Center of Mass and Linear Momentum

9-1 CENTER OF MASS

Learning Objectives

After reading this module, you should be able to ...

- 9.01 Given the positions of several particles along an axis or a plane, determine the location of their center of mass.
- 9.02 Locate the center of mass of an extended, symmetric object by using the symmetry.
- 9.03 For a two-dimensional or three-dimensional extended object with a uniform distribution of mass, determine the center of mass by (a) mentally dividing the object into simple geometric figures, each of which can be replaced by a particle at its center, and (b) finding the center of mass of those particles.

Key Idea

Or

• The center of mass of a system of n particles is defined to be the point whose coordinates are given by

$$x_{\text{com}} = \frac{1}{M} \sum_{i=1}^{n} m_i x_i, \quad y_{\text{com}} = \frac{1}{M} \sum_{i=1}^{n} m_i y_i, \quad z_{\text{com}} = \frac{1}{M} \sum_{i=1}^{n} m_i z_i,$$
$$\vec{r}_{\text{com}} = \frac{1}{M} \sum_{i=1}^{n} m_i \vec{r}_i,$$

where M is the total mass of the system.

What Is Physics?

Every mechanical engineer who is hired as a courtroom expert witness to reconstruct a traffic accident uses physics. Every dance trainer who coaches a ballerina on how to leap uses physics. Indeed, analyzing complicated motion of any sort requires simplification via an understanding of physics. In this chapter we discuss how the complicated motion of a system of objects, such as a car or a ballerina, can be simplified if we determine a special point of the system—the *center of mass* of that system.

Here is a quick example. If you toss a ball into the air without much spin on the ball (Fig. 9-1a), its motion is simple—it follows a parabolic path, as we discussed in Chapter 4, and the ball can be treated as a particle. If, instead, you flip a baseball bat into the air (Fig. 9-1b), its motion is more complicated. Because every part of the bat moves differently, along paths of many different shapes, you cannot represent the bat as a particle. Instead, it is a system of particles each of which follows its own path through the air. However, the bat has one special point—the center of mass—that does move in a simple parabolic path. The other parts of the bat move around the center of mass. (To locate the center of mass, balance the bat on an outstretched finger; the point is above your finger, on the bat's central axis.)

You cannot make a career of flipping baseball bats into the air, but you can make a career of advising long-jumpers or dancers on how to leap properly into the air while either moving their arms and legs or rotating their torso. Your starting point would be to determine the person's center of mass because of its simple motion.

The Center of Mass

We define the **center of mass** (com) of a system of particles (such as a person) in order to predict the possible motion of the system.

The center of mass of a system of particles is the point that moves as though (1) all of the system's mass were concentrated there and (2) all external forces were applied there.

Here we discuss how to determine where the center of mass of a system of particles is located. We start with a system of only a few particles, and then we consider a system of a great many particles (a solid body, such as a baseball bat). Later in the chapter, we discuss how the center of mass of a system moves when external forces act on the system.

Systems of Particles

Two Particles. Figure 9-2a shows two particles of masses m_1 and m_2 separated by distance d. We have arbitrarily chosen the origin of an x axis to coincide with the particle of mass m_1 . We define the position of the center of mass of this two-particle system to be

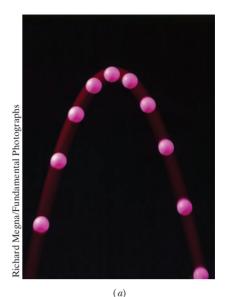
$$x_{\rm com} = \frac{m_2}{m_1 + m_2} d. (9-1)$$

Suppose, as an example, that $m_2 = 0$. Then there is only one particle, of mass m_1 , and the center of mass must lie at the position of that particle; Eq. 9-1 dutifully reduces to $x_{\text{com}} = 0$. If $m_1 = 0$, there is again only one particle (of mass m_2), and we have, as we expect, $x_{\text{com}} = d$. If $m_1 = m_2$, the center of mass should be halfway between the two particles; Eq. 9-1 reduces to $x_{\text{com}} = \frac{1}{2}d$, again as we expect. Finally, Eq. 9-1 tells us that if neither m_1 nor m_2 is zero, x_{com} can have only values that lie between zero and d; that is, the center of mass must lie somewhere between the two particles.

We are not required to place the origin of the coordinate system on one of the particles. Figure 9-2b shows a more generalized situation, in which the coordinate system has been shifted leftward. The position of the center of mass is now defined as

$$x_{\text{com}} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}. (9-2)$$

Note that if we put $x_1 = 0$, then x_2 becomes d and Eq. 9-2 reduces to Eq. 9-1, as it must. Note also that in spite of the shift of the coordinate system, the center



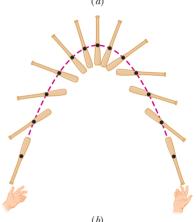
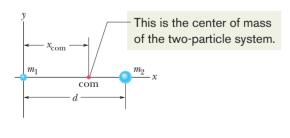
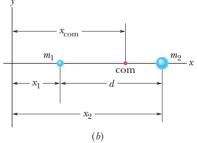


Figure 9-1 (a) A ball tossed into the air follows a parabolic path. (b) The center of mass (black dot) of a baseball bat flipped into the air follows a parabolic path, but all other points of the bat follow more complicated curved paths.





