
oy

o——><45 0——><31 ')

Hash table

106

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
(b) If sorted:

When search keys are distinct,
. add an entry in sorted order to --

. a sorted chain

2—~G[[5G [=~GE 12

Hash table
Time Complexity
Worst case: all keys mapped to the same location = one long list of size N
Find(key) = O(n) ®
Best case: hashing uniformly distribute records over the hash table = each list long = N/M = a
(ais load factor)
Find(key) 2 O(1+a) ©
Design Consequences
* M too large = too many empty chains.
* M too small = chains too long.
- Typical choice: M = N / 5 = constant-time ops.

Open Addressing
» Linear Probing

* When a new key collides, find next empty slot, and put it there.
* Hash: Map key to integer k between 0 and M-1.
* Insert: Put at table index k if free; if not try k+1, k+2, etc.
= |f reaches end of table, go to beginning of table (Circular hash table)
+ Hash function: h(k, i) = (h(k, 0)+i) % m
* Array size M must be greater than number of key-value pairs N.
Example: Linear hash table demo: take last 2 digits of student’s ID and run a demo
0 | 2 3 4 5 6 7 8 9

st[]

Clustering problem: A contiguous block of items will be easily formed which in turn will affect
performance.

Knuth’s Parking Problem

= Model: Cars arrive at one-way street with M parking spaces. If space k is taken, try k+1, k+2, etc.
displacement = 3

- 1
) @)))))

Parameters.

]

« Mtoo large = too many empty array entries.
« Mtoo small = search time blows up.

probes for search hit is about 3/2
probes for search miss is about 5/2

+ Typical choice: o = N/M ~ Y. «—
107

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

» Quadratic Probing

* Linear probing looks at consecutive locations beginning at index k
Quadratic probing, considers the locations at indices k + j>

= Usestheindicesk, k+1,k+4,k+9, ...

~

k k+1 k + 22 k + 32 k + 42

e Hash function: h(k, i) = (h(k , 0)+i’) % m

e For linear probing it is a bad idea to let the hash table get nearly full, because performance
degrades.

e For quadratic probing, the situation is even worse: There is no guarantee of finding an empty cell
once the table gets more than half full, or even before the table gets half full if the table size is not
prime.

e Standard deletion cannot be performed in a probing hash table, because the cell might have
caused a collision to go past it. (instead soft deletion is used)

Double Hashing

* Linear probing and quadratic probing add increments to k to define a probe sequence
= Both are independent of the search key

* Double hashing uses a second hash function to compute these increments
= This is a key-dependent method.
» The 2" hash function must never evaluate to zero.

h(k,i) = (hy(k) +ihyKk)) % m
(J (|
\‘m different hash functions
@ ®) (¢)

0 0 0
1 1 1

2

ro

h,(16) sees>2

>d
)

h,(16) + 2 hy(16) ====>3
1 4 1

d

N
wn

6 /ll(l(u) -~ h:(l()).--.>(, 6

The 1* three locations in a probe sequence generated by double hashing for the search key 16

108

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Potential Problem with Open Addressing
* Note that each location is either occupied, empty (null), or available (removed)
= Frequent additions and removals can result in no locations that are null

* Thus searching a probe sequence will not work
e Consider separate chaining as a solution

Time Complexity
Worst case: O(n)

Average case:

i
Number of probes < — o =n/m

if.f.« 1 (i.,e.n-m)

If the table is 50% full, « = 0.5
Number of probes <2

If the table is 80% full, « = 0.8
Number of probes <5

a—1 (near full space utilization), Performance)

Rehashing

e [f the table gets too full, the running time for the operations will start taking too long and insertions
might fail for open addressing hashing with quadratic resolution.

e A solution, then, is to build another table that is about twice as big (with an associated new hash
function) and scan down the entire original hash table, computing the new hash value for each (non-
deleted) element and inserting it in the new table.

e This entire operation is called rehashing.
o This is obviously a very expensive operation; the running time is O(N), since there are N

elements to rehash and the table size is roughly 2N, but it is actually not all that bad, because it

happens very infrequently.

