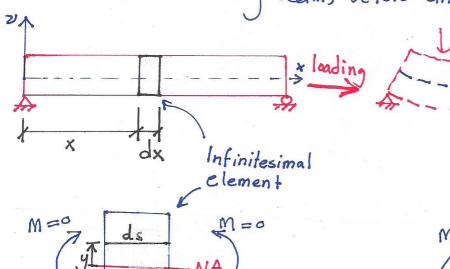
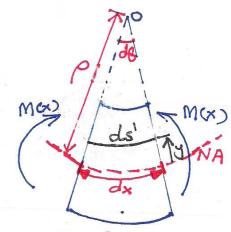
Elastic beam theory and double integration method

Consider the following beam, before and after loading:



Before deformation



After deformation

$$\frac{\mathcal{E}(y) = \frac{ds^1 - ds}{ds} = \frac{(R - y)ds - Rds}{P} = \frac{-y}{P}$$
(The infinitesimal)
element is
subjected to normal
strain(E)

For linear-elastic behavior and Homogenous beam:

$$E_{x} = \frac{\sigma_{x}}{E} = \frac{-My}{E \cdot I_{z}}$$

$$= \frac{My}{E}$$

$$= \frac{-My}{E \cdot I_{z}}$$

$$= \frac{-My}{E \cdot I_{z}}$$

$$= \frac{-My}{E \cdot I_{z}}$$

$$\frac{1}{\rho} = \frac{1}{2} \frac{\text{E.I}_{z}}{\text{E.I}_{z}} \Rightarrow \frac{1}{\rho} = \frac{M}{\text{E.I}_{z}} \text{ curvature}$$

Point"O": is the center of curvature

P: is the radius of curvature at the point of the elastic curve

1 = curvature: is the amount by which a curve deviates from being a straight line.

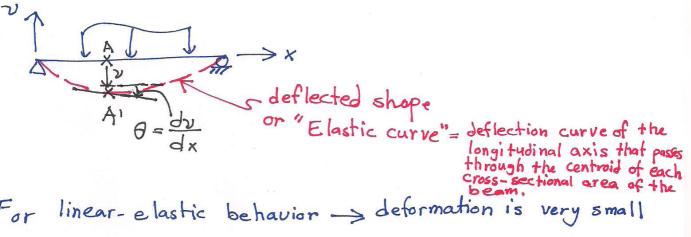
E = material's modulus of elasticity or Young's modulus
I = The beam's moment of inertia about the neutral axis (NA).

1 = \frac{d^2}{dx^2} \frac{M}{EI} pives exact shape of the elastic curve assuming the beam deflections occur only due to "bending"

3 Shear deformation is ignored

v = vertical deflection of the beam

 $B = \frac{dv}{dx} = 5$ lope of the tangent line to the deformed beam (elastic curve)



For linear-elastic behavior -> deformation is very small

$$\theta = \frac{d\nu}{dx} < < 1$$
 $\theta^2 = \left(\frac{d\nu}{dx}\right)^2 \approx 0$

$$\frac{1}{p} = \frac{d^2 v}{d x^2}$$
 = 5 This makes life much easier.

$$\frac{d^2 v}{dx^2} = \frac{M}{EI}$$

Second order ordinary differential equation.

d2 1/d22 = M/EI = curvature = 1/p = rate of change in slope M = internal moment in the beam at the point

EI = flexural rigidity and it is always a positive quantity. Steps to Calculate deflection by double integration method :

- a) Calculate support reactions, if necessary.
- b) Write the expression of the internal bending moment M(x) = ?
- c) Write the boundary and continuity conditions

d)
$$v = \iint_{EI} dx$$
 $\theta = \frac{dv}{dz} = \int_{EI}^{m} dx$

E) determine the constants of integration using the conditions specified in part "c".