Shifting the axis does not change the relative position of the com.

Figure 9-2 (a) Two particles of masses m_1 and m_2 are separated by distance d. The dot labeled com shows the position of the center of mass, calculated from Eq. 9-1. (b) The same as (a) except that the origin is located farther from the particles. The position of the center of mass is calculated from Eq. 9-2. The location of the center of mass with respect to the particles is the same in both cases.

of mass is still the same distance from each particle. The com is a property of the physical particles, not the coordinate system we happen to use.

We can rewrite Eq. 9-2 as

$$x_{\text{com}} = \frac{m_1 x_1 + m_2 x_2}{M},\tag{9-3}$$

in which M is the total mass of the system. (Here, $M = m_1 + m_2$.)

Many Particles. We can extend this equation to a more general situation in which n particles are strung out along the x axis. Then the total mass is $M = m_1 + m_2 + \cdots + m_n$, and the location of the center of mass is

$$x_{\text{com}} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots + m_n x_n}{M}$$

$$= \frac{1}{M} \sum_{i=1}^{n} m_i x_i. \tag{9-4}$$

The subscript *i* is an index that takes on all integer values from 1 to *n*.

Three Dimensions. If the particles are distributed in three dimensions, the center of mass must be identified by three coordinates. By extension of Eq. 9-4, they are

$$x_{\text{com}} = \frac{1}{M} \sum_{i=1}^{n} m_i x_i, \qquad y_{\text{com}} = \frac{1}{M} \sum_{i=1}^{n} m_i y_i, \qquad z_{\text{com}} = \frac{1}{M} \sum_{i=1}^{n} m_i z_i.$$
 (9-5)

We can also define the center of mass with the language of vectors. First recall that the position of a particle at coordinates x_i , y_i , and z_i is given by a position vector (it points from the origin to the particle):

$$\vec{r}_i = x_i \hat{\mathbf{i}} + y_i \hat{\mathbf{j}} + z_i \hat{\mathbf{k}}. \tag{9-6}$$

Here the index identifies the particle, and \hat{i} , \hat{j} , and \hat{k} are unit vectors pointing, respectively, in the positive direction of the x, y, and z axes. Similarly, the position of the center of mass of a system of particles is given by a position vector:

$$\vec{r}_{\text{com}} = x_{\text{com}} \hat{\mathbf{i}} + y_{\text{com}} \hat{\mathbf{j}} + z_{\text{com}} \hat{\mathbf{k}}. \tag{9-7}$$

If you are a fan of concise notation, the three scalar equations of Eq. 9-5 can now be replaced by a single vector equation,

$$\vec{r}_{\text{com}} = \frac{1}{M} \sum_{i=1}^{n} m_i \vec{r}_i,$$
 (9-8)

where again M is the total mass of the system. You can check that this equation is correct by substituting Eqs. 9-6 and 9-7 into it, and then separating out the x, y, and z components. The scalar relations of Eq. 9-5 result.

Solid Bodies

An ordinary object, such as a baseball bat, contains so many particles (atoms) that we can best treat it as a continuous distribution of matter. The "particles" then become differential mass elements dm, the sums of Eq. 9-5 become integrals, and the coordinates of the center of mass are defined as

$$x_{\text{com}} = \frac{1}{M} \int x \, dm, \qquad y_{\text{com}} = \frac{1}{M} \int y \, dm, \qquad z_{\text{com}} = \frac{1}{M} \int z \, dm, \quad (9-9)$$

where *M* is now the mass of the object. The integrals effectively allow us to use Eq. 9-5 for a huge number of particles, an effort that otherwise would take many years.

Evaluating these integrals for most common objects (such as a television set or a moose) would be difficult, so here we consider only *uniform* objects. Such objects have uniform *density*, or mass per unit volume; that is, the density ρ (Greek letter

rho) is the same for any given element of an object as for the whole object. From Eq. 1-8, we can write

$$\rho = \frac{dm}{dV} = \frac{M}{V},\tag{9-10}$$

where dV is the volume occupied by a mass element dm, and V is the total volume of the object. Substituting dm = (M/V) dV from Eq. 9-10 into Eq. 9-9 gives

$$x_{\text{com}} = \frac{1}{V} \int x \, dV, \qquad y_{\text{com}} = \frac{1}{V} \int y \, dV, \qquad z_{\text{com}} = \frac{1}{V} \int z \, dV.$$
 (9-11)

Symmetry as a Shortcut. You can bypass one or more of these integrals if an object has a point, a line, or a plane of symmetry. The center of mass of such an object then lies at that point, on that line, or in that plane. For example, the center of mass of a uniform sphere (which has a point of symmetry) is at the center of the sphere (which is the point of symmetry). The center of mass of a uniform cone (whose axis is a line of symmetry) lies on the axis of the cone. The center of mass of a banana (which has a plane of symmetry that splits it into two equal parts) lies somewhere in the plane of symmetry.

