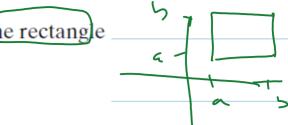
$\times^2 - 2 \times + y^2 = 0$ $\times -1$ $+ y^2 = 1$ = E

8.3.3. a) Let $a \le b$ and $c \le d$ be real numbers. Sketch a graph of the rectangle



 $[a,b] \times [c,d] := \{(x,y) : x \in [a,b], y \in [c,d]\},\$

and decide whether this set is connected. Explain your answers.

b) Sketch a graph of set

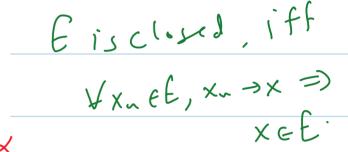
$$B_1(-2,0) \cup B_1(2,0) \cup \{(x,0): -1 < x < 1\},$$

and decide whether this set is connected. Explain your answers.

8.3.3. a) It is connected (see Remark 9.34 for proof).

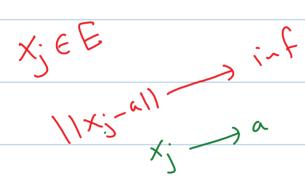
b) The set is "dumbbell" shaped. It almost looks connected, except that (-1,0) and (1,0) do not belong to the set. Hence a separation can be made, e.g., by using the open sets $V = \{(x,y) : x < -1\}$ and $U = \{(x,y) : x > -1\}$, and applying Remark 8.29.

8.3.9. Show that if E is closed in \mathbb{R}^n and $(\mathbf{a} \notin E)$, then

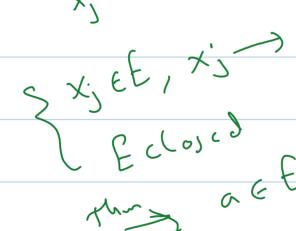


8.3.9. Suppose E is closed and $a \notin E$, but $\inf_{x \in E} ||x - a|| = 0$ Then by the Approximation Property, there exist $x_j \in E$ such that $||x_j - a|| = 0$ i.e., such that $x_j \to a$. But E is closed, so the limit of the x_j 's, namely a, must belong to E, a contradiction.

 $\inf_{\mathbf{x}\in E}\|\mathbf{x}-\mathbf{a}\|>0.$



 $inf = \alpha$), $\exists x_i \in E \text{ s.t.}$ $x \in E \text{ s.t.}$



Case 2. $(x \in (\partial B)^c)$ Since $(B_r(x))$ intersects $(B_r(x))$ it follows that $(B_r(x)) \subseteq B$ for small $(B_r(x))$ Since $(B_r(x))$ also $(B_r(x))$ also $(B_r(x))$ since $(B_r(x))$ intersects $(B_r$

b) Suppose $x \in \partial(A \cap B)$; i.e., suppose $B_r(x)$ intersects $A \cap B$ and $(A \cap B)^c$ for all r > 0. If $x \notin (A \cap \partial B) \cup (B \cap \partial A)$, then $x \in (A^c \cup (\partial B)^c) \cap (B^c \cup (\partial A)^c)$. But by part a), $A^c \cup (\partial B)^c \subseteq \partial A$ and $B^c \cup (\partial A)^c \subseteq \partial B$. Hence the intersection is a subset of $\partial A \cap \partial B$.

c) Suppose $x \in \partial(A \cap B)$. If $x \in (A \cap \partial B) \cup (B \cap \partial A)$, then there is nothing to prove. If $x \notin (A \cap \partial B) \cup (B \cap \partial A)$, then by part b), $x \in \partial A \cap \partial B$. Hence $x \in (A \cap \partial B) \cup (B \cap \partial A) \cup (\partial A \cap \partial B)$.

d) If A = (0,1) and B = [1,2], then $\partial(A \cap B) = \emptyset \neq \{1\} = \partial A \cap \partial B \subseteq (A \cap \partial B) \cup (B \cap \partial A) \cup (\partial A \cap \partial B)$. $A \cap B = \emptyset$ $A \cap B = \emptyset$

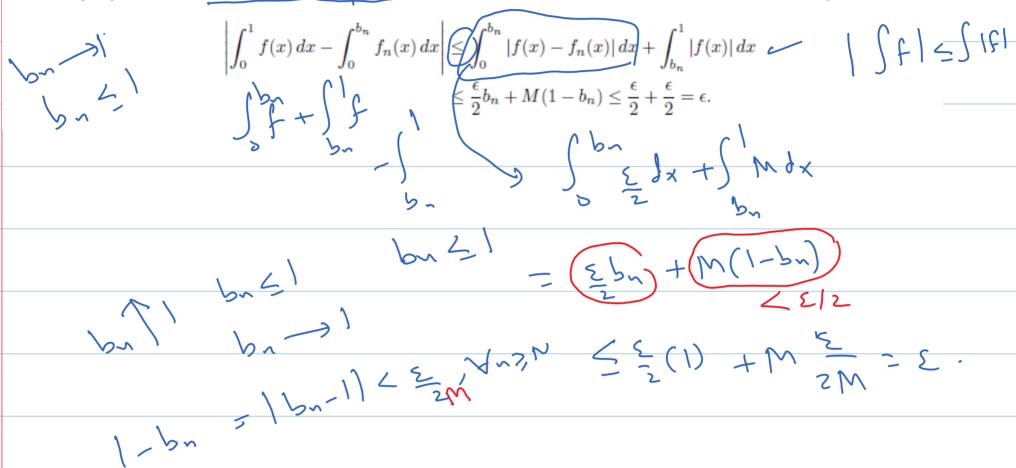
Saturday, May 07, 2022

7.1.11. Let f_n be integrable on [0,1] and $f_n \to f$ uniformly on [0,1]. Show that if $b_n \uparrow 1$ as $n \to \infty$, then

$$\lim_{n \to \infty} \int_0^{b_n} f_n(x) \, dx = \int_0^1 f(x) \, dx.$$

$$\left| \int_0^{b_n} f_n(x) \, dx - \int_0^1 f(x) \, dx \right|$$

7.1.11. Since f is integrable, there is an M > 0 such that $|f(x)| \le M$ for all $x \in [0, 1]$. Choose $n_0 \in \mathbb{N}$ so that $|f(x)| \le (2M)$ and $|f(x)| \le (2M)$ are increasing $|f(x)| \le (2M)$ for all $|f(x)| \le (2M)$ and $|f(x)| \le (2M)$ and $|f(x)| \le (2M)$ are increasing $|f(x)| \le (2M)$ for all $|f(x)| \le (2M)$ and $|f(x)| \le (2M)$ and $|f(x)| \le (2M)$ are increasing $|f(x)| \le (2M)$ for all $|f(x)| \le (2M)$ and $|f(x)| \le (2M)$



c) Find an equation of the plane parallel to the hyperplane $(x_1 + \cdots + x_n = \pi)$ passing through the point $(1, 2, \ldots, n)$.