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Priority Queues (Heaps)
A priority queue is a data structure that allows at least the following two operations:
e Insert: which does the obvious thing;

e deleteMin (or deleteMax): which finds, returns, and removes the minimum (or maximum) element in
the priority queue.
Simple Implementations:
e Unsorted Linked list, performing insertions at the front in O(1) and traversing the list, which
requires O(N) time, to delete the minimum/maximum.
e Sorted Linked list, performing insertions in O(N) and O(1) to delete the minimum/maximum.
e Binary search tree: this gives an O(log N) average running time for both operations.

Binary Heap
A heap is a binary tree that is completely filled, with the possible exception of the bottom level, which
is filled from left to right. ! =
Such a tree is known as a complete binary tree.

A complete binary tree of height h has between
2" and 271 nodes.

Heap representations

As complete binary tree is so regular, therefore, it can be represented as an array:

i 0 1 2 3 4 5 6 7 8 91011
a[il] - T S R P N O A E I H G

- Parent of node at i is at i/2.
« Children of node at i are at 2i (left child) and 2i+1 (right child).

Heap-order property:

e Inamin heap, for every node X, the key in the parent of X is smaller than (or equal to) the key
in X, with the exception of the root (which has no parent). Therefore, the minimum element
can always be found at the root.

e Inamax heap, for every node X, the key in the parent of X is larger than (or equal to) the key

in X, with the exception of the root (which has no parent). Therefore, the maximum element
can always be found at the root.

110

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Interface for the max-heap

public interface MaxHeapInterface<T extends Comparable<? super T>>

{
pubiic void add(T newEntry);
public T removeMax();
public T getMax();
public boolean isEmpty();
public int getSize();
public void clear();

}
An Array to Represent a Heap

90 | 80 § 60| 70 | 30 | 20

N
(=]

10 | 40

Promotion (&2.5) in a max heap

Scenario: Child's key becomes larger than its parent's key.
To eliminate the violation:
* Exchange key in child with key in parent.
* Repeat until heap order restored.
Example:

) © ®

violates hc‘:fp order
(larger key than parent)
Pls . .I 9

private void swim(int k)

{
while (k > 1 & less(k/2, k))
{
exch(k, k/2);
k = k/2;
} =
} parent of node at k is at k/2

111

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Insertion in a max heap
Insert: Add node at end, then swim it up.
Cost: At most 1 +log N compares.
Example 1:insert S

add kt':l." to ."In!p
violates hmp order 9

public void insert(Key x)
{

pq[++N] = x;

swim(N) ;

Example 2: insert 85

Method 1: The steps in adding 85 to the previous max-heap

() (b) (©

(%) (%) (%0
(30) (60) © (60) (8 ()
@M O® ® m @O © @© 0 ©
OXOIO, (19 @) OXOIO

Method 2: A revision of the steps shown in the previous figure, to avoid swaps:

112

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

(d)
(%)

The following figures shows array representation of the steps in the previous figures:

(a)

| Joo[so|[e]70[3|20]so[w]awo] | [|s=>3

0 1 2 3 4 5 6 7 8 9 10 11 12
(10/2)
(b)
[[oo]s]e 7] [20[s0]w]4a]3] | | Moeso
o 1 2 3 4 5 6 7 8 9 1w u B
(c)

[Joo[s]e[7] J20]so[w]aw|[3] [|s=>s

0 1 2 3 4 5 6 7 8 9 10 11 12
(572)

| [90 | [60]70] 80]20[s0]10]40]30] | | Move 80
o 1 2 3 a4 5 6 7 8 9 10 1u 12

(e)

| || Je[7o]s0]2o[so[w]a]z] [|s<wn
0 1 2 3 B 5 6 7 8 9 10 11 12

(2/2)

(H

[[oo]|ss]eo[70]s |20]s0]1w]4[30] | | nsenss
o 1 2 3 4 5 6 7 8 9 10 1 12

113

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Demotion (45, JI) in a max heap

Scenario: Parent's key becomes smaller than one (or both) of its children's.
To eliminate the violation:
* Exchange key in parent with key in larger child.
* Repeat until heap order restored.
Example 1:

l'i:uhfr'i.‘.\ JJ('HP ||f'(h'1" o
(s aller t} a child)
maiier than a chile 2 0
(py 2 @ ®
10
® O'® ©
G o > Top-down reheapify (sink)

private void sink(int k)