Boundary Conditions

Roller 2 =0 M=0

Pin 2 =0 M =0

Roller VA = 0

 $A \longrightarrow Pin \quad v_A = 0$

Fixed end y=0 $\frac{dy}{dz}=0$

Free end (left end)

M=0 shear = 0

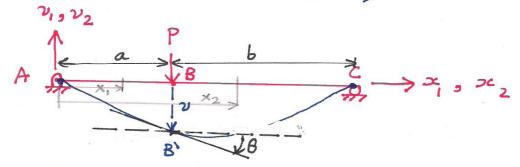
Internal pin or hinge

Continuity Conditions

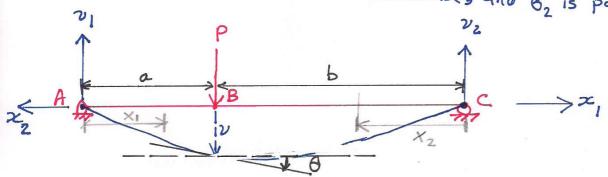
For the beam shown, two x-coordinates are chosen with origins at A. Each is valid only within the regions $0 \le x_1 \le a$ and $a \le x_2 \le (a+b)$. One the functions for the slope and deflection are obtained, they must give the same values for the slope and deflection at point B so the elastic curre is physically continuous.

$$\theta_{1}(x_{1}=a) = \theta_{2}(x_{2}=a)$$

$$v_{1}(x_{1}=a) = v_{2}(x_{2}=a)$$

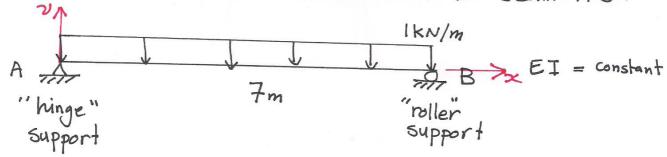


If instead the elastic curve is expressed in terms of the coordinaks $0 \leqslant x_1 \leqslant a$ and $0 \leqslant x_2 \leqslant b$, as shown below, then the continuous of slope and deflection at B requires $\theta_1(x_1=a) = -\theta_2(x_2=b)$ sign is necessary to match the slopes at B since x_1 extends Consequently, θ_1 is positive counterclock wise, and θ_2 is positive to the left.



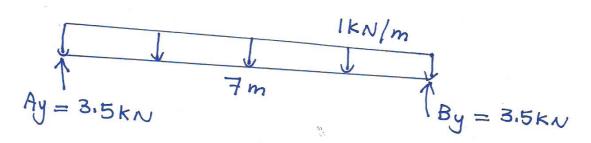
Example

Use the double in tegration method to determine the location and magnitude of maximum deflection for beam AB.



Solution

a) Determine the reactions at A and B:



b) Write the internal moment as a function of x:

$$\frac{1 \text{kN/m}}{2} = 0 : + M + (1)(x)(\frac{x}{2}) - 3.5x = 0$$

$$M = -\frac{x^2}{2} + 3.5 \times 0$$

$$0 \le x \le 7m$$

note: "M" is represented by single function >0,2 each will have single function > No continuity conditions

c)
$$\frac{d^{2}v}{dx^{2}} = \frac{M}{ET}$$

EI. $\frac{d^{2}v}{dx^{2}} = M \rightarrow EI \frac{d^{2}v}{dx^{2}} = -\frac{x^{2}}{2} + 3.5 \times$

EI $\int \frac{d^{2}v}{dx^{2}} = \left(-\frac{x^{2}}{2} + 3.5 \times\right) d \times \rightarrow EI \frac{d^{2}v}{dx} = -\frac{x^{3}}{6} + \frac{3.5}{3}x^{2} + C_{1}$

EI $\int \frac{d^{2}v}{dx} = \left(-\frac{x^{3}}{6} + \frac{3.5}{2}x^{2} + C_{1}\right) d \times$

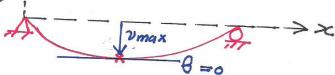
EID $= \frac{x^{4}}{24} + \frac{3.5}{6}x^{3} + C_{1}x + C_{2}$

C₁ = ? and C₂ = ?

d) boundary conditions:

Hinge support at A: deflection = 0 $V_{A} = 0$ at v_{A

e) Location and magnitude of the maximum deflection:



The slope is zero at the maximum deflection $\frac{d2}{dx} = 0 : -\frac{x^3}{6} + \frac{3.5}{2}x^2 - \frac{343}{24} = 0$

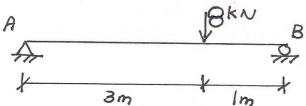
$$x = 3.5 m$$

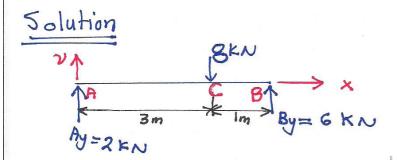
$$v_{max} = v = \frac{1}{EI} \left[-\frac{3.5}{24} + \frac{3.5(3.5)}{6} - \frac{343}{24} (3.5) \right]$$

$$= \frac{-12005}{384 \text{ EI}} \qquad \text{(1)} \qquad \text{max} = \frac{5 \text{ wL}^4}{384 \text{ EI}}$$