The center of mass of an object need not lie within the object. There is no dough at the com of a doughnut, and no iron at the com of a horseshoe.

Sample Problem 9.01 com of three particles

Three particles of masses $m_1 = 1.2$ kg, $m_2 = 2.5$ kg, and $m_3 = 3.4$ kg form an equilateral triangle of edge length a = 140 cm. Where is the center of mass of this system?

KEY IDEA

We are dealing with particles instead of an extended solid body, so we can use Eq. 9-5 to locate their center of mass. The particles are in the plane of the equilateral triangle, so we need only the first two equations.

Calculations: We can simplify the calculations by choosing the x and y axes so that one of the particles is located at the origin and the x axis coincides with one of the triangle's

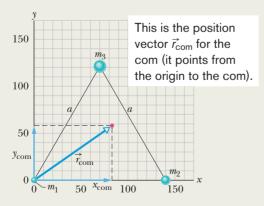


Figure 9-3 Three particles form an equilateral triangle of edge length a. The center of mass is located by the position vector \vec{r}_{com} .

sides (Fig. 9-3). The three particles then have the following coordinates:

Particle	Mass (kg)	<i>x</i> (cm)	y (cm)
1	1.2	0	0
2	2.5	140	0
3	3.4	70	120

The total mass M of the system is 7.1 kg.

From Eq. 9-5, the coordinates of the center of mass are

$$x_{\text{com}} = \frac{1}{M} \sum_{i=1}^{3} m_i x_i = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{M}$$

$$= \frac{(1.2 \text{ kg})(0) + (2.5 \text{ kg})(140 \text{ cm}) + (3.4 \text{ kg})(70 \text{ cm})}{7.1 \text{ kg}}$$

$$= 83 \text{ cm} \qquad (Answer)$$
and $y_{\text{com}} = \frac{1}{M} \sum_{i=1}^{3} m_i y_i = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3}{M}$

$$= \frac{(1.2 \text{ kg})(0) + (2.5 \text{ kg})(0) + (3.4 \text{ kg})(120 \text{ cm})}{7.1 \text{ kg}}$$

$$= 58 \text{ cm}. \qquad (Answer)$$

In Fig. 9-3, the center of mass is located by the position vector \vec{r}_{com} , which has components x_{com} and y_{com} . If we had chosen some other orientation of the coordinate system, these coordinates would be different but the location of the com relative to the particles would be the same.

Additional examples, video, and practice available at WileyPLUS

Sample Problem 9.02 com of plate with missing piece

This sample problem has lots of words to read, but they will allow you to calculate a com using easy algebra instead of challenging integral calculus. Figure 9-4a shows a uniform metal plate P of radius 2R from which a disk of radius R has been stamped out (removed) in an assembly line. The disk is shown in Fig. 9-4b. Using the xy coordinate system shown, locate the center of mass com_P of the remaining plate.

(1) Let us roughly locate the center of plate P by using symmetry. We note that the plate is symmetric about the x axis (we get the portion below that axis by rotating the upper portion about the axis). Thus, com_P must be on the x axis. The plate (with the disk removed) is not symmetric about the y axis. However, because there is somewhat more mass on the right of the y axis, com_P must be somewhat to the right of that axis. Thus, the location of comp should be roughly as indicated in Fig. 9-4a.

(2) Plate P is an extended solid body, so in principle we can use Eqs. 9-11 to find the actual coordinates of the center of mass of plate P. Here we want the xy coordinates of the center of mass because the plate is thin and uniform. If it had any appreciable thickness, we would just say that the center of mass is midway across the thickness. Still, using Eqs. 9-11 would be challenging because we would need a function for the shape of the plate with its hole, and then we would need to integrate the function in two dimensions.

(3) Here is a much easier way: In working with centers of mass, we can assume that the mass of a uniform object (as we have here) is concentrated in a particle at the object's center of mass. Thus we can treat the object as a particle and avoid any two-dimensional integration.

