
Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

Trees_2

Binary Search Tree

Faculty of Engineering and Tecnology

Computer Science Department

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

Binary Search Trees (BST)

• BST: is a binary tree that satisfies the following properties:

• The left subtree of any node contains only nodes with keys
(values) less than the node’s key.

• The right subtree of any node contains only nodes with
keys greater than the node’s key.

• The left and right subtree each must also be a binary
search tree.

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

BST

the average depth of a binary search tree

turns out to be O(log N)

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

Operations on BST

• Creation

• Insertion

• Deletion

• Searching

• Traversing

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

BST: Implementation
typedef struct tree_node *tree_ptr;

struct tree_node

{

element_type element;

tree_ptr left;

tree_ptr right;

};

typedef tree_ptr BST;

• Routine to make an empty tree
BST Make_null (void)

{

return NULL;

}

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

tree_ptr find(element_type x, BST T)

{

if (T == NULL)

return NULL;

if (x < T->element)//greater than x move to right

return (find (x, T->left));

else //Less than x move to left

if (x > T->element)

return (find (x, T->right));

else

return T;

}

BST: Find

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

BST: Traversal
//inorder
void traversal(BST T)
{

if (T == NULL)
return ;

traversal(T->left);
printf("%d ",T->element);

traversal(T->right);
}

//Preorder
void traversal(BST T)
{

if (T == NULL)
return ;

printf("%d ",T->element);
traversal(T->left);
traversal(T->right);

}

//Postorder
void traversal(BST T)
{

if (T == NULL)
return ;

traversal(T->left);
traversal(T->right);
printf("%d ",T->element);

}

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

None- traversal (post order) :

struct Node {

int data;

struct Node *left, *right;

bool visited;

};

void postorder(struct Node* root)

{

struct Node* temp = root; // Save head in temp tree

while (temp && temp->visited == false) {

// Visited left subtree

if (temp->left && temp->left->visited == false)

temp = temp->left;

// Visited right subtree

else if (temp->right && temp->right->visited == false)

temp = temp->right;

// Print node

else {

printf("%d ", temp->data);

temp->visited = true;

temp = root; }

}
}

struct Node* newNode(int data)

{

struct Node* node = new

Node;

node->data = data;

node->left = NULL;

node->right = NULL;

node->visited = false;

return (node);

}

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

The idea is to do iterative level order traversal of the given tree.

• If we find a node whose left child is empty
we make new key as left child of the node.

• Else if we find a node whose right child is empty
we make new key as right child.

• We keep traversing the tree until we find a node whose either left or right is empty.

BST: Insertion

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

BST insert (BST T, element_type x)

{ //Tree empty, insert first element

if (T == NULL) {
T = (BST) malloc (sizeof(struct tree_node));

if (T == NULL)

printf (“ Out of space!!!”);

else

{
T->element = x;

T->left = T->right = NULL;

}

}
else //Tree not empty, check to insert to left or right.

if (x < T->element)

T->left = insert (T->left , x);

else
if (x > T->element)

T->right = insert(T->right, x);

return T;

}

Example: Insert 8,28,52

BST: Insertion

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

When we delete a node, three possibilities arise.

1) Node to be deleted is leaf: Simply remove from the tree.

2) Node to be deleted has only one child: Copy the child to

the node and delete the child

3) Node to be deleted has two children: Find in order
successor of the node. Copy contents of the in order successor

to the node and delete the in order successor. Note that in order

predecessor can also be used.

BST: Deletion

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

• Example: Delete 5 in the tree below:

7

152

41 8 40

63 9

5

Delete 5

7

152

41 8 40

63 9

BST: Deletion a leaf

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

BST: Deleting a one-child node
• CASE 2: THE NODE TO BE DELETED HAS ONE NON-EMPTY CHILD

(a) The right subtree of the node x to be deleted is empty.

• Example:

20

355

83 22 40

25

Delete 10
20

3510

8

5 22 40

3
25

6

target

temp

6

target

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

BST: Deleting a one-child node
(b) The left subtree of the node x to be deleted is

empty.

Example:

Delete 8

7

152

41 8 40

63 12

5

target

temp

149

7

152

41 12 40

63

5

target

149

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

METHOD#1: DELETION BY COPYING the minimum:

Copy the minimum key in the right subtree of x to the node x, then
delete the one-child or leaf-node with this minimum key.

• Example:

7

152

41 8 40

63 9

5

Delete 7 8

152

41 9 40

63

5

BST: Deleting a two-child node

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

METHOD#2: DELETION BY COPYING the maximum

Copy the maximum key in the left subtree of x to the node x, then
delete the one-child or leaf-node with this maximum key.

• Example:

7

152

41 8 40

63 9

5

Delete 7 6

152

41 8 40

53 9

BST: Deleting a two-child node

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

Recursive implementation of find_min for binary search trees

tree_ptr find_min(BST T)

{

if (T == NULL) //empty tree

return NULL;

else

if (T->left == NULL) //node itself

return (T);

else

return (find_min (T->left)); //find min recursive

}

Nonrecursive implementation of find_max for binary search trees

tree_ptr find_max(BST T)

{

if (T != NULL)

while (T->right != NULL)

T = T->right;

return T;

}

Home Work: Rebuild two above functions in alternative way

BST: Finding the minimum

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

tree_ptr delete (BST T, int x)

{

tree_ptr tmp_cell, child;

if (T == NULL)

printf(“ Element not found”);
else if (x < T->element)

T->left = delete(T->left, x);

else if (x > T->element)

T->right = delete(T->right, x);

else if (T->left && T->right) //found element and has (right ,left) elements

{
tmp_cell = find_min(T->right);

T->element = tmp_cell->element;

T->right = delete(T->right, T->element);

}

else

{

tmp_cell = T;
if (T->left == NULL)

child = T->right;

if (T->right == NULL)

child = T->left;

free (tmp_cell);

return child;

}

return T;

}

29

Del: 29 28 30 36

BST: Delete function

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

Exercise :Constructing binary tree from in order and post order
traversals

Post-order : 17 40 38 48 47 45 53 58 65 62 55 50

In-order : 17 38 40 45 47 48 50 53 55 58 62 65

In-order :17 38 40 45 47 48

Post-order : 17 40 38 48 47 45

Post-order : 17 40 38

50

45

38

17

47

40 48

Left Subtree

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

Exercise :Constructing binary tree from in order and post order
traversals

Post-order : 17 40 38 48 47 45 53 58 65 62 55 50

In-order : 17 38 40 45 47 48 50 53 55 58 62 65

In-order : 53 55 58 62 55

Post-order 53 58 65 62 55

In order : 58 62 55

50

45

38

17

47

40 48

55

62
53

Post-order 58 65 62

58 65

Right Subtree

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: BST

THANK YOU

Uploaded By: anonymousSTUDENTS-HUB.com