Example

For the beam shown, Calculate the maximum deflection





Part AC

$$A_{\uparrow} = \sum_{i=1}^{N} M_{i} \quad G = 0$$

$$2kN \quad V_{i} \quad +M_{i} - 2x_{i} = 0$$

$$M_{i} = 2x_{i}$$

0 5 2 53 EI $\frac{dy}{dx^2} = 2x$ \Rightarrow EI $\frac{dy}{dx} = x_1^2 + C$ $\int EI 2 = \frac{z_1^3}{3} + c_1 z_1 + c_2$

Continuity Conditions at c: $2 = 2 | x_1 = 3 | x_2 = 3 m$ $\frac{dv_1}{dx_1} \left| x_1 = 3m - \frac{dv_2}{dx_2} \right| x_2 = 3m$

GEMs =0:+M2 +8(2-3)-22=0 $M_3 = -6x + 24$ 3m5254m

$$EI \frac{d^2 v_2}{dx_2^2} = -6x_2 + 24$$

2 = 0 x=4m

$$EI \frac{dv_2}{dz_2} = -3z_2^2 + 24z_2 + C$$

$$\frac{dv_1}{dx_1} | x_1 = 3_m = \frac{dv_2}{dx_2} | x_2 = 3$$

$$|v_1| = 0 \Rightarrow 0 = 0 + 0 + c_2 \Rightarrow c_2 = 0$$

$$\frac{72}{2} = 0 \rightarrow 0 = -(4)^3 + 12(4)^2 + c_3(4) + c_4 - 0$$

$$|v_1| = |v_2| = |(3)^3 + |(3)| = -(3)^3 + |(3)| + |($$

$$\frac{dv_1}{dx} = \frac{dv_2}{dx_2} \implies (3)^2 + C_1 = -3(3)^2 + 24(3) + C_3 = 3$$

$$x_1^{23m} = \frac{dv_2}{dx_2} = 3m$$

Solve equations 1,2, and 3 for the constants C_1, C_3, C_4 : $C_1 = -5 \quad 0 \quad C_3 = -41 \quad 0 \quad C_4 = 36$

$$\frac{d\mathcal{H}}{dx_{i}} = \frac{1}{EI} \left[x_{i}^{2} - 5 \right]$$

$$2_{i} = \frac{1}{EI} \left[\frac{x_{i}^{3}}{3} + -5 x_{i} \right]$$

$$\frac{dv_2}{dx_2} = \frac{1}{EI} \left[-3x_2^2 + 24x_2 - 41 \right]$$

$$3_m < x_2 < 4_m$$

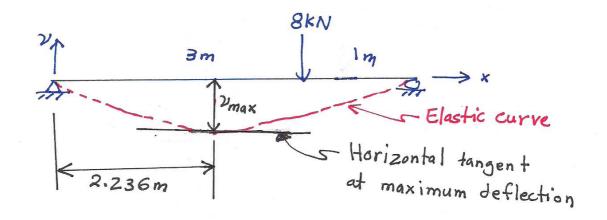
$$v_2 = \frac{1}{EI} \left[-x_2 + 12 x_2^2 - 41 x_2 + 36 \right]$$

Assume the maximum deflection is within part Ac:

$$\frac{d\nu_1}{dx} = 0$$
: $x_1^2 - 5 = 0 \implies x_1 = \sqrt{5} = 2.236 \text{ m } (3\text{ m})$

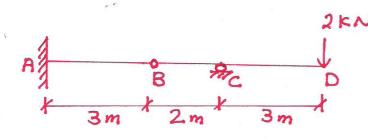
$$v_{\text{max}} = v_1 = \frac{1}{\text{EI}} \left[\frac{(2.236)^3}{3} - 5(2.236) \right]$$

$$=\frac{-7.453}{EI}m(\downarrow)$$



Example

Beam ABCD shown has a fixed support at A, an internal hinge at B, a roller support at C, and afree end at D. Determine the deflection and slope at points B and D.