Calculations: First, put the stamped-out disk (call it disk S) back into place (Fig. 9-4c) to form the original composite plate (call it plate C). Because of its circular symmetry, the center of mass com_S for disk S is at the center of S, at x =-R (as shown). Similarly, the center of mass com_C for composite plate C is at the center of C, at the origin (as shown). We then have the following:

Plate	Center of Mass	Location of com	Mass
P	com_P	$x_P = ?$	m_P
S	com_S	$x_P = ?$ $x_S = -R$	m_S
C	com_C	$x_C = 0$	$m_C = m_S + m_P$

Assume that mass m_S of disk S is concentrated in a particle at $x_S = -R$, and mass m_P is concentrated in a particle at x_P (Fig. 9-4d). Next we use Eq. 9-2 to find the center of mass x_{S+P} of the two-particle system:

$$x_{S+P} = \frac{m_S x_S + m_P x_P}{m_S + m_P}. (9-12)$$

Next note that the combination of disk S and plate P is composite plate C. Thus, the position x_{S+P} of com_{S+P} must coincide with the position x_C of com_C, which is at the origin; so $x_{S+P} = x_C = 0$. Substituting this into Eq. 9-12, we get

$$x_P = -x_S \frac{m_S}{m_P}. (9-13)$$

We can relate these masses to the face areas of S and P by noting that

$$\begin{aligned} mass &= density \times volume \\ &= density \times thickness \times area. \end{aligned}$$

Then
$$\frac{m_S}{m_P} = \frac{\text{density}_S}{\text{density}_P} \times \frac{\text{thickness}_S}{\text{thickness}_P} \times \frac{\text{area}_S}{\text{area}_P}.$$

Because the plate is uniform, the densities and thicknesses are equal; we are left with

$$\frac{m_S}{m_P} = \frac{\text{area}_S}{\text{area}_P} = \frac{\text{area}_S}{\text{area}_C - \text{area}_S}$$
$$= \frac{\pi R^2}{\pi (2R)^2 - \pi R^2} = \frac{1}{3}.$$

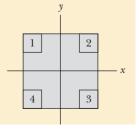
Substituting this and $x_S = -R$ into Eq. 9-13, we have

$$x_P = \frac{1}{3}R.$$
 (Answer)

PLUS Additional examples, video, and practice available at WileyPLUS

Checkpoint 1

The figure shows a uniform square plate from which four identical squares at the corners will be removed. (a) Where is the center of mass of the plate originally? Where is it after the removal of (b) square 1; (c) squares 1 and 2; (d) squares 1 and 3; (e) squares 1, 2, and 3; (f) all four squares? Answer in terms of quadrants, axes, or points (without calculation, of course).



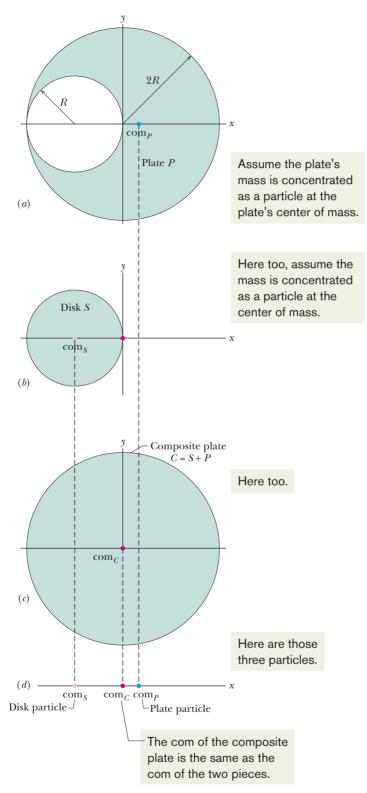


Figure 9-4 (a) Plate P is a metal plate of radius 2R, with a circular hole of radius R. The center of mass of P is at point com_P . (b) Disk S. (c) Disk S has been put back into place to form a composite plate C. The center of mass com_S of disk S and the center of mass com_C of plate C are shown. (d) The center of mass com_{S+P} of the combination of S and P coincides with com_C , which is at x = 0.

9-2 NEWTON'S SECOND LAW FOR A SYSTEM OF PARTICLES

Learning Objectives

After reading this module, you should be able to . . .

- 9.04 Apply Newton's second law to a system of particles by relating the net force (of the forces acting on the particles) to the acceleration of the system's center of mass.
- 9.05 Apply the constant-acceleration equations to the motion of the individual particles in a system and to the motion of the system's center of mass.
- **9.06** Given the mass and velocity of the particles in a system, calculate the velocity of the system's center of mass.
- 9.07 Given the mass and acceleration of the particles in a system, calculate the acceleration of the system's center of mass.

- **9.08** Given the position of a system's center of mass as a function of time, determine the velocity of the center of mass.
- 9.09 Given the velocity of a system's center of mass as a function of time, determine the acceleration of the center of mass
- 9.10 Calculate the change in the velocity of a com by integrating the com's acceleration function with respect to time.
- 9.11 Calculate a com's displacement by integrating the com's velocity function with respect to time.
- **9.12** When the particles in a two-particle system move without the system's com moving, relate the displacements of the particles and the velocities of the particles.

Key Idea

• The motion of the center of mass of any system of particles is governed by Newton's second law for a system of particles, which is

$$\vec{F}_{\text{net}} = M \vec{a}_{\text{com}}$$
.

Here $\vec{F}_{\rm net}$ is the net force of all the *external* forces acting on the system, M is the total mass of the system, and $\vec{a}_{\rm com}$ is the acceleration of the system's center of mass.

Newton's Second Law for a System of Particles

Now that we know how to locate the center of mass of a system of particles, we discuss how external forces can move a center of mass. Let us start with a simple system of two billiard balls.

If you roll a cue ball at a second billiard ball that is at rest, you expect that the two-ball system will continue to have some forward motion after impact. You would be surprised, for example, if both balls came back toward you or if both moved to the right or to the left. You already have an intuitive sense that *something* continues to move forward.

What continues to move forward, its steady motion completely unaffected by the collision, is the center of mass of the two-ball system. If you focus on this point—which is always halfway between these bodies because they have identical masses—you can easily convince yourself by trial at a billiard table that this is so. No matter whether the collision is glancing, head-on, or somewhere in between, the center of mass continues to move forward, as if the collision had never occurred. Let us look into this center-of-mass motion in more detail.

Motion of a System's com. To do so, we replace the pair of billiard balls with a system of *n* particles of (possibly) different masses. We are interested not in the individual motions of these particles but *only* in the motion of the center of mass of the system. Although the center of mass is just a point, it moves like a particle whose mass is equal to the total mass of the system; we can assign a position, a velocity, and an acceleration to it. We state (and shall prove next) that the vector equation that governs the motion of the center of mass of such a system of particles is

$$\vec{F}_{\text{net}} = M\vec{a}_{\text{com}}$$
 (system of particles). (9-14)

This equation is Newton's second law for the motion of the center of mass of a system of particles. Note that its form is the same as the form of the equation

 $(\vec{F}_{\text{net}} = m\vec{a})$ for the motion of a single particle. However, the three quantities that appear in Eq. 9-14 must be evaluated with some care:

- **1.** \vec{F}_{net} is the net force of *all external forces* that act on the system. Forces on one part of the system from another part of the system (*internal forces*) are not included in Eq. 9-14.
- **2.** *M* is the *total mass* of the system. We assume that no mass enters or leaves the system as it moves, so that *M* remains constant. The system is said to be **closed.**
- 3. \vec{a}_{com} is the acceleration of the *center of mass* of the system. Equation 9-14 gives no information about the acceleration of any other point of the system.

Equation 9-14 is equivalent to three equations involving the components of $\vec{F}_{\rm net}$ and $\vec{a}_{\rm com}$ along the three coordinate axes. These equations are

$$F_{\text{net},x} = Ma_{\text{com},x}$$
 $F_{\text{net},y} = Ma_{\text{com},y}$ $F_{\text{net},z} = Ma_{\text{com},z}$. (9-15)

Billiard Balls. Now we can go back and examine the behavior of the billiard balls. Once the cue ball has begun to roll, no net external force acts on the (two-ball) system. Thus, because $\vec{F}_{\rm net} = 0$, Eq. 9-14 tells us that $\vec{a}_{\rm com} = 0$ also. Because acceleration is the rate of change of velocity, we conclude that the velocity of the center of mass of the system of two balls does not change. When the two balls collide, the forces that come into play are *internal* forces, on one ball from the other. Such forces do not contribute to the net force $\vec{F}_{\rm net}$, which remains zero. Thus, the center of mass of the system, which was moving forward before the collision, must continue to move forward after the collision, with the same speed and in the same direction.

Solid Body. Equation 9-14 applies not only to a system of particles but also to a solid body, such as the bat of Fig. 9-1b. In that case, M in Eq. 9-14 is the mass of the bat and \vec{F}_{net} is the gravitational force on the bat. Equation 9-14 then tells us that $\vec{a}_{com} = \vec{g}$. In other words, the center of mass of the bat moves as if the bat were a single particle of mass M, with force \vec{F}_g acting on it.

Exploding Bodies. Figure 9-5 shows another interesting case. Suppose that at a fireworks display, a rocket is launched on a parabolic path. At a certain point, it explodes into fragments. If the explosion had not occurred, the rocket would have continued along the trajectory shown in the figure. The forces of the explosion are *internal* to the system (at first the system is just the rocket, and later it is its fragments); that is, they are forces on parts of the system from other parts. If we ignore air drag, the net *external* force \vec{F}_{net} acting on the system is the gravitational force on the system, regardless of whether the rocket explodes. Thus, from Eq. 9-14, the acceleration \vec{a}_{com} of the center of mass of the fragments (while they are in flight) remains equal to \vec{g} . This means that the center of mass of the fragments follows the same parabolic trajectory that the rocket would have followed had it not exploded.

Ballet Leap. When a ballet dancer leaps across the stage in a grand jeté, she raises her arms and stretches her legs out horizontally as soon as her feet leave the

The internal forces of the explosion cannot change the path of the com.