{

5 5 _ children of node at k
while (2*k <= N) are 2k and 2k+1

{
Nt i = 2tk // t/
if (3 < N & less(j, j+1)) j++;
if (!less(k, j)) break;
exch(k, j);
k =3;

}

Delete the maximum in a max heap (Removing the root)
Delete max: Exchange root with node at end, and then sink it down.
Cost: At most 2 log N compares.
Example 1: delete T

remove the maximum
Ra\ to remove Y iolates

HJJP:’I'(!I;.’
e sink down
S
0 :'b (NJ (P) 0 ®
h k
S SO B it s

public Key delMax()
{
Key max = pq[1];
exch(l, N--);
sink(1);
pq[N+1] = null; «—f— prevent loitering
return max;
}

114

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Example 2: delete root (max)

(85) (60)
O ONONNC)
19 @ @

(a) . (b) @

(8) (60) (8) (60)
() @ @ @) @
OXOIO (19 ()

(d)

© ® ®

(30) (60) (80 (60
)) @ @ () O ® ©
(19 @ (1) ()

Creating a Heap

The steps in adding 20, 40, 30, 10, 90, and 70 to an initially empty heap
@) ® ®
ORC
@) @
@ W
@ @
®
@
@ ® @

115

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>
{
private Key[] pq;
private int N;
public MaxPQ(int capacity) «—4 fixed capacity
{ pq = (Key[]) new Comparable[capacity+1]; } OrSimpacey)
public boolean isEmpty() » L PQops
{ return N == 0; }
public void insert(Key key)
public Key delMax()
{ /* see previous code */ }
private void swim(int k)
private void sink(int k) «——+— heap helper functions
{ /* see previous code */ }
private boolean less(int i, int j)
{ return pq[i].compareTo(pq[j]) < 0; }
private void exch(int i, int j) <——F— array helper functions
{ Key t = pq[il; pqli]l = pq[jl; pqlj]l = t; }
}

116

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016

Prepared by: Dr. Mamoun Nawahdah
HeapSort

Basic plan:

* Create max heap with all N keys.
* Repeatedly remove the maximum key.

Heapsort demo:

First pass. Build heap using bottom-up method:

Array in arbitrary (random) order
S (R |TI|E X A TM

PIIL ' E
1 2 3 4 5 6 7

8 9 10 11 N=11

for (int k = N/2; k >= 1; k--)
sink(a, k, N);

sink(5, 11)

starting point (arbitrary order)

> >
sink(4, 11) sink(3, 11)
® ® s
sink(2, 11)
(T)
& (L)
m @ e e > result (heap-ordered)

117
STUDENTS-HUB.com

Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
e Second pass:
o Remove the maximum, one at a time.
o Leave in array, instead of nulling out.

while (N > 1)

{
exch(a, 1, N--);
sink(a, 1, N);

}
exch(1l, 11) exch(l, 10)
sink(1, 10) sink(1, 9)
(S)
R) &
®® ® x
exch(1l, 9) exch(1l, 7)
sink(1, 8) Efﬁtﬁ ?% (P) O

sink(1, 6)
) E) () C;®
(M) L ©® ® (A) L P
R

exch(l, 6) exch(l, 5) exch(1, 4) e
sink(1, 5) 4 sink(1, 4) sink(1, 3) G

@/ 0 ®/ M L

1
A
h(l, 2 Q)
exch(l, 3) ® ket B

S"il'lk(l. 2)@/ EE 3E
E E

4L 5 M 6 7

BR 95 IDT 11x

result (sorted)

118

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Heapsort: trace

ali]

N k 0 1 2 3 4 5 6 7 8 91011
initial values S O RTEXA AMUPL E
11 5 L E E
11 4 T M P

11 3 X R A

11 2 T P L M O

11 1 X T S R A
heap-ordered X T S P L RAMUOE E
10 1 T P S O L M E X
9 1 S P R E A 1]

8 1 R P E E A S

7 1 P O E M L R

6 1 O M E A L P

5 1 M L E A E O

4 1 L E E A M

3 1 E A E L

2 1 E. ‘A E

1 1 A E

sorted result A EELMOWPRISTX

Heapsort trace (array contents just after each sink)

Heapsort: mathematical analysis
e Heap construction uses £2 N compares and exchanges.
e Heapsort uses <2 N Ig N compares and exchanges.