EI = constant

Solution

Determine the reactions at A and C

$$\Sigma F_X = 0 \rightarrow A_X = 0$$

$$15F_{y}=0:-Ay+3=0$$

$$Ay=3KN$$

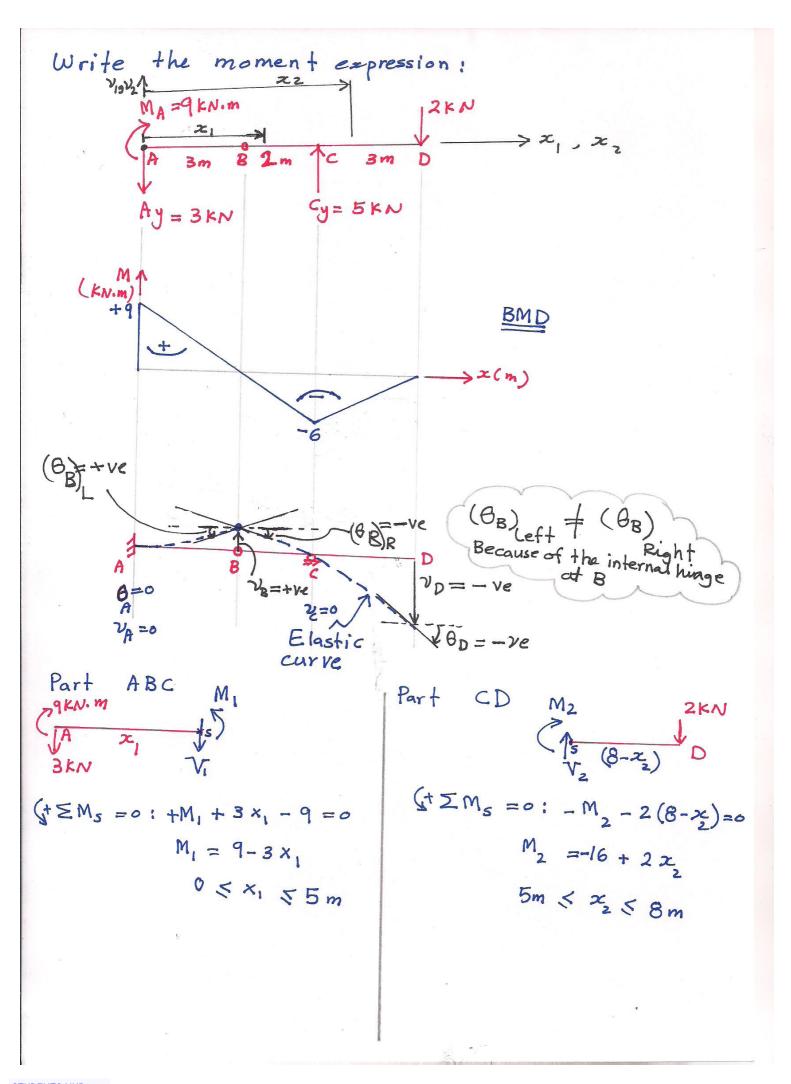
$$(\pm 2M_B = 0: -M_A + 3(3) = 0$$
 $M_A = 9 \text{ KN.m}$

Conditions

$$\Sigma f_{x} = 0 \rightarrow B_{x} = 0$$

$$72Fy=0: -8y+5-2=0$$

$$8y=3KN(1)$$



$$\frac{P_{art} \quad AB:}{d^{2}v_{AB}} = q - 3 \times, \qquad \sum_{i=1}^{\infty} \frac{1}{dx_{i}} = q_{x_{i}} - \frac{3}{2}x_{i}^{2} + C_{i}$$

$$EI \frac{1}{dx_{i}^{2}} = q_{x_{i}} - \frac{3}{2}x_{i}^{2} + C_{i}$$

$$EI \frac{1}{dx_{i}^{2}} = \frac{q_{x_{i}}^{2} - \frac{1}{2}x_{i}^{3} + C_{x_{i}}^{2} + C_{x_{i}}^{2}}{\sqrt{1 - \frac{1}{2}x_{i}^{3} + C_{x_{i}}^{2} + C_{x_{i}}^{2}}$$

$$\frac{1}{\sqrt{1 - \frac{1}{2}x_{i}^{2} + C_{x_{i}}^{2} + C_{x_{i}}^{2}}}{\sqrt{1 - \frac{1}{2}x_{i}^{3} + C_{x_{i}}^{2} + C_{x_{i}}^{2}}}$$