Figure 9-5 A fireworks rocket explodes in flight. In the absence of air drag, the center of mass of the fragments would continue to follow the original parabolic path, until fragments began to hit the ground.

Figure 9-6 A grand jeté. (Based on *The Physics of Dance*, by Kenneth Laws, Schirmer Books, 1984.)

stage (Fig. 9-6). These actions shift her center of mass upward through her body. Although the shifting center of mass faithfully follows a parabolic path across the stage, its movement relative to the body decreases the height that is attained by her head and torso, relative to that of a normal jump. The result is that the head and torso follow a nearly horizontal path, giving an illusion that the dancer is floating.

Proof of Equation 9-14

Now let us prove this important equation. From Eq. 9-8 we have, for a system of *n* particles,

$$M\vec{r}_{\text{com}} = m_1\vec{r}_1 + m_2\vec{r}_2 + m_3\vec{r}_3 + \dots + m_n\vec{r}_n,$$
 (9-16)

in which M is the system's total mass and \vec{r}_{com} is the vector locating the position of the system's center of mass.

Differentiating Eq. 9-16 with respect to time gives

$$M\vec{v}_{\text{com}} = m_1\vec{v}_1 + m_2\vec{v}_2 + m_3\vec{v}_3 + \dots + m_n\vec{v}_n.$$
 (9-17)

Here \vec{v}_i (= $d\vec{r}_i/dt$) is the velocity of the *i*th particle, and \vec{v}_{com} (= $d\vec{r}_{com}/dt$) is the velocity of the center of mass.

Differentiating Eq. 9-17 with respect to time leads to

$$M\vec{a}_{com} = m_1\vec{a}_1 + m_2\vec{a}_2 + m_3\vec{a}_3 + \dots + m_n\vec{a}_n.$$
 (9-18)

Here \vec{a}_i (= $d\vec{v}_i/dt$) is the acceleration of the *i*th particle, and \vec{a}_{com} (= $d\vec{v}_{com}/dt$) is the acceleration of the center of mass. Although the center of mass is just a geometrical point, it has a position, a velocity, and an acceleration, as if it were a particle.

From Newton's second law, $m_i \vec{a_i}$ is equal to the resultant force $\vec{F_i}$ that acts on the *i*th particle. Thus, we can rewrite Eq. 9-18 as

$$M\vec{a}_{\text{com}} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \dots + \vec{F}_n.$$
 (9-19)

Among the forces that contribute to the right side of Eq. 9-19 will be forces that the particles of the system exert on each other (internal forces) and forces exerted on the particles from outside the system (external forces). By Newton's third law, the internal forces form third-law force pairs and cancel out in the sum that appears on the right side of Eq. 9-19. What remains is the vector sum of all the *external* forces that act on the system. Equation 9-19 then reduces to Eq. 9-14, the relation that we set out to prove.

Checkpoint 2

Two skaters on frictionless ice hold opposite ends of a pole of negligible mass. An axis runs along it, with the origin at the center of mass of the two-skater system. One skater, Fred, weighs twice as much as the other skater, Ethel. Where do the skaters meet if (a) Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand?

Sample Problem 9.03 Motion of the com of three particles

If the particles in a system all move together, the com moves with them—no trouble there. But what happens when they move in different directions with different accelerations? Here is an example.

The three particles in Fig. 9-7a are initially at rest. Each experiences an external force due to bodies outside the three-particle system. The directions are indicated, and the magnitudes are $F_1 = 6.0 \text{ N}$, $F_2 = 12 \text{ N}$, and $F_3 = 14 \text{ N}$. What is the acceleration of the center of mass of the system, and in what direction does it move?

KEY IDEAS

The position of the center of mass is marked by a dot in the figure. We can treat the center of mass as if it were a real particle, with a mass equal to the system's total mass M = 16 kg. We can also treat the three external forces as if they act at the center of mass (Fig. 9-7b).

Calculations: We can now apply Newton's second law $(\vec{F}_{\text{net}} = m\vec{a})$ to the center of mass, writing

$$\vec{F}_{\text{net}} = M\vec{a}_{\text{com}} \tag{9-20}$$

 $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = M\vec{a}_{\text{com}}$ or

so
$$\vec{a}_{com} = \frac{\vec{F}_1 + \vec{F}_2 + \vec{F}_3}{M}$$
. (9-21)

Equation 9-20 tells us that the acceleration \vec{a}_{com} of the center of mass is in the same direction as the net external force $\vec{F}_{\rm net}$ on the system (Fig. 9-7b). Because the particles are initially at rest, the center of mass must also be at rest. As the center of mass then begins to accelerate, it must move off in the common direction of \vec{a}_{com} and \vec{F}_{net} .