Heapsort Significance: In-place sorting algorithm with N log N worst-case.
Heapsort is optimal for both time and space, but it makes poor use of cache memory and not stable.

119

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Heapsort: Java implementation

int N = a.length-1;

for (int k = N/2; k >= 1; k-)
sink(a, k, N);

while (N > 1)

{
exch(a, 1, N);
sink(a, 1, --N);

}

120

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note

2016
Sorting

In Place vs. not in Place Sorting

Prepared by: Dr. Mamoun Nawahdah

In place sorting algorithms are those, in which we sort the data array, without using any

additional memory.

What about selection, bubble, insertion sort algorithms?
e Well, our implementation of these algorithms is IN PLACE.

e The thing is, if we use a constant amount of extra memory (like one temporary

variable/s), the sorting is In-Place.

But in case extra memory (merging sort algorithm), which is proportional to the input data size, is
used, then it is NOT IN PLACE sorting.
e But because memory these days is so cheap, that we usually don't bother about using

extra memory, if it makes the program run faster.

Stable vs. Unstable Sort

3| 52| 1|5 |10 UnsortedArray
1 2 3 5 5 110 Stable sort
1 2 3 | 5| 5 | 10| UnstableSort

Example: Insertion Sort Code:

public void sort(int[] data) {

for (int i =0@; i < data.length; i++) {

int current = data[i];
int j = 1-1;

while (j >=0 &8&| data[j] > current)| {

data[j+1] =
J==3
}

data[j+1] = current;

}

o

public void sort(int[] data) {

for (int i =0@; i < data.length; i++) {

int current = data[i];
int j = i-1;

while (j >=@

data[j] >= current)| {|

data[j+1] =
3==3
}

data[j+1] = current;

on

b

STUDENTS-HUB.com

121

Uploaded By: anonymous

Data Structure: Lectures Note

2016 Prepared by: Dr. Mamoun Nawahdah
Example:
_V
(e(e)
oP
2= g
Unsorted Array 1) Sorted By Age
Name Age Name Age
Bob 25 Stuart 21
Kevin 24 Kevin 24
Stuart 21 Bob 25
Kevin 28 Kevin 28
2) Sorted By 3) Sorted By Name
Name (Stable) (Unstable)
Name Age Name Age
Bob 25 Bob 25
Kevin 24 Kevin 28
Kevin 28 Kevin 24
Stuart 21 Stuart 21
http://www.sorting-algorithms.com/
7~ ~ =~ ~ ~ ~ ~ ~ ~
o Insertion | Selection | Bubble | Shell Merge Heap Quick | Quick3
~ = = (= = = = ==
L — e — — —— — — —
Papdom | E=—=— | == = | BB | == == | =
~ = = = = = = = =
o = = = = —— = = =

Reversed

~
L=

Few Unique

WI lr l 'fllIIHH

m‘l! [\ | "“HHH

| |I H '“ ',ﬁl[l””

(VNN |0

||| M ‘l "HIIHH

ll Iff “”llm

TR
s

STUDENTS-HUB.com

122

Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Selection Sort

e Initeration i, find index min of smallest remaining entry.
e Swap afi] and a[min].

Demo:
14‘4 !2:‘: RO S 24‘4. ah &2 2:: FOSE S
bl e || * & | s 2adlla s
v ot (e¥e (vt | vl el v T e e
Java implementation:
public class Selection
{
public static void sort(Comparable[] a)
{
int N = a.length;
for (int i = 0; i < N; i++)
{
int min = 1i;
for (int j = i+1; j < N; j++)
if (less(a[jl, a[min]))
min = j;
exch(a, i, min);
}
}

private static boolean less(Comparable v, Comparable w)
{ /* as before */ 1}

private static void exch(Comparable[] a, int i, int j)
{ /* as before */ }
}

Mathematical analysis:
e Selection sort uses (N=1) + (N=2) +... + 1 + 0 = N°/2 compares and N exchanges.