$$\frac{1}{\sqrt{1 - \frac{1}{2}x_{i}^{2} + C_{x_{i}}^{2} + C_{x_{i}}^{2} + C_{x_{i}}^{2}}}{\sqrt{1 - \frac{1}{2}x_{i}^{3} + C_{x_{i}}^{2} + C_{x_{i}}^{2}}}$$

$$\frac{1}{\sqrt{1 - \frac{1}{2}x_{i}^{2} + C_{x_{i}}^{2} + C_{x_{i}}^{2} + C_{x_{i}}^{2}}}{\sqrt{1 - \frac{1}{2}x_{i}^{3} + C_{x_{i}}^{2} + C_{x_{i}}^{2}}}$$

$$20 = 0 : 0 = 0 - 0 + 0 + C_2 \Rightarrow C_2$$
 $x = 0$

$$\frac{dv_{\text{B}}}{dx} = 0$$
: $0 = 0 - 0 + c_1 \Rightarrow c_1 = 0$

$$\frac{d^{2}AB}{dx_{1}} = \frac{1}{EI} \left[9x_{1} - \frac{3}{2}x_{1}^{2} \right]$$

$$V_{AB} = \frac{1}{EI} \left[\frac{9}{2}x_{1}^{2} - \frac{1}{2}x_{1}^{3} \right]$$

$$\frac{P_{art} BC}{EI \frac{d^{2} v_{BC}}{d x_{1}^{2}}} = 9 - 3 x_{1} \int_{S} EI \frac{d^{2} v_{BC}}{d x_{1}} = 9 x_{1} - \frac{3}{2} x_{1}^{2} + C_{3}$$

$$|V_{BC}| = 0$$

$$|x_{1}| = 5 m$$

$$0 = \frac{9}{2} (5)^{2} = \frac{(5)^{3}}{2} + C_{3} (5) + C_{4}$$

$$5C_{3} + C_{4} = -50 - 1$$

$$|| \frac{1}{EI} \left[\frac{q}{2} (3)^{2} - \frac{1}{2} (3)^{3} \right] = \frac{1}{EI} \left[\frac{q}{2} (3)^{2} - \frac{(3)^{3}}{2} + C_{3} (3) + C_{4} \right]$$

$$|| \frac{1}{EI} \left[\frac{q}{2} (3)^{2} - \frac{1}{2} (3)^{3} \right] = \frac{1}{EI} \left[\frac{q}{2} (3)^{2} - \frac{(3)^{3}}{2} + C_{3} (3) + C_{4} \right]$$

$$|| 3C_{3} + C_{4} = 0 - (2)$$
From equations (1) and (2): $C_{3} = -25$

$$|| C_{4} = 75$$

$$|| \frac{dv_{BC}}{dx_{1}} = \frac{1}{EI} \left[\frac{q}{2} x_{1}^{2} - \frac{3}{2} x_{1}^{2} - 25 \right] \xrightarrow{3m} \langle x_{1} \langle 5m \rangle$$

$$|| v_{BC} = \frac{1}{EI} \left[\frac{q}{2} x_{1}^{2} - \frac{x_{1}^{3}}{2} - 25 x_{1} + 75 \right]$$

$$|| \frac{dv_{BC}}{dx_{2}} = -\frac{1}{16} + 2x_{2} \xrightarrow{2} || \frac{dv_{CD}}{dx_{2}} = -\frac{16}{16} \times \frac{x_{2}^{2}}{2} + \frac{x_{2}^{2}}{2} + \frac{c_{2}^{2}}{2} +$$

$$\frac{d v_{BC}}{d z_{1}} = \frac{d v_{CD}}{d z_{2}}$$

$$\frac{1}{EI} \left[\begin{array}{c} 9 \\ (5) \\ -3(5) \end{array} \right] = \frac{1}{2} \left[-25 \right] = \frac{1}{EI} \left[-16(5) + (5)^{2} + C_{5} \right]$$

$$C_{5} = 37.5$$
Use equation (3) to find C_{6} : $C_{6} = -\frac{175}{6}$

$$\frac{d v_{CD}}{d z_{2}} = \frac{1}{EI} \left[-16 x_{2} + x_{2}^{2} + 37.5 \right] = \frac{1}{2} \left[-16 x_{2} + x_{2}^{2} + x_{2}^{2} + 37.5 \right] = \frac{1}{2} \left[-16 x_{2} + x_{2}^{2} + x_{2}^{2}$$