
Objectives
 ■ To discover how I/O is processed in Java (§17.2).

 ■ To distinguish between text I/O and binary I/O (§17.3).

 ■ To read and write bytes using FileInputStream and
 FileOutputStream (§17.4.1).

 ■ To filter data using the base classes FilterInputStream and
 FilterOutputStream (§17.4.2).

 ■ To read and write primitive values and strings using DataInputStream
and DataOutputStream (§17.4.3).

 ■ To improve I/O performance by using BufferedInputStream and
BufferedOutputStream (§17.4.4).

 ■ To write a program that copies a file (§17.5).

 ■ To store and restore objects using ObjectOutputStream and
ObjectInputStream (§17.6).

 ■ To implement the Serializable interface to make objects serializable
(§17.6.1).

 ■ To serialize arrays (§17.6.2).

 ■ To read and write files using the RandomAccessFile class (§17.7).

BāĆùĊđ I/O

CHAPTER

17

M17_LIAN9966_12_SE_C17.indd 691 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

692 Chapter 17 Binary I/O

17.1 Introduction
Java provides many classes for performing text I/O and binary I/O.

Files can be classified as either text or binary. A file that can be processed (read, created,
or modified) using a text editor such as Notepad on Windows or vi on UNIX is called a
text file. All other files are called binary files. You cannot read binary files using a text
 editor—they are designed to be read by programs. For example, Java source programs are
text files and can be read by a text editor, but Java class files are binary files and are read
by the JVM.

Although it is not technically precise and correct, you can envision a text file as consisting
of a sequence of characters, and a binary file as consisting of a sequence of bits. Characters in
a text file are encoded using a character-encoding scheme such as ASCII or Unicode. For
example, the decimal integer 199 is stored as a sequence of three characters 199 in a text file,
and the same integer is stored as a byte-type value C7 in a binary file, because decimal 199
equals hex C7 (1 9 9 = 1 2 * 1 6 1 + 7). The advantage of binary files is that they are more
efficient to process than text files.

Java offers many classes for performing file input and output. These can be categorized as
text I/O classes and binary I/O classes. In Section 12.11, File Input and Output, you learned
how to read and write strings and numeric values from/to a text file using Scanner and
PrintWriter. This chapter introduces the classes for performing binary I/O.

17.2 How Is Text I/O Handled in Java?
Text data are read using the Scanner class and written using the PrintWriter class.

Recall that a File object encapsulates the properties of a file or a path but does not contain
the methods for reading/writing data from/to a file. In order to perform I/O, you need to create
objects using appropriate Java I/O classes. The objects contain the methods for reading/writing
data from/to a file. For example, to write text to a file named temp.txt, you can create an object
using the PrintWriter class as follows:

PrintWriter output = new PrintWriter("temp.txt");

You can now invoke the print method on the object to write a string to the file. For example,
the following statement writes Java 101 to the file:

output.print("Java 101");

The following statement closes the file:

output.close();

There are many I/O classes for various purposes. In general, these can be classified as input
classes and output classes. An input class contains the methods to read data, and an output
class contains the methods to write data. PrintWriter is an example of an output class, and
Scanner is an example of an input class. The following code creates an input object for the
file temp.txt and reads data from the file:

Scanner input = new Scanner(new File("temp.txt"));
System.out.println(input.nextLine());

If temp.txt contains the text Java 101, input.nextLine() returns the string "Java 101".
Figure 17.1 illustrates Java I/O programming. An input object reads a stream of data from

a file, and an output object writes a stream of data to a file. An input object is also called an
input stream and an output object an output stream.

text file

binary file

why binary I/O?

text I/O
binary I/O

Point
Key

stream
input stream
output stream

Point
Key

M17_LIAN9966_12_SE_C17.indd 692 12/09/19 9:14 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

17.3 Text I/O vs. Binary I/O 693

FIGURE 17.1 The program receives data through an input object and sends data through an
output object.

Program

Input object
created from an

input class

Output object
created from an

 output class

Input stream

01011...1001

11001...1011

Output stream

File

File

FIGURE 17.2 Text I/O requires encoding and decoding, whereas binary I/O does not.

The same byte in the file

The encoding of the character
is stored in the file

Binary I/O program

Text I/O program

The Unicode of
the character

Encoding/
Decoding

A byte is read/written

e.g., "199"

e.g., 199

00110001 00111001 00111001

0x31

0xC7

0x39 0x39

11000111

(a)

(b)

 17.2.1 What is a text file and what is a binary file? Can you view a text file or a binary
file using a text editor?

 17.2.2 How do you read or write text data in Java? What is a stream?

17.3 Text I/O vs. Binary I/O
Binary I/O does not involve encoding or decoding and thus is more efficient than text I/O.

Computers do not differentiate between binary files and text files. All files are stored in binary
format, and thus all files are essentially binary files. Text I/O is built upon binary I/O to pro-
vide a level of abstraction for character encoding and decoding, as shown in Figure 17.2a.
Encoding and decoding are automatically performed for text I/O. The JVM converts Unicode
to a file-specific encoding when writing a character, and converts a file-specific encoding to
Unicode when reading a character. For example, suppose you write the string "199" using text
I/O to a file, each character is written to the file. Since the Unicode for character 1 is 0x0031,
the Unicode 0x0031 is converted to a code that depends on the encoding scheme for the file.
(Note the prefix 0x denotes a hex number.) In the United States, the default encoding for
text files on Windows is ASCII. The ASCII code for character 1 is 49 (0x31 in hex) and for

Point
Check

Point
Key

M17_LIAN9966_12_SE_C17.indd 693 12/09/19 9:14 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

694 Chapter 17 Binary I/O

character 9 is 57 (0x39 in hex). Thus, to write the characters 199, three bytes—0x31, 0x39,
and 0x39—are sent to the output, as shown in Figure 17.2a.

Binary I/O does not require conversions. If you write a numeric value to a file using binary
I/O, the exact value in the memory is copied into the file. For example, a byte-type value 199
is represented as 0xC7 (1 9 9 = 1 2 * 1 6 1 + 7) in the memory and appears exactly as 0xC7
in the file, as shown in Figure 17.2b. When you read a byte using binary I/O, one byte value
is read from the input.

In general, you should use text input to read a file created by a text editor or a text output
program, and use binary input to read a file created by a Java binary output program.

Binary I/O is more efficient than text I/O because binary I/O does not require encoding and
decoding. Binary files are independent of the encoding scheme on the host machine and thus
are portable. Java programs on any machine can read a binary file created by a Java program.
This is why Java class files are binary files. Java class files can run on a JVM on any machine.

Note
For consistency, this book uses the extension .txt to name text files and .dat to name
binary files.

 17.3.1 What are the differences between text I/O and binary I/O?

 17.3.2 How is a Java character represented in the memory, and how is a character repre-
sented in a text file?

 17.3.3 If you write the string "ABC" to an ASCII text file, what values are stored in the
file?

 17.3.4 If you write the string "100" to an ASCII text file, what values are stored in the
file? If you write a numeric byte-type value 100 using binary I/O, what values are
stored in the file?

 17.3.5 What is the encoding scheme for representing a character in a Java program? By
default, what is the encoding scheme for a text file on Windows?

17.4 Binary I/O Classes
The abstract InputStream is the root class for reading binary data, and the abstract
OutputStream is the root class for writing binary data.