We can evaluate the right side of Eq. 9-21 directly on a vector-capable calculator, or we can rewrite Eq. 9-21 in component form, find the components of \vec{a}_{com} , and then find \vec{a}_{com} . Along the x axis, we have

$$a_{\text{com},x} = \frac{F_{1x} + F_{2x} + F_{3x}}{M}$$
$$= \frac{-6.0 \text{ N} + (12 \text{ N}) \cos 45^\circ + 14 \text{ N}}{16 \text{ kg}} = 1.03 \text{ m/s}^2.$$

Along the v axis, we have

$$a_{\text{com,y}} = \frac{F_{1y} + F_{2y} + F_{3y}}{M}$$
$$= \frac{0 + (12 \text{ N}) \sin 45^\circ + 0}{16 \text{ kg}} = 0.530 \text{ m/s}^2.$$

From these components, we find that \vec{a}_{com} has the magnitude

$$a_{\text{com}} = \sqrt{(a_{\text{com},x})^2 + (a_{\text{com},y})^2}$$

= 1.16 m/s² \approx 1.2 m/s² (Answer)

and the angle (from the positive direction of the x axis)

$$\theta = \tan^{-1} \frac{a_{\text{com},y}}{a_{\text{com},x}} = 27^{\circ}.$$
 (Answer)

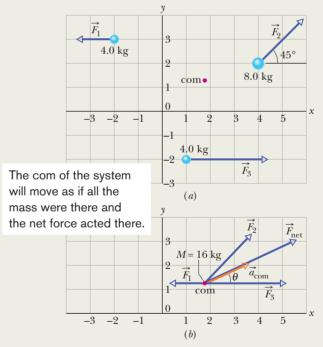


Figure 9-7 (a) Three particles, initially at rest in the positions shown, are acted on by the external forces shown. The center of mass (com) of the system is marked. (b) The forces are now transferred to the center of mass of the system, which behaves like a particle with a mass M equal to the total mass of the system. The net external force \vec{F}_{net} and the acceleration \vec{a}_{com} of the center of mass are shown.

PLUS Additional examples, video, and practice available at WileyPLUS

9-3 LINEAR MOMENTUM

Learning Objectives

After reading this module, you should be able to . . .

- 9.13 Identify that momentum is a vector quantity and thus has both magnitude and direction and also components.
- **9.14** Calculate the (linear) momentum of a particle as the product of the particle's mass and velocity.
- 9.15 Calculate the change in momentum (magnitude and direction) when a particle changes its speed and direction of travel.
- 9.16 Apply the relationship between a particle's momentum and the (net) force acting on the particle.
- 9.17 Calculate the momentum of a system of particles as the product of the system's total mass and its center-of-mass velocity.
- 9.18 Apply the relationship between a system's center-ofmass momentum and the net force acting on the system.

Key Ideas

ullet For a single particle, we define a quantity \overrightarrow{p} called its linear momentum as

$$\vec{p} = m\vec{v}$$
,

which is a vector quantity that has the same direction as the particle's velocity. We can write Newton's second law in

terms of this momentum:

$$\vec{F}_{\text{net}} = \frac{d\vec{p}}{dt}.$$

• For a system of particles these relations become

$$\vec{P} = M \vec{v}_{\rm com}$$
 and $\vec{F}_{\rm net} = \frac{d\vec{P}}{dt}$.

Linear Momentum

Here we discuss only a single particle instead of a system of particles, in order to define two important quantities. Then we shall extend those definitions to systems of many particles.

The first definition concerns a familiar word — momentum — that has several meanings in everyday language but only a single precise meaning in physics and engineering. The **linear momentum** of a particle is a vector quantity \vec{p} that is defined as

$$\vec{p} = m\vec{v}$$
 (linear momentum of a particle), (9-22)

in which m is the mass of the particle and \vec{v} is its velocity. (The adjective *linear* is often dropped, but it serves to distinguish \vec{p} from angular momentum, which is introduced in Chapter 11 and which is associated with rotation.) Since m is always a positive scalar quantity, Eq. 9-22 tells us that \vec{p} and \vec{v} have the same direction. From Eq. 9-22, the SI unit for momentum is the kilogram-meter per second (kg·m/s).

Force and Momentum. Newton expressed his second law of motion in terms of momentum:

The time rate of change of the momentum of a particle is equal to the net force acting on the particle and is in the direction of that force.

In equation form this becomes

$$\vec{F}_{\text{net}} = \frac{d\vec{p}}{dt}.$$
 (9-23)

In words, Eq. 9-23 says that the net external force \vec{F}_{net} on a particle changes the particle's linear momentum \vec{p} . Conversely, the linear momentum can be changed only by a net external force. If there is no net external force, \vec{p} cannot change. As we shall see in Module 9-5, this last fact can be an extremely powerful tool in solving problems.

Manipulating Eq. 9-23 by substituting for \vec{p} from Eq. 9-22 gives, for constant mass m,

$$\vec{F}_{\text{net}} = \frac{d\vec{p}}{dt} = \frac{d}{dt} (m\vec{v}) = m \frac{d\vec{v}}{dt} = m\vec{a}.$$

Thus, the relations $\vec{F}_{\text{net}} = d\vec{p}/dt$ and $\vec{F}_{\text{net}} = m\vec{a}$ are equivalent expressions of Newton's second law of motion for a particle.