a[] B
Trace of selection sort: i min i2 345 67 8 9ig e
e Running time insensitive 0O RTEIXAMPL E/’ e suinimunt
to input: Quadratic 0 6 O RTEXAMPLE o
o o o . 1 4 0 R T E X S M P L E entries mn rei
ime, even if input i are afwin]
tggEve putis 2 10 R TOXSMPIL E‘/
sorted. 3 9 T OX SMPLR
e Data movement is 4 7 0 X SMPTR
inimal: Li 5 7 X S 0P TR
minimal: Linear 6 8 S ¥ P T R
number of 7 10 X S TR
8 8 S M X
exchanges.
9 9 I ’X/ in final position
10 10 X
A EELMOZPRSTX

Trace of selection sort (array contents just after each exchange)

123

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Insertion Sort

e Initeration i, swap afi] with each larger entry to its left.

Demo:
14‘4 E:‘: RS S Y 24‘4 ab & 2 2:: o &
& & - L L &*& *4’ & &
vl (V) (vl | eY vl e VY| v
Java implementation:
public class Insertion
{
public static void sort(Comparable[] a)
{
int N = a.length;
for (int i = 0; i < N; i++)
for (int j =1; j > 0; j--)
if (less(aljl, alj-11))
exch(a, j, j-1);
else break;
}

private static boolean less(Comparable v, Comparable w)
{ /* as before */ }

private static void exch(Comparable[] a, int i, int j)
{ /* as before */ }
}
Mathematical analysis:

e To sort a randomly-ordered array with distinct keys, insertion sort uses = 4N’ compares and
= %N° exchanges on average.
e Expect each entry to move halfway back.

Trace of insertion sort:
e Best case: If the array is af]
i 0 2 3

. . i 3 1 4 5 6 7 8 910
in ascending order, _
insertion sort makes N-1 3 RCT B CATN R L R
compares and 0 1.0 S
exchanges 2 1 s
ges. . 3 3 T
e Worst case: If the array is 4 0 EOUR S T entry in red
. . 1salijl
in descending order (and 5 5 X :
no duplicates), insertion 6 0 A E OR ST X
sort makes = %N’ 7 2 M O0ORSTX entries in black
Compares and ~ %Nz 8 4 P R S T X !Hf.’\}'(':lrrm!g.‘ position
righnt for msertion
exchanges. 9 2 L M OPRSTX g
. 10 2 MO P R S T X
e For partially-sorted
. . A E E L IMEEgs PR S T X
arrays, insertion sort runs
in linear time. Trace of insertion sort (array contents just after each insertion)

124

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note

Shell Sort

2016

Prepared by: Dr. Mamoun Nawahdah

Idea: Move entries more than one position at a time by h-sorting the array.

an h-sorted array is h interleaved sorted subsequences:

h=4
LECE ACM H L E RS O L TS X R

L

P T

0 X

E L R

Shell sort: [Shell 1959] h-sort array for decreasing sequence of values of h.
SO HE L

input

13sot P H E L
L E E A
A E E E

4-sort

1-sort

L

I
M
H

5

S
H
L

O RTEXAMZP L E

B R T E X A MS L E
L E P S5 @ L T S5 X R
L LMOPR RS STX

How to h-sort an array? Insertion sort, with stride length h.

3-sorting an array

M
g

A

Shell sort example: increments 7, 3, 1

STUDENTS-HUB.com

input

S 0ORTE X

7-sort

5 O R F'E

3-sort

M 0 L

m

0O L EEXASPRT

E

M

0

E L E D

= (L
0
0 P
M O P
S
50X
R § X

result
A 'E E L MOPRS T X

125

Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Shell sort: which increment sequence to use?

e Powersoftwo: 1, 2, 4,8, 16,32, ... No
e Powers of two minus one: 1, 3, 7, 15, 31, 63, ... Maybe
e 3x+1:1,4, 13,40, 121, 364, ... OK. Easy to compute

Java implementation

int h = 1; 3x+1 increment
while (h < N/3) h = 3*h + i I f/ 1, 4, 13, 40, 121, 364, ... sequence

for (nt 'i - h; i < N; i++)

{ insertion sort
for (int j = i; j >= h & less(a[jl, alj-h1); j -= h)
exch(a, j, j-h);
move to next
increment

Analysis
e The worst-case number of compares used by shell sort with the 3x+1 increments is O(Na/z).