The design of the Java I/O classes is a good example of applying inheritance, where com-
mon operations are generalized in superclasses, and subclasses provide specialized operations.
Figure 17.3 lists some of the classes for performing binary I/O. InputStream is the root for

.txt and .dat

Point
Check

Point
Key

FIGURE 17.3 InputStream, OutputStream, and their subclasses are for performing binary I/O.

FileOutputStream

FilterOutputStream

ObjectOutputStream

FileInputStream

OutputStream

InputStream FilterInputStream

ObjectInputStream

Object

DataInputStream

BufferedInputStream

DataOutputStream

BufferedOutputStream

M17_LIAN9966_12_SE_C17.indd 694 12/09/19 9:14 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

17.4 Binary I/O Classes 695

binary input classes, and OutputStream is the root for binary output classes. Figures 17.4 and
17.5 list all the methods in the classes InputStream and OutputStream.

Note
All the methods in the binary I/O classes are declared to throw java.io.IOExcep-
tion or a subclass of java.io.IOException. throws IOException

17.4.1 FileInputStream/FileOutputStream
FileInputStream/FileOutputStream are for reading/writing bytes from/to files.
All the methods in these classes are inherited from InputStream and OutputStream.
FileInputStream/FileOutputStream do not introduce new methods. To construct a
 FileInputStream, use the constructors shown in Figure 17.6.

A java.io.FileNotFoundException will occur if you attempt to create a
 FileInputStream with a nonexistent file.

To construct a FileOutputStream, use the constructors shown in Figure 17.7.
If the file does not exist, a new file will be created. If the file already exists, the first two

constructors will delete the current content of the file. To retain the current content and append
new data into the file, use the last two constructors and pass true to the append parameter.

FileNotFoundException

FIGURE 17.4 The abstract InputStream class defines the methods for the input stream of bytes.

java.io.InputStream

+read(): int

+read(b: byte[]): int

+read(b: byte[], of f: int,
 len: int): int

+close(): void

+skip(n: long): long

Reads the next byte of data from the input stream. The value byte is returned as
 an int value in the range 0–255. If no byte is available because the end of
 the stream has been reached, the value –1 is returned.

Reads up to b.length bytes into array b from the input stream and returns the
 actual number of bytes read. Returns –1 at the end of the stream.

Reads bytes from the input stream and stores them in b[of f], b[of f+1],...,
 b[of f+len–1]. The actual number of bytes read is returned. Returns –1
 at the end of the stream.

Closes this input stream and releases any system resources occupied by it.

Skips over and discards n bytes of data from this input stream. The actual
 number of bytes skipped is returned.

FIGURE 17.5 The abstract OutputStream class defines the methods for the output stream of bytes.

java.io.OutputStream

+write(int b): void

+write(b: byte[], of f: int,
 len: int): void

+write(b: byte[]): void

+close(): void

+f lush(): void

Writes the specified byte to this output stream. The parameter b is an int value.
 (byte)b is written to the output stream.

Writes b[of f], b[of f+1],..., b[of f+len–1] into the output stream.

Writes all the bytes in array b to the output stream.

Closes this output stream and releases any system resources occupied by it.

Flushes this output stream and forces any buffered output bytes to be written out.

M17_LIAN9966_12_SE_C17.indd 695 12/09/19 9:14 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

696 Chapter 17 Binary I/O

Listing 17.1 uses binary I/O to write 10 byte values from 1 to 10 to a file named temp.dat
and reads them back from the file.

LISTING 17.1 TestFileStream.java
 1 import java.io.*;
 2
 3 public class TestFileStream {
 4 public static void main(String[] args) throws IOException {
 5 try (
 6 // Create an output stream to the file
 7 FileOutputStream output = new FileOutputStream("temp.dat");
 8) {
 9 // Output values to the file
10 for (int i = 1; i <= 10; i++)
11 output.write(i);
12 }
13
14 try (

import

output stream

output

Almost all the methods in the I/O classes throw java.io.IOException. Therefore, you
have to declare to throw java.io.IOException in the method in (a) or place the code in a
try-catch block in (b), as shown below:

IOException

FIGURE 17.7 FileOutputStream outputs a stream of bytes to a file.

Creates a FileOutputStream from a File object.
Creates a FileOutputStream from a file name.
If append is true, data are appended to the existing file.
If append is true, data are appended to the existing file.

java.io.OutputStream

+FileOutputStream(file: File)

+FileOutputStream(filename: String)

+FileOutputStream(file: File, append: boolean)

+FileOutputStream(filename: String, append: boolean)

java.io.FileOutputStream

FIGURE 17.6 FileInputStream inputs a stream of bytes from a file.

java.io.InputStream

+FileInputStream(file: File)

+FileInputStream(filename: String)

java.io.FileInputStream

Creates a FileInputStream from a File object.

Creates a FileInputStream from a file name.

Declaring exception in the method Using try-catch block

public static void main(String[] args)
 throws IOException {
 // Perform I/O operations
}

 public static void main(String[] args) {
 try {
 // Perform I/O operations
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
}

(a) (b)

M17_LIAN9966_12_SE_C17.indd 696 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

17.4 Binary I/O Classes 697

FIGURE 17.8 A binary file cannot be displayed in text mode. Source: Copyright
© 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Binary data

The program uses the try-with-resources to declare and create input and output streams so they
will be automatically closed after they are used. The java.io.InputStream and
java.io.OutputStream classes implement the AutoClosable interface. The AutoClosable
interface defines the close() method that closes a resource. Any object of the AutoClosable
type can be used with the try-with-resources syntax for automatic closing.

A FileOutputStream is created for the file temp.dat in line 7. The for loop writes
10 byte values into the file (lines 10 and 11). Invoking write(i) is the same as invoking
write((byte)i). Line 16 creates a FileInputStream for the file temp.dat. Values are
read from the file and displayed on the console in lines 19–21. The expression ((value =
input.read()) != −1) (line 20) reads a byte from input.read(), assigns it to value,
and checks whether it is −1. The input value of −1 signifies the end of a file.

The file temp.dat created in this example is a binary file. It can be read from a Java program
but not from a text editor, as shown in Figure 17.8.

AutoClosable

end of a file

15 // Create an input stream for the file
16 FileInputStream input = new FileInputStream("temp.dat");
17) {
18 // Read values from the file
19 int value;
20 while ((value = input.read()) != −1)
21 System.out.print(value + " ");
22 }
23 }
24 }

input stream

input

1 2 3 4 5 6 7 8 9 10

Tip
When a stream is no longer needed, always close it using the close() method or
automatically close it using a try-with-resource statement. Not closing streams may
cause data corruption in the output file or other programming errors.

Note
The root directory for the file is the classpath directory. For the example in this book,
the root directory is c:\book, so the file temp.dat is located at c:\book. If you wish
to place temp.dat in a specific directory, replace line 6 with

FileOutputStream output =
 new FileOutputStream ("directory/temp.dat");

Note
An instance of FileInputStream can be used as an argument to construct a Scanner,
and an instance of FileOutputStream can be used as an argument to construct a
PrintWriter. You can create a PrintWriter to append text into a file using

close stream

where is the file?

appending to text file

M17_LIAN9966_12_SE_C17.indd 697 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

698 Chapter 17 Binary I/O

new PrintWriter(new FileOutputStream("temp.txt", true));

If temp.txt does not exist, it is created. If temp.txt already exists, new data are
appended to the file. See Programming Exercise 17.1.