Checkpoint 3

The figure gives the magnitude *p* of the linear momentum versus time *t* for a particle moving along an axis. A force directed along the axis acts on the particle. (a) Rank the four regions indicated according to the magnitude of the force, greatest first. (b) In which region is the particle slowing?

The Linear Momentum of a System of Particles

Let's extend the definition of linear momentum to a system of particles. Consider a system of n particles, each with its own mass, velocity, and linear momentum. The particles may interact with each other, and external forces may act on them. The system as a whole has a total linear momentum \vec{P} , which is defined to be the vector sum of the individual particles' linear momenta. Thus,

$$\vec{P} = \vec{p}_1 + \vec{p}_2 + \vec{p}_3 + \dots + \vec{p}_n$$

$$= m_1 \vec{v}_1 + m_2 \vec{v}_2 + m_3 \vec{v}_3 + \dots + m_n \vec{v}_n.$$
(9-24)

If we compare this equation with Eq. 9-17, we see that

$$\vec{P} = M\vec{v}_{\text{com}}$$
 (linear momentum, system of particles), (9-25)

which is another way to define the linear momentum of a system of particles:

The linear momentum of a system of particles is equal to the product of the total mass M of the system and the velocity of the center of mass.

Force and Momentum. If we take the time derivative of Eq. 9-25 (the velocity can change but not the mass), we find

$$\frac{d\vec{P}}{dt} = M \frac{d\vec{v}_{\text{com}}}{dt} = M \vec{a}_{\text{com}}.$$
 (9-26)

Comparing Eqs. 9-14 and 9-26 allows us to write Newton's second law for a system of particles in the equivalent form

$$\vec{F}_{\text{net}} = \frac{d\vec{P}}{dt}$$
 (system of particles), (9-27)

where $\vec{F}_{\rm net}$ is the net external force acting on the system. This equation is the generalization of the single-particle equation $\vec{F}_{\rm net} = d\vec{p}/dt$ to a system of many particles. In words, the equation says that the net external force $\vec{F}_{\rm net}$ on a system of particles changes the linear momentum \vec{P} of the system. Conversely, the linear momentum can be changed only by a net external force. If there is no net external force, \vec{P} cannot change. Again, this fact gives us an extremely powerful tool for solving problems.

9-4 COLLISION AND IMPULSE

Learning Objectives

After reading this module, you should be able to . . .

- **9.19** Identify that impulse is a vector quantity and thus has both magnitude and direction and also components.
- 9.20 Apply the relationship between impulse and momentum change.
- 9.21 Apply the relationship between impulse, average force, and the time interval taken by the impulse.
- 9.22 Apply the constant-acceleration equations to relate impulse to average force.
- **9.23** Given force as a function of time, calculate the impulse (and thus also the momentum change) by integrating the function.
- 9.24 Given a graph of force versus time, calculate the impulse (and thus also the momentum change) by graphical integration.
- 9.25 In a continuous series of collisions by projectiles, calculate the average force on the target by relating it to the rate at which mass collides and to the velocity change experienced by each projectile.

Key Ideas

 Applying Newton's second law in momentum form to a particle-like body involved in a collision leads to the impulse-linear momentum theorem:

$$\vec{p}_f - \vec{p}_i = \Delta \vec{p} = \vec{J},$$

where $\vec{p}_f - \vec{p}_i = \Delta \vec{p}$ is the change in the body's linear momentum, and \vec{J} is the impulse due to the force $\vec{F}(t)$ exerted on the body by the other body in the collision:

$$\vec{J} = \int_{t_i}^{t_f} \vec{F}(t) dt.$$

ullet If F_{avg} is the average magnitude of $\overrightarrow{F}(t)$ during the collision and Δt is the duration of the collision, then for one-dimensional motion

$$J = F_{\rm avg} \, \Delta t$$
.

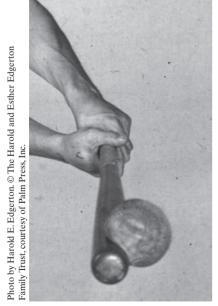
ullet When a steady stream of bodies, each with mass m and speed v, collides with a body whose position is fixed, the average force on the fixed body is

$$F_{\text{avg}} = -\frac{n}{\Delta t} \Delta p = -\frac{n}{\Delta t} m \Delta v,$$

where $n/\Delta t$ is the rate at which the bodies collide with the fixed body, and Δv is the change in velocity of each colliding body. This average force can also be written as

$$F_{\text{avg}} = -\frac{\Delta m}{\Delta t} \, \Delta v,$$

where $\Delta m/\Delta t$ is the rate at which mass collides with the fixed body. The change in velocity