126

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Merge Sort

e Divide array into two halves.
e Recursively sort each half.
e Merge two halves.

impt M E R G E S O R TEX A MUP L E
sortlefthaf E E G M O R R S

sort right half A E E L MP T X

mergeresults A E E E E G L M M O P R R S T X

Mergesort overview

Java implementation:

Merging:
private static void merge(Comparable[] a, Comparable[] aux, int 1o, int mid, int hi)
{
assert isSorted(a, 1o, mid); // precondition: a[lo..mid] sorted

assert isSorted(a, mid+l, hi); // precondition: a[mid+1..hi] sorted

for (int k = 1o; k <= hi; k++)

aux[k] = a[k]; copy
int i = lo, j = mid+1;
for (int k = lo; k <= hi; k++) merge
{

if (i > mid) alk] = aux[j++];

else if (j > hi) alk] = aux[i++];

else if (less(aux[j], aux[i])) a[k] = aux[j++];

else alk] = aux[i++];
}
assert isSorted(a, 1o, hi); // postcondition: a[lo..hi] sorted

}
10 i mid j hi

aux[]AGLORlHIMST

k
al]l AN RGH RHN ST N

127

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Java implementation:

Merge Sort:
public class Merge
{
private static void merge(...)
{ /* as before */ }

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{

if (hi <= 10) return;

int mid = To + (hi - 10) / 2;

sort(a, aux, lo, mid);

sort(a, aux, mid+1l, hi);

merge(a, aux, lo, mid, hi);

}

public static void sort(Comparable[] a)

{
aux = new Comparable[a.length];
sort(a, aux, 0, a.length - 1);

Merge Sort: trace

a[]
To hi 0 1 2 3 4 5 6 7 8 910 11 12 13 14 15
\ /MERGESORTEXAMPLE
merge(a, aux, 0, 0, 1) E M
merge(a, aux, 2, 2, 3) G R
merge(a, aux, 0, 1, 3) E G MR
merge(a, aux, 4, 4, 5) E S
merge(a, aux, 6, 6, 7) 0 R
merge(a, aux, 4, 5, 7) E O R S
merge(a, aux, 0, 3, 7) E E GMOURR RS
merge(a, aux, &, 8, 9) ES T
merge(a, aux, 10, 10, 11) A X
merge(a, aux, 8, 9, 11) A E T X
merge(a, aux, 12, 12, 13) M P
merge(a, aux, 14, 14, 15) E L
merge(a, aux, 12, 13, 15) E L M P
merge(a, aux, 8, 11, 15) A E ELMPTX
merge(a, aux, 0, 7, 15) A EEEEGLMMOUPRR RSTX

Merge Sort: Empirical Analysis

insertion sort (N2) ‘ mergesort (N log N)
computer | thousand million billion 1 thousand ‘ million ‘. billion
home instant 2.8 hours 317 years instant 1 second 18 min
super instant 1 second 1 week instant instant instant

Good algorithms are better than supercomputers.

128

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Divide-and-conquer recurrence: number of compares

D(N) N =N
D(N/2) D(N/2) 2(NI2) =N
D(N/4) D(N{4) D(N/4) D(N/4) 4 (N/4) =N

2k (N2Y) =N

\

pP(2) D@ PR DR DR bR DR DO NI2(2) =N

Nlg N

Merge Sort analysis: memory (array accesses)
e Mergesort uses extra space proportional to N.
e The array aux[] needs to be of size N for the last merge.

Practical Improvements:

e Use insertion sort for small subarrays:
o Mergesort has too much overhead for tiny subarrays.
o Cutoff to insertion sort for = 7 items.

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
if (hi <= 1o + CUTOFF - 1)
{
Insertion.sort(a, lo, hi);
return;
}
int mid = 1o + (hi - To) / 2;
sort (a, aux, lo, mid);
sort (a, aux, mid+l, hi);
merge(a, aux, lo, mid, hi);

e Stop if already sorted:
o Is biggest item in first half < smallest item in second half?
o Helps for partially-ordered arrays.

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{

if (hi <= 10) return;

int mid = 1o + (hi - 10) / 2;

sort (a, aux, lo, mid);

sort (a, aux, mid+l, hi);

if (!less(a[mid+1], a[mid])) return;

merge(a, aux, lo, mid, hi);

129

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

e Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the
input and auxiliary array in each recursive call.

switch roles of aux[] and a[]

Complexity of sorting
+ Compares? Mergesort is optimal with respect to number compares.
Space? Mergesort is not optimal with respect to space usage.

130

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Bottom-up Merge Sort
Basic plan:

o Pass through array, merging subarrays of size 1.
o Repeat for subarrays of size 2, 4, 8, 16,

a[i]

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15
e M ERGESORTEIXAMPLE
merge(a, aux, 0, 0, 1) E M
merge(a, aux, 2, 2, 3) G R
merge(a, aux, 4, 4, 5) E S
merge(a, aux, 6, 6, 7) 0 R
merge(a, aux, 8, 8, 9) E T
merge(a, aux, 10, 10, 11) A X
merge(a, aux, 12, 12, 13) M P
merge(a, aux, 14, 14, 15) EalE
sz2=2
merge(a, aux, O, 1, 3) E G M R
merge(a, aux, 4, S5, 7) E O R S
merge(a, aux, 8, 9, 11) A ETX
merge(a, aux, 12, 13, 15) E L M P
sz2=4
merge(a, aux, 0, 3, 7) E E GMORR RS
merge(a, aux, 8, 11, 15) A EELMPT X
sz=8

merge(a, aux, O, 7, 15) A E E E E G L M M O P RRSTX

Java implementation
public class MergeBU

{
private static void merge(...)
{ /* as before */ }
public static void sort(Comparable[] a)
{
int N = a.length;
Comparable[] aux = new Comparable[N];
for (int sz = 1; sz < N; sz = sz+s2)
for (int 1o = 0; 1o < N-sz; To += sz+sz)
merge(a, aux, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
}
}

131

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Quick Sort

Basic plan:
o Shuffle the array. (shuffle needed for performance guarantee)
o Partition so that, for some j
— entry afj]is in place
— no larger entry to the left of j
— no smaller entry to the right of j
o Sort each piece recursively.

imput Q U I C K S O R TE X A M P L E

shuffle K AT ELEPUIMOQECXDO0O S
partitioning item

partition E C A I E K L P U T M Q R X 0 S
™ ot greater not less =~

sortleft A C E E I

sort right L MO0 P QRS TUX
resut A C E E I K L M O P QRS TUX
>

public shotic vod quickantiehar() o, it b, i ighe
et |,
wher %,y
i ey

ks et o 75

Quicksort t-shirt
Quicksort partitioning demo
Repeat until i and j pointers cross.
* Scani from left to right so long as (a[i] < a[lo]).
+ Scan j from right to left so long as (a[j] > a[lo]).
+ Exchange afi] with afj] .

K R A nE E L E P U | M Q C X (0] S
A t
lo i J

When pointers (i and j)cross.
+ Exchange aflo] with afj] .

132

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

Quicksort: Java code for partitioning

while (Tess(a[++i], a[l0])) find item on left to swap
if (i == hi) break;
I while (less(a[lo], a[--j]1))

find item on right to swap
if (j == 10) break;

before |V duing [v[<v || =v | ater | zv
5 ' T o
4

StdRandom.shuffle(a);
sort(a, 0, a.length - 1);

if (hi <= 1o0) return;
int j = partition(a, lo, hi);
sort(a, lo, j-1);

j+1, hi);

133

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Quicksort trace

lo j hi 0 1 2 3 4 S5 6 7 8 91011 12 13 14 15
initial values Q UI CKJSORTEIXAMPLE
random shuffle K RATETLTEZPUTIMOQTCIXUOS

0 5 15 E C A I E KL P UTMOQRIXUO S

0 3 4 E CAE I

0 2 2 A CE

0 0 1 A C

€
I
”/6615 L PUTMAOQRIXUOS
;_f;f::;f"{::f{_ 7 9 15 M OPTOQRXU S
tl{flsi?i.‘l'”."‘\m.__‘ ' 7 8 M g

10 13 15 S QR T U

10 12 12 R @ S

10 11 11 Q R

Q
14 14 15 U X
X
result A CEETIKLMOTPOQRSTUX

Quicksort trace (array contents after each partition)

Quicksort: Empirical Analysis

insertion sort (N2)

mergesort (N log N) quicksort (N log N)

computer | thousand million billion thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min

super instant 1 second 1 week instant instant instant inslaLt instant instant

Quicksort: Compare analysis

Best case: Number of compares is = N log N
al]

lo j hi 0 1 2 3 4 5 6 7 8 9 1011 12 13 14
lmtrIIvalues HACUBT FEGDTULI K J NMDO
randomshufie H A C B F E G D L I K J N M O
0 7 14 DACGBFEGHTLI K J NMDO
0O 3 6 B ACDTFETG
01 2 A B C
A
e
4 5 6 El 'R G
E
G
8 11 14 J I KL NMO
8 9 10 I 1 K
|
K
12 13 14 M N O
M
(o]
A B CDEFGHII J KLMNDO

134

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

. 2
Worst case: Number of compares is = 4N
a[]

lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
initialvalues A B C D E F G H I J KL MNO
randomshufle A B C D E F G H | J K L M N O
0 0 14 A B CDETFGHI J KLMNDO
1 1 14 [%B CDEFGHI JKLMNDO
2 2 14 CDEFGHI J KLMNDO
3 3 14 DEFGHI J KLMNDO
4 4 14 EFGHI J KLMNDO
5 5 14 F GH I J KLMNDO
6 6 14 GHI1 J KLMNDO
7 7 14 H 1 J KLMNO
8 8 14 | J] KL MNO
9 9 14 J K LMNO
10 10 14 K LMNO
11 11 14 L MNO
12 12 14 M N O
13 13 14 N O
0

A BCDETFGHTI J KLMNDO

Average-case analysis: Complicated =» 2N log N

Quicksort: summary of performance characteristics
Worst case: Number of compares is quadratic.
* N+(N-1)+(N-2)+...+1=%N
* but this rarely to happen.
Average case: Number of comparesis=1.39NIg N
* 39% more compares than Mergesort
+ But faster than Mergesort in practice because of less data movement.
Random shuffle
+ Probabilistic guarantee against worst case.
Quicksort is an in-place sorting algorithm.
Quicksort is not stable.

135

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Quicksort: practical improvements
1- Insertion sort small subarrays:
* Even quicksort has too much overhead for tiny subarrays.
* Cutoff to insertion sort for = 10 items.
* Note: could delay insertion sort until one pass at end.
private static void sort(Comparable[] a, int 1o, int hi)

{
if (hi <= 1o + CUTOFF - 1)
{
Insertion.sort(a, lo, hi);
return;
}
int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);
}

2- Median of sample:
* Best choice of pivot item = median.
* Estimate true median by taking median of sample.
private static void sort(Comparable[] a, int lo, int hi)

{

Tif (hi <= 10) return;

int m = median0f3(a, lo, 1o + (hi - 10)/2, hi);
swap(a, lo, m);

int j = partition(a, Tlo, hi);

sort(a, lo, j-1);
sort(a, j+1, hi);

136

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah
Counting Sort

If we know some information about data to be sorted (e.g. students’ marks [Range 55 to 99]), we can
achieve linear time sorting

Example: assume data range from 1 to 10

resobalalalebdodadeal
g3 23 4 5 6 7 8 9 10

|
cdalalalslolalelolrfsfolofnle

Time analysis:

Data
n Writes
m—»—

k k+1Reads

Note: K is typically small comparing ton

Bad Situation: what if Kis larger than n ??

100 Elements
0-1000

Create a temporary array of size 10007?

137

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016 Prepared by: Dr. Mamoun Nawahdah

FINISIIEII S'I'IIIIYING'"

138

STUDENTS-HUB.com Uploaded By: anonymous

	LecturesNote1
	LecturesNote2