17.4.2 FilterInputStream/FilterOutputStream
Filter streams are streams that filter bytes for some purpose. The basic byte input stream
provides a read method that can be used only for reading bytes. If you want to read integers,
doubles, or strings, you need a filter class to wrap the byte input stream. Using a filter class
enables you to read integers, doubles, and strings instead of bytes and characters. Filter-
InputStream and FilterOutputStream are the base classes for filtering data. When you
need to process primitive numeric types, use DataInputStream and DataOutputStream
to filter bytes.

17.4.3 DataInputStream/DataOutputStream
DataInputStream reads bytes from the stream and converts them into appropriate
 primitive-type values or strings. DataOutputStream converts primitive-type values or strings
into bytes and outputs the bytes to the stream.

DataInputStream extends FilterInputStream and implements the DataInput inter-
face, as shown in Figure 17.9. DataOutputStream extends FilterOutputStream and
implements the DataOutput interface, as shown in Figure 17.10.

DataInputStream implements the methods defined in the DataInput interface to read
primitive data-type values and strings. DataOutputStream implements the methods defined
in the DataOutput interface to write primitive data-type values and strings. Primitive values
are copied from memory to the output without any conversions. Characters in a string may be
written in several ways, as discussed in the next section.

Characters and Strings in Binary I/O
A Unicode character consists of two bytes. The writeChar(char c) method writes the Uni-
code of character c to the output. The writeChars(String s) method writes the Unicode
for each character in the string s to the output. The writeBytes(String s) method writes
the lower byte of the Unicode for each character in the string s to the output. The high byte
of the Unicode is discarded. The writeBytes method is suitable for strings that consist of

FIGURE 17.9 DataInputStream filters an input stream of bytes into primitive data-type values and strings.

+readBoolean(): boolean

+readByte(): byte

+readChar(): char

+readFloat(): float

+readDouble(): double

+readInt(): int

+readLong(): long

+readShort(): short

+readLine(): string

+readUTF(): string

Reads a Boolean from the input stream.

Reads a byte from the input stream.

Reads a character from the input stream.

Reads a float from the input stream.

Reads a double from the input stream.

Reads an int from the input stream.

Reads a long from the input stream.

Reads a short from the input stream.

Reads a line of characters from input.

Reads a string in UTF format.

InputStream

FilterInputStream

DataInputStream

+DataInputStream(
in: InputStream)

«interface»
java.io.DataInput

M17_LIAN9966_12_SE_C17.indd 698 12/09/19 9:14 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

17.4 Binary I/O Classes 699

ASCII characters, since an ASCII code is stored only in the lower byte of a Unicode. If a string
consists of non-ASCII characters, you have to use the writeChars method to write the string.

The writeUTF(String s) method writes a string using the UTF coding scheme. UTF is
efficient for compressing a string with Unicode characters. For more information on UTF, see
Supplement III.Z, UTF in Java. The readUTF() method reads a string that has been written
using the writeUTF method.

Creating DataInputStream/DataOutputStream
DataInputStream/DataOutputStream are created using the following constructors (see
Figures 17.9 and 17.10):

public DataInputStream(InputStream instream)
public DataOutputStream(OutputStream outstream)

The following statements create data streams. The first statement creates an input stream for
the file in.dat; the second statement creates an output stream for the file out.dat.

DataInputStream input =
 new DataInputStream(new FileInputStream("in.dat"));
DataOutputStream output =
 new DataOutputStream(new FileOutputStream("out.dat"));

Listing 17.2 writes student names and scores to a file named temp.dat and reads the data back
from the file.

LISTING 17.2 TestDataStream.java
 1 import java.io.*;
 2
 3 public class TestDataStream {
 4 public static void main(String[] args) throws IOException {
 5 try (// Create an output stream for file temp.dat
 6 DataOutputStream output =
 7 new DataOutputStream(new FileOutputStream("temp.dat"));
 8) {

output stream

FIGURE 17.10 DataOutputStream enables you to write primitive data-type values and strings into an output stream.

+writeChar(c: char): void

+writeChars(s: String): void

+writeBoolean(b: boolean): void

+writeByte(v: int): void

+writeBytes(s: String): void

+writeFloat(v: float): void

+writeDouble(v: double): void

+writeInt(v: int): void

+writeLong(v: long): void

+writeShort(v: short): void

+writeUTF(String s): void

Writes a Boolean to the output stream.

Writes the eight low-order bits of the argument v to
 the output stream.

Writes the lower byte of the characters in a string
 to the output stream.

Writes a character (composed of 2 bytes) to the
 output stream.

Writes every character in the string s to the
 output stream, in order, 2 bytes per character.

Writes a float value to the output stream.

Writes a double value to the output stream.

Writes an int value to the output stream.

Writes a long value to the output stream.

Writes a short value to the output stream.

Writes s string in UTF format.

OutputStream

FilterOutputStream

DataOutputStream

+DataOutputStream
 (out: OutputStream)

«interface»
java.io.DataOutput

M17_LIAN9966_12_SE_C17.indd 699 12/09/19 9:14 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

BelalHamdeh
Highlight

https://students-hub.com

700 Chapter 17 Binary I/O

 9 // Write student test scores to the file
10 output.writeUTF("John");
11 output.writeDouble(85.5);
12 output.writeUTF("Susan");
13 output.writeDouble(185.5);
14 output.writeUTF("Kim");
15 output.writeDouble(105.25);
16 }
17
18 try (// Create an input stream for file temp.dat
19 DataInputStream input =
20 new DataInputStream(new FileInputStream("temp.dat"));
21) {
22 // Read student test scores from the file
23 System.out.println(input.readUTF() + " " + input.readDouble());
24 System.out.println(input.readUTF() + " " + input.readDouble());
25 System.out.println(input.readUTF() + " " + input.readDouble());
26 }
27 }

28 }

output

input stream

input

A DataOutputStream is created for file temp.dat in lines 6 and 7. Student names and scores
are written to the file in lines 10–15. A DataInputStream is created for the same file in lines
19 and 20. Student names and scores are read back from the file and displayed on the console
in lines 23–25.

DataInputStream and DataOutputStream read and write Java primitive-type values
and strings in a machine-independent fashion, thereby enabling you to write a data file on one
machine and read it on another machine that has a different operating system or file structure.
An application uses a data output stream to write data that can later be read by a program using
a data input stream.

DataInputStream filters data from an input stream into appropriate primitive-type values
or strings. DataOutputStream converts primitive-type values or strings into bytes and
 outputs the bytes to an output stream. You can view DataInputStream/FileInputStream
and DataOutputStream/FileOutputStream working in a pipe line as shown in
Figure 17.11.

John 85.5
Susan 185.5
Kim 105.25

FIGURE 17.11 DataInputStream filters an input stream of byte to data and
 DataOutputStream converts data into a stream of bytes.

DataInputStream FileInputStream External File

01000110011 …int, double, string …

DataOutputStream FileOutputStream External File

01000110011 …int, double, string …

M17_LIAN9966_12_SE_C17.indd 700 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

17.4 Binary I/O Classes 701

Caution
You have to read data in the same order and format in which they are stored. For
 example, since names are written in UTF using writeUTF, you must read names
using readUTF.

Detecting the End of a File

If you keep reading data at the end of an InputStream, an EOFException will occur. This
exception can be used to detect the end of a file, as shown in Listing 17.3.

LISTING 17.3 DetectEndOfFile.java
 1 import java.io.*;
 2
 3 public class DetectEndOfFile {
 4 public static void main(String[] args) {
 5 try {
 6 try (DataOutputStream output =
 7 new DataOutputStream(new FileOutputStream("test.dat"))) {
 8 output.writeDouble(4.5);
 9 output.writeDouble(43.25);
10 output.writeDouble(3.2);
11 }
12
13 try (DataInputStream input =
14 new DataInputStream(new FileInputStream("test.dat"))) {
15 while (true)
16 System.out.println(input.readDouble());
17 }
18 }
19 catch (EOFException ex) {
20 System.out.println("All data were read");
21 }
22 catch (IOException ex) {
23 ex.printStackTrace();
24 }
25 }
26 }

EOFException

output stream

output

input stream

input

EOFException

4.5
43.25
3.2
All data were read

The program writes three double values to the file using DataOutputStream (lines 6–11)
and reads the data using DataInputStream (lines 13–17). When reading past the end of the
file, an EOFException is thrown. The exception is caught in line 19.

17.4.4 BufferedInputStream/BufferedOutputStream
BufferedInputStream/BufferedOutputStream can be used to speed up input and output by
reducing the number of disk reads and writes. Using BufferedInputStream, the whole block
of data on the disk is read into the buffer in the memory once. The individual data are then loaded
to your program from the buffer, as shown in Figure 17.12a. Using BufferedOutputStream,
the individual data are first written to the buffer in the memory. When the buffer is full, all data
in the buffer are written to the disk once, as shown in Figure 17.12b.

M17_LIAN9966_12_SE_C17.indd 701 12/09/19 9:14 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

702 Chapter 17 Binary I/O

BufferedInputStream/BufferedOutputStream does not contain new methods. All
the methods in BufferedInputStream/BufferedOutputStream are inherited from the
InputStream/OutputStream classes. BufferedInputStream/BufferedOutputStream
manages a buffer behind the scene and automatically reads/writes data from/to disk on demand.

You can wrap a BufferedInputStream/BufferedOutputStream on any InputStream/
OutputStream using the constructors shown in Figures 17.13 and 17.14.

FIGURE 17.12 Buffer I/O places data in a buffer for fast processing.

A block
of data

Buf feredOutputStream

Buffer Write
individual
data

Program

Read
individual
data

A block
of data

(a) (b)

Buf feredInputStream

Buffer

Program

FIGURE 17.13 BufferedInputStream buffers an input stream.

Creates a Buf feredInputStream from an
 InputStream object.

Creates a Buf feredInputStream from an
 InputStream object with specified buffer size.

+Buf feredInputStream(in: InputStream)

+Buf feredInputStream(in: InputStream, buf ferSize: int)

java.io.InputStream

java.io.FilterInputStream

java.io.Buf feredInputStream

FIGURE 17.14 BufferedOutputStream buffers an output stream.

Creates a Buf feredOutputStream from an
 OutputStream object.

Creates a Buf feredOutputStream from an
 OutputStream object with specified size.

+Buf feredOutputStream(out: OutputStream)

+Buf feredOutputStream(out: OutputStream, buf ferSize: int)

java.io.OutputStream

java.io.FilterOutputStream

java.io.Buf feredOutputStream

M17_LIAN9966_12_SE_C17.indd 702 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

17.4 Binary I/O Classes 703

If no buffer size is specified, the default size is 512 bytes. You can improve the performance
of the TestDataStream program in Listing 17.2 by adding buffers in the stream in lines 6–9
and 19–20, as follows:

DataOutputStream output = new DataOutputStream(
 new BufferedOutputStream(new FileOutputStream("temp.dat")));

DataInputStream input = new DataInputStream(
 new BufferedInputStream(new FileInputStream("temp.dat")));

Tip
You should always use buffered I/O to speed up input and output. For small files, you
may not notice performance improvements. However, for large files—over 100 MB—you
will see substantial improvements using buffered I/O.

 17.4.1 The read() method in InputStream reads a byte. Why does it return an
int instead of a byte? Find the abstract methods in InputStream and
OutputStream.

 17.4.2 Why do you have to declare to throw IOException in the method or use a
 try-catch block to handle IOException for Java I/O programs?

 17.4.3 Why should you always close streams? How do you close streams?

 17.4.4 Does FileInputStream/FileOutputStream introduce any new methods
beyond the methods inherited from InputStream/OutputStream? How do you
create a FileInputStream/FileOutputStream?

 17.4.5 What will happen if you attempt to create an input stream on a nonexistent file?
What will happen if you attempt to create an output stream on an existing file? Can
you append data to an existing file?

 17.4.6 How do you append data to an existing text file using java.io.PrintWriter?

 17.4.7 What is written to a file using writeByte(91) on a FileOutputStream?

 17.4.8 What is wrong in the following code?

import java.io.*;

public class Test {
 public static void main(String[] args) {
 try (
 FileInputStream fis = new FileInputStream("test.dat");) {
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 catch (FileNotFoundException ex) {
 ex.printStackTrace();
 }
 }
}

 17.4.9 Suppose a file contains an unspecified number of double values that were
 written to the file using the writeDouble method using a DataOutputStream.
How do you write a program to read all these values? How do you detect the end
of a file?

 17.4.10 How do you check the end of a file in an input stream (FileInputStream,
DataInputStream)?

Point
Check

M17_LIAN9966_12_SE_C17.indd 703 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

704 Chapter 17 Binary I/O

 17.4.11 Suppose you run the following program on Windows using the default ASCII
encoding after the program is finished. How many bytes are there in the file t.txt?
Show the contents of each byte.

public class Test {
 public static void main(String[] args)
 throws java.io.IOException {
 try (java.io.PrintWriter output =
 new java.io.PrintWriter("t.txt");) {
 output.printf("%s", "1234");
 output.printf("%s", "5678");
 output.close();
 }
 }
}

 17.4.12 After the following program is finished, how many bytes are there in the file
t.dat? Show the contents of each byte.

import java.io.*;

public class Test {
 public static void main(String[] args) throws IOException {
 try (DataOutputStream output = new DataOutputStream(
 new FileOutputStream("t.dat"));) {
 output.writeInt(1234);
 output.writeInt(5678);
 output.close();
 }
 }
}

 17.4.13 For each of the following statements on a DataOutputStream output, how many
bytes are sent to the output?

output.writeChar('A');
output.writeChars("BC");
output.writeUTF("DEF");

 17.4.14 What are the advantages of using buffered streams? Are the following statements
correct?

BufferedInputStream input1 =
 new BufferedInputStream(new FileInputStream("t.dat"));

DataInputStream input2 = new DataInputStream(
 new BufferedInputStream(new FileInputStream("t.dat")));

DataOutputStream output = new DataOutputStream(
 new BufferedOutputStream(new FileOutnputStream("t.dat")));

17.5 Case Study: Copying Files
This section develops a useful utility for copying files.

In this section, you will learn how to write a program that lets users copy files. The user needs
to provide a source file and a target file as command-line arguments using the command

java Copy source target

The program copies the source file to the target file and displays the number of bytes in the file.
The program should alert the user if the source file does not exist or if the target file already
exists. A sample run of the program is shown in Figure 17.15.

Point
Key

VideoNote

Copy file

M17_LIAN9966_12_SE_C17.indd 704 12/09/19 9:14 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

17.5 Case Study: Copying Files 705

To copy the contents from a source file to a target file, it is appropriate to use an input
stream to read bytes from the source file, and an output stream to send bytes to the target file,
regardless of the file’s contents. The source file and the target file are specified from the com-
mand line. Create an InputFileStream for the source file, and an OutputFileStream
for the target file. Use the read() method to read a byte from the input stream and then use
the write(b) method to write the byte to the output stream. Use BufferedInputStream
and BufferedOutputStream to improve the performance. Listing 17.4 gives the solution
to the problem.

LISTING 17.4 Copy.java
 1 import java.io.*;
 2
 3 public class Copy {
 4 /** Main method
 5 @param args[0] for sourcefile
 6 @param args[1] for target file
 7 */
 8 public static void main(String[] args) throws IOException {
 9 // Check command−line parameter usage
10 if (args.length != 2) {
11 System.out.println(
12 "Usage: java Copy sourceFile targetfile");
13 System.exit(1);
14 }
15
16 // Check if source file exists

17 File sourceFile = new File(args[0]);
18 if (!sourceFile.exists()) {
19 System.out.println("Source file " + args[0]
20 + " does not exist");
21 System.exit(2);
22 }
23
24 // Check if target file exists
25 File targetFile = new File(args[1]);
26 if (targetFile.exists()) {
27 System.out.println("Target file " + args[1]
28 + " already exists");
29 System.exit(3);
30 }
31

check usage

source file

target file

FIGURE 17.15 The program copies a file. Source: Copyright © 1995–2016 Oracle and/or its
affiliates. All rights reserved. Used with permission.

File exists

Delete file

Copy

Source
does not
exist

M17_LIAN9966_12_SE_C17.indd 705 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

706 Chapter 17 Binary I/O

32 try (
33 // Create an input stream
34 BufferedInputStream input =
35 new BufferedInputStream(new FileInputStream(sourceFile));
36
37 // Create an output stream
38 BufferedOutputStream output =
39 new BufferedOutputStream(new FileOutputStream(targetFile));
40) {
41 // Continuously read a byte from input and write it to output
42 int r, numberOfBytesCopied = 0;
43 while ((r = input.read()) != −1) {

44 output.write((byte)r);
45 numberOfBytesCopied++;
46 }
47
48 // Display the file size
49 System.out.println(numberOfBytesCopied + " bytes copied");
50 }
51 }
52 }

The program first checks whether the user has passed the two required arguments from the
command line in lines 10–14.

The program uses the File class to check whether the source file and target file exist. If
the source file does not exist (lines 18–22), or if the target file already exists (lines 25–30),
the program ends.

An input stream is created using BufferedInputStream wrapped on FileInputStream
in lines 34–35, and an output stream is created using BufferedOutputStream wrapped on
FileOutputStream in lines 38–39.

The expression ((r = input.read()) != −1) (line 43) reads a byte from input
.read(), assigns it to r, and checks whether it is −1. The input value of −1 signifies the end
of a file. The program continuously reads bytes from the input stream and sends them to the
output stream until all of the bytes have been read.

 17.5.1 How does the program check if a file already exists?

 17.5.2 How does the program detect the end of the file while reading data?

 17.5.3 How does the program count the number of bytes read from the file?

17.6 Object I/O
ObjectInputStream/ObjectOutputStream classes can be used to read/write
 serializable objects.

DataInputStream/DataOutputStream enables you to perform I/O for primitive-type
 values and strings. ObjectInputStream/ObjectOutputStream enables you to perform
I/O for objects in addition to primitive-type values and strings. Since ObjectInputStream/
ObjectOutputStream contains all the functions of DataInputStream/DataOutputStream,
you can replace DataInputStream/DataOutputStream completely with ObjectInput
Stream/ObjectOutputStream.

ObjectInputStream extends InputStream and implements ObjectInput and
ObjectStreamConstants, as shown in Figure 17.16. ObjectInput is a subinterface of
DataInput (DataInput is shown in Figure 17.9). ObjectStreamConstants contains the
constants to support ObjectInputStream/ObjectOutputStream.

input stream

output stream

read
write

Point
Check

Point
Key

VideoNote

Object I/O

M17_LIAN9966_12_SE_C17.indd 706 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

17.6 Object I/O 707

You can wrap an ObjectInputStream/ObjectOutputStream on any InputStream/
OutputStream using the following constructors:

// Create an ObjectInputStream
public ObjectInputStream(InputStream in)

// Create an ObjectOutputStream
public ObjectOutputStream(OutputStream out)

Listing 17.5 writes students’ names, scores, and the current date to a file named object.dat.

LISTING 17.5 TestObjectOutputStream.java
 1 import java.io.*;
 2
 3 public class TestObjectOutputStream {
 4 public static void main(String[] args) throws IOException {
 5 try (// Create an output stream for file object.dat
 6 ObjectOutputStream output =
 7 new ObjectOutputStream(new FileOutputStream("object.dat"));
 8) {
 9 // Write a string, double value, and object to the file
10 output.writeUTF("John");
11 output.writeDouble(85.5);

output stream

output string

FIGURE 17.16 ObjectInputStream can read objects, primitive-type values, and strings.

Reads an object.

java.io.InputStream

java.io.ObjectInputStream

+ObjectInputStream(in: InputStream) +readObject(): Object

«interface»
java.io.DataInput

«interface»
java.io.ObjectInput

«interface»
ObjectStreamConstants

FIGURE 17.17 ObjectOutputStream can write objects, primitive-type values, and strings.

Writes an object.

java.io.OutputStream

java.io.ObjectOutputStream

+ObjectOutputStream(out: OutputStream) +writeObject(o: Object): void

«interface»
java.io.DataOutput

«interface»
java.io.ObjectOutput

«interface»
ObjectStreamConstants

ObjectOutputStream extends OutputStream and implements ObjectOutput and
ObjectStreamConstants, as shown in Figure 17.17. ObjectOutput is a subinterface of
DataOutput (DataOutput is shown in Figure 17.10).

M17_LIAN9966_12_SE_C17.indd 707 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

708 Chapter 17 Binary I/O

12 output.writeObject(new java.util.Date());
13 }
14 }
15 }

An ObjectOutputStream is created to write data into the file object.dat in lines 6 and 7. A
string, a double value, and an object are written to the file in lines 10–12. To improve performance,
you may add a buffer in the stream using the following statement to replace lines 6 and 7:

ObjectOutputStream output = new ObjectOutputStream(
 new BufferedOutputStream(new FileOutputStream("object.dat")));

Multiple objects or primitives can be written to the stream. The objects must be read back
from the corresponding ObjectInputStream with the same types and in the same order as
they were written. Java’s safe casting should be used to get the desired type. Listing 17.6 reads
data from object.dat.

LISTING 17.6 TestObjectInputStream.java
 1 import java.io.*;
 2
 3 public class TestObjectInputStream {
 4 public static void main(String[] args)
 5 throws ClassNotFoundException, IOException {
 6 try (// Create an input stream for file object.dat
 7 ObjectInputStream input =
 8 new ObjectInputStream(new FileInputStream("object.dat"));
 9) {
10 // Read a string, double value, and object from the file
11 String name = input.readUTF();
12 double score = input.readDouble();

13 java.util.Date date = (java.util.Date)(input.readObject());
14 System.out.println(name + " " + score + " " + date);
15 }
16 }
17 }

output object

input stream

input string

input object

John 85.5 Sun Dec 04 10:35:31 EST 2011

The readObject() method may throw java.lang.ClassNotFoundException because
when the JVM restores an object, it first loads the class for the object if the class has not been
loaded. Since ClassNotFoundException is a checked exception, the main method declares
to throw it in line 5. An ObjectInputStream is created to read input from object.dat in
lines 7–8. You have to read the data from the file in the same order and format as they were
 written to the file. A string, a double value, and an object are read in lines 11–13.
Since readObject() returns an Object, it is cast into Date and assigned to a Date variable
in line 13.

17.6.1 The Serializable Interface
Not every object can be written to an output stream. Objects that can be so written are said to
be serializable. A serializable object is an instance of the java.io.Serializable interface,
so the object’s class must implement Serializable.

ClassNotFoundException

serializable

M17_LIAN9966_12_SE_C17.indd 708 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

17.6 Object I/O 709

The Serializable interface is a marker interface. Since it has no methods, you don’t need
to add additional code in your class that implements Serializable. Implementing this interface
enables the Java serialization mechanism to automate the process of storing objects and arrays.

To appreciate this automation feature, consider what you otherwise need to do in order to
store an object. Suppose that you wish to store an ArrayList object. To do this, you need to
store all the elements in the list. Each element is an object that may contain other objects. As
you can see, this would be a very tedious process. Fortunately, you don’t have to go through
it manually. Java provides a built-in mechanism to automate the process of writing objects.
This process is referred as object serialization, which is implemented in ObjectOutputStream.
In contrast, the process of reading objects is referred as object deserialization, which is imple-
mented in ObjectInputStream.

Many classes in the Java API implement Serializable. All the wrapper classes for
 primitive-type values: java.math.BigInteger, java.math.BigDecimal, java.lang.
String, java.lang.StringBuilder, java.lang.StringBuffer, java.util.Date, and
java.util.ArrayList implement java.io.Serializable. Attempting to store an object that
does not support the Serializable interface would cause a NotSerializableException.

When a serializable object is stored, the class of the object is encoded; this includes the class
name and the signature of the class, the values of the object’s instance variables, and the closure of
any other objects referenced by the object. The values of the object’s static variables are not stored.

Note
Nonserializable fields
If an object is an instance of Serializable but contains nonserializable instance data
fields, can it be serialized? The answer is no. To enable the object to be serialized, mark
these data fields with the transient keyword to tell the JVM to ignore them when
writing the object to an object stream. Consider the following class:

public class C implements java.io.Serializable {
 private int v1;
 private static double v2;
 private transient A v3 = new A();
}

class A { } // A is not serializable

When an object of the C class is serialized, only variable v1 is serialized. Variable
v2 is not serialized because it is a static variable, and variable v3 is not serialized
because it is marked transient. If v3 were not marked transient, a java.io.No-
tSerializableException would occur.

Note
Duplicate objects
If an object is written to an object stream more than once, will it be stored in multiple
copies? No, it will not. When an object is written for the first time, a serial number is
created for it. The JVM writes the complete contents of the object along with the serial
number into the object stream. After the first time, only the serial number is stored if the
same object is written again. When the objects are read back, their references are the
same since only one object is actually created in the memory.

17.6.2 Serializing Arrays
An array is serializable if all its elements are serializable. An entire array can be saved into a file using
writeObject and later can be restored using readObject. Listing 17.7 stores an array of five int
values and an array of three strings, and reads them back to display on the console.

serialization

deserialization

NotSerializableException

transient

M17_LIAN9966_12_SE_C17.indd 709 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

710 Chapter 17 Binary I/O

LISTING 17.7 TestObjectStreamForArray.java
 1 import java.io.*;
 2
 3 public class TestObjectStreamForArray {
 4 public static void main(String[] args)
 5 throws ClassNotFoundException, IOException {
 6 int[] numbers = {1, 2, 3, 4, 5};
 7 String[] strings = {"John", "Susan", "Kim"};
 8
 9 try (// Create an output stream for file array.dat
10 ObjectOutputStream output = new ObjectOutputStream(new
11 FileOutputStream("array.dat", true));
12) {
13 // Write arrays to the object output stream
14 output.writeObject(numbers);
15 output.writeObject(strings);
16 }
17
18 try (// Create an input stream for file array.dat
19 ObjectInputStream input =
20 new ObjectInputStream(new FileInputStream("array.dat"));
21) {
22 int[] newNumbers = (int[])(input.readObject());
23 String[] newStrings = (String[])(input.readObject());
24
25 // Display arrays
26 for (int i = 0; i < newNumbers.length; i++)
27 System.out.print(newNumbers[i] + " ");
28 System.out.println();
29
30 for (int i = 0; i < newStrings.length; i++)
31 System.out.print(newStrings[i] + " ");
32 }
33 }
34 }

output stream

store array

input stream

restore array

Lines 14–15 write two arrays into file array.dat. Lines 22–23 read two arrays back in the
same order they were written. Since readObject() returns Object, casting is used to cast
the objects into int[] and String[].

 17.6.1 Is it true that DataInputStream/DataOutputStream can always be replaced by
ObjectInputStream/ObjectOutputStream?

 17.6.2 What types of objects can be stored using the ObjectOutputStream?
What is the method for writing an object? What is the method for reading
an object? What is the return type of the method that reads an object from
ObjectInputStream?

 17.6.3 If you serialize two objects of the same type, will they take the same amount of
space? If not, give an example.

 17.6.4 Is it true that any instance of java.io.Serializable can be successfully serial-
ized? Are the static variables in an object serialized? How do you mark an instance
variable not to be serialized?

Point
Check

1 2 3 4 5

John Susan Kim

M17_LIAN9966_12_SE_C17.indd 710 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

17.7 Random-Access Files 711

 17.6.5 What will happen when you attempt to run the following code?

import java.io.*;

public class Test {
 public static void main(String[] args) throws IOException {
 try (ObjectOutputStream output =
 new ObjectOutputStream(new FileOutputStream("object.dat"));) {
 output.writeObject(new A());
 }
 }
}

class A implements Serializable {
 B b = new B();
}

class B {
}

 17.6.6 Can you write an array to an ObjectOutputStream?

17.7 Random-Access Files
Java provides the RandomAccessFile class to allow data to be read from and
 written to at any locations in the file.

All of the streams you have used so far are known as read-only or write-only streams. These
streams are called sequential streams. A file that is opened using a sequential stream is called
a sequential-access file. The contents of a sequential-access file cannot be updated. However,
it is often necessary to modify files. Java provides the RandomAccessFile class to allow data
to be read from and written to at any locations in the file. A file that is opened using the
 RandomAccessFile class is known as a random-access file.

The RandomAccessFile class implements the DataInput and DataOutput interfaces,
as shown in Figure 17.18. The DataInput interface (see Figure 17.9) defines the methods for
reading primitive-type values and strings (e.g., readInt, readDouble, readChar, read-
Boolean, and readUTF) and the DataOutput interface (see Figure 17.10) defines the meth-
ods for writing primitive-type values and strings (e.g., writeInt, writeDouble, writeChar,
writeBoolean, and writeUTF).

When creating a RandomAccessFile, you can specify one of the two modes: r or rw.
Mode r means that the stream is read-only, and mode rw indicates that the stream allows both
read and write. For example, the following statement creates a new stream, raf, that allows
the program to read from and write to the file test.dat:

RandomAccessFile raf = new RandomAccessFile("test.dat", "rw");

If test.dat already exists, raf is created to access it; if test.dat does not exist, a new file named
test.dat is created and raf is created to access the new file. The method raf.length()
returns the number of bytes in test.dat at any given time. If you append new data into the file,
raf.length() increases.

Tip
If the file is not intended to be modified, open it with the r mode. This prevents unin-
tentional modification of the file.

Point
Key

read-only
write-only
sequential-access file

random-access file

M17_LIAN9966_12_SE_C17.indd 711 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

712 Chapter 17 Binary I/O

FIGURE 17.19 After an int value is read, the file pointer is moved 4 bytes ahead.

(b) After readInt()

File pointer

File

File

… byte byte byte byte byte byte byte byte byte byte… (a) Before readInt()byte byte

byte byte byte byte byte bytebyte byte byte byte byte… …byte

File pointer

FIGURE 17.18 RandomAccessFile implements the DataInput and DataOutput interfaces with additional methods
to support random access.

Creates a RandomAccessFile stream with the specified File object
 and mode.

Creates a RandomAccessFile stream with the specified file name
 string and mode.

Closes the stream and releases the resource associated with it.

Returns the offset, in bytes, from the beginning of the file to where the
 next read or write occurs.

Returns the length for this file.

Reads a byte of data from this file and returns –1 at the end of stream.

Reads up to b.length bytes of data from this file into an array of bytes.

Reads up to len bytes of data from this file into an array of bytes.

Sets the offset (in bytes specified in pos) from the beginning of the
 stream to where the next read or write occurs.

Sets a new length for this file.

Skips over n bytes of input.

Writes b.length bytes from the specified byte array to this file,
 starting at the current file pointer.

Writes len bytes from the specified byte array, starting at offset off,
 to this file.

java.io.RandomAccessFile

+RandomAccessFile(f ile: File, mode:
 String)

+RandomAccessFile(name: String,
 mode: String)

+close(): void

+getFilePointer(): long

+length(): long

+read(): int

+read(b: byte[]): int

+read(b: byte[], of f: int, len: int): int

+seek(pos: long): void

+setLength(newLength: long): void

+skipBytes(int n): int

+write(b: byte[]): void

+write(b: byte[], of f: int, len: int):
 void

«interface»
java.io.DataOutput

«interface»
java.io.DataInput

A random-access file consists of a sequence of bytes. A special marker called a file pointer is
positioned at one of these bytes. A read or write operation takes place at the location of the file
pointer. When a file is opened, the file pointer is set at the beginning of the file. When you read
from or write data to the file, the file pointer moves forward to the next data item. For example,
if you read an int value using readInt(), the JVM reads 4 bytes from the file pointer and
now the file pointer is 4 bytes ahead of the previous location, as shown in Figure 17.19.

file pointer

For a RandomAccessFile raf, you can use the raf.seek(position) method to move
the file pointer to a specified position. raf.seek(0) moves it to the beginning of the file
and raf.seek(raf.length()) moves it to the end of the file. Listing 17.8 demonstrates
RandomAccessFile. A large case study of using RandomAccessFile to organize an address
book is given in Supplement VI.D.

M17_LIAN9966_12_SE_C17.indd 712 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

17.7 Random-Access Files 713

LISTING 17.8 TestRandomAccessFile.java
 1 import java.io.*;
 2
 3 public class TestRandomAccessFile {
 4 public static void main(String[] args) throws IOException {
 5 try (// Create a random access file
 6 RandomAccessFile inout = new RandomAccessFile("inout.dat", "rw");
 7) {
 8 // Clear the file to destroy the old contents if exists
 9 inout.setLength(0);
10
11 // Write new integers to the file
12 for (int i = 0; i < 200; i++)

13 inout.writeInt(i);
14
15 // Display the current length of the file
16 System.out.println("Current file length is " + inout.length());
17
18 // Retrieve the first number
19 inout.seek(0); // Move the file pointer to the beginning
20 System.out.println("The first number is " + inout.readInt());
21
22 // Retrieve the second number
23 inout.seek(1 * 4); // Move the file pointer to the second number
24 System.out.println("The second number is " + inout.readInt());
25
26 // Retrieve the tenth number
27 inout.seek(9 * 4); // Move the file pointer to the tenth number
28 System.out.println("The tenth number is " + inout.readInt());
29
30 // Modify the eleventh number
31 inout.writeInt(555);
32
33 // Append a new number
34 inout.seek(inout.length()); // Move the file pointer to the end
35 inout.writeInt(999);
36
37 // Display the new length
38 System.out.println("The new length is " + inout.length());
39
40 // Retrieve the new eleventh number
41 inout.seek(10 * 4); // Move the file pointer to the eleventh number
42 System.out.println("The eleventh number is " + inout.readInt());
43 }
44 }
45 }

RandomAccessFile

empty file

write

move pointer

read

Current file length is 800
The first number is 0
The second number is 1
The tenth number is 9
The new length is 804
The eleventh number is 555

A RandomAccessFile is created for the file named inout.dat with mode rw to allow both
read and write operations in line 6.

M17_LIAN9966_12_SE_C17.indd 713 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

714 Chapter 17 Binary I/O

inout.setLength(0) sets the length to 0 in line 9. This, in effect, deletes the old contents
of the file.

The for loop writes 200 int values from 0 to 199 into the file in lines 12–13. Since each
int value takes 4 bytes, the total length of the file returned from inout.length() is now
800 (line 16), as shown in the sample output.

Invoking inout.seek(0) in line 19 sets the file pointer to the beginning of the file.
inout.readInt() reads the first value in line 20 and moves the file pointer to the next num-
ber. The second number is read in line 24.

inout.seek(9 * 4) (line 27) moves the file pointer to the tenth number. inout. readInt()
reads the tenth number and moves the file pointer to the eleventh number in line 28. inout
.write(555) writes a new eleventh number at the current position (line 31). The previous
eleventh number is deleted.

inout.seek(inout.length()) moves the file pointer to the end of the file (line 34).
inout.writeInt(999) writes a 999 to the file (line 35). Now the length of the file is
increased by 4, so inout.length() returns 804 (line 38).

inout.seek(10 * 4) moves the file pointer to the eleventh number in line 41. The new
eleventh number, 555, is displayed in line 42.

 17.7.1 Can RandomAccessFile streams read and write a data file created by
 DataOutputStream? Can RandomAccessFile streams read and write
objects?

 17.7.2 Create a RandomAccessFile stream for the file address.dat to allow the
 updating of student information in the file. Create a DataOutputStream for the
file address.dat. Explain the differences between these two statements.

 17.7.3 What happens if the file test.dat does not exist when you attempt to compile and
run the following code?

import java.io.*;

public class Test {
 public static void main(String[] args) {
 try (RandomAccessFile raf =
 new RandomAccessFile("test.dat", "r");) {
 int i = raf.readInt();
 }
 catch (IOException ex) {
 System.out.println("IO exception");
 }
 }
}

Point
Check

binary I/O 692
deserialization 709
file pointer 712
random-access file 711

sequential-access file 711
serialization 709
stream 692
text I/O 692

KEY TERMS

M17_LIAN9966_12_SE_C17.indd 714 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 715

CHAPTER SUMMARY

1. I/O can be classified into text I/O and binary I/O. Text I/O interprets data in sequences
of characters. Binary I/O interprets data as raw binary values. How text is stored in a
file depends on the encoding scheme for the file. Java automatically performs encoding
and decoding for text I/O.

2. The InputStream and OutputStream classes are the roots of all binary I/O classes.
FileInputStream/FileOutputStream associates a file for input/output. Buffered
InputStream/BufferedOutputStream can be used to wrap any binary I/O stream to
improve performance. DataInputStream/DataOutputStream can be used to read/
write primitive values and strings.

3. ObjectInputStream/ObjectOutputStream can be used to read/write objects in
addition to primitive values and strings. To enable object serialization, the object’s
defining class must implement the java.io.Serializable marker interface.

4. The RandomAccessFile class enables you to read and write data to a file. You can open
a file with the r mode to indicate that it is read-only, or with the rw mode to indicate
that it is updateable. Since the RandomAccessFile class implements DataInput and
DataOutput interfaces, many methods in RandomAccessFile are the same as those
in DataInputStream and DataOutputStream.

QUIZ

Answer the quiz for this chapter online at the book Companion Website.

PROGRAMMING EXERCISES

Section 17.3
 *17.1 (Create a text file) Write a program to create a file named Exercise17_01.txt if

it does not exist. Append new data to it if it already exists. Write 100 integers
created randomly into the file using text I/O. Integers are separated by a space.

Section 17.4
 *17.2 (Create a binary data file) Write a program to create a file named Exercise17_02

.dat if it does not exist. Append new data to it if it already exists. Write 100 inte-
gers created randomly into the file using binary I/O.

 *17.3 (Sum all the integers in a binary data file) Suppose a binary data file named
 Exercise17_02.dat has been created from Programming Exercise 17.2 and its data
are created using writeInt(int) in DataOutputStream. The file contains an
unspecified number of integers. Write a program to find the sum of the integers.

 *17.4 (Convert a text file into UTF) Write a program that reads lines of characters from
a text file and writes each line as a UTF string into a binary file. Display the
sizes of the text file and the binary file. Use the following command to run the
program:

java Exercise17_04 Welcome.java Welcome.utf

M17_LIAN9966_12_SE_C17.indd 715 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

716 Chapter 17 Binary I/O

Section 17.6
 *17.5 (Store objects and arrays in a file) Write a program that stores an array of the five

int values 1, 2, 3, 4, and 5, a Date object for the current time, and the double
value 5.5 into the file named Exercise17_05.dat. In the same program, write the
code to read and display the data.

 *17.6 (Store Loan objects) The Loan class in Listing 10.2 does not implement
 Serializable. Rewrite the Loan class to implement Serializable. Write
a pro gram that creates five Loan objects and stores them in a file named
 Exercise17_06.dat.

 *17.7 (Restore objects from a file) Suppose a file named Exercise17_06.dat has
been created using the ObjectOutputStream from the preceding program-
ming exercises. The file contains Loan objects. The Loan class in Listing 10.2
does not implement Serializable. Rewrite the Loan class to implement
 Serializable. Write a program that reads the Loan objects from the file and
displays the total loan amount. Suppose that you don’t know how many Loan
objects are there in the file, use EOFException to end the loop.

Section 17.7
 *17.8 (Update count) Suppose that you wish to track how many times a program has

been executed. You can store an int to count the file. Increase the count by 1
each time this program is executed. Let the program be Exercise17_08.txt and
store the count in Exercise17_08.dat.

 ***17.9 (Address book) Write a program that stores, retrieves, adds, and updates addresses as
shown in Figure 17.20. Use a fixed-length string for storing each attribute in the address.
Use random-access file for reading and writing an address. Assume the sizes of the
name, street, city, state, and zip are 32, 32, 20, 2, and 5 bytes, respectively.

Comprehensive
 *17.10 (Split files) Suppose you want to back up a huge file (e.g., a 10-GB AVI file) to a

CD-R. You can achieve it by splitting the file into smaller pieces and backing up
these pieces separately. Write a utility program that splits a large file into smaller
ones using the following command:

java Exercise17_10 SourceFile numberOfPieces

The command creates the files SourceFile.1, SourceFile.2, . . . , SourceFile.n,
where n is numberOfPieces and the output files are about the same size.

 **17.11 (Split files GUI) Rewrite Exercise 17.10 with a GUI, as shown in Figure 17.21a.

 *17.12 (Combine files) Write a utility program that combines the files together into a
new file using the following command:

java Exercise17_12 SourceFile1 . . . SourceFilen TargetFile

The command combines SourceFile1, . . . , and SourceFilen into TargetFile.

VideoNote

Split a large file

FIGURE 17.20 The application can store, retrieve, and update addresses from a file. Source:
Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

M17_LIAN9966_12_SE_C17.indd 716 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 717

 *17.13 (Combine files GUI) Rewrite Exercise 17.12 with a GUI, as shown in Figure 17.21b.

 17.14 (Encrypt files) Encode the file by adding 5 to every byte in the file. Write a pro-
gram that prompts the user to enter an input file name and an output file name and
saves the encrypted version of the input file to the output file.

 17.15 (Decrypt files) Suppose a file is encrypted using the scheme in Programming
Exercise 17.14. Write a program to decode an encrypted file. Your program
should prompt the user to enter an input file name for the encrypted file and an
output file name for the unencrypted version of the input file.

 17.16 (Frequency of characters) Write a program that prompts the user to enter the
name of an ASCII text file and displays the frequency of the characters in the file.

 **17.17 (BitOutputStream) Implement a class named BitOutputStream, as shown
in Figure 17.22, for writing bits to an output stream. The writeBit(char bit)
method stores the bit in a byte variable. When you create a BitOutputStream,
the byte is empty. After invoking writeBit('1'), the byte becomes 00000001.
After invoking writeBit("0101"), the byte becomes 00010101. The first
three bits are not filled yet. When a byte is full, it is sent to the output stream. Now
the byte is reset to empty. You must close the stream by invoking the close()
method. If the byte is neither empty nor full, the close() method first fills the
zeros to make a full 8 bits in the byte and then outputs the byte and closes the
stream. For a hint, see Programming Exercise 5.44. Write a test program that
sends the bits 010000100100001001101 to the file named Exercise17_17.dat.

FIGURE 17.21 (a) The program splits a file. Source: Copyright © 1995–2016 Oracle and/or
its affiliates. All rights reserved. Used with permission. (b) The program combines files into
a new file.

(a) (b)

FIGURE 17.22 BitOutputStream outputs a stream of bits to a file.

BitOutputStream

+BitOutputStream(file: File)

+writeBit(char bit): void

+writeBit(String bit): void

+close(): void

Creates a BitOutputStream to write bits to the file.

Writes a bit '0' or '1' to the output stream.

Writes a string of bits to the output stream.

This method must be invoked to close the stream.

 *17.18 (View bits) Write the following method that displays the bit representation for the
last byte in an integer:

public static String getBits(int value)

For a hint, see Programming Exercise 5.44. Write a program that prompts the user
to enter a file name, reads bytes from the file, and displays each byte’s binary
representation.

M17_LIAN9966_12_SE_C17.indd 717 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

718 Chapter 17 Binary I/O

 *17.19 (View hex) Write a program that prompts the user to enter a file name, reads bytes
from the file, and displays each byte’s hex representation. (Hint: You can first con-
vert the byte value into an 8-bit string, then convert the bit string into a two-digit hex
string.)

 **17.20 (Binary editor) Write a GUI application that lets the user to enter a file name in
the text field and press the Enter key to display its binary representation in a text
area. The user can also modify the binary code and save it back to the file, as
shown in Figure 17.23a.

 **17.21 (Hex editor) Write a GUI application that lets the user to enter a file name in the
text field and press the Enter key to display its hex representation in a text area.
The user can also modify the hex code and save it back to the file, as shown in
Figure 17.23b.

FIGURE 17.23 The programs enable the user to manipulate the contents of the file in (a) binary (b) hex. Source:
 Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

(a) (b)

M17_LIAN9966_12_SE_C17.indd 718 12/09/19 9:14 PM

STUDENTS-HUB.com

https://students-hub.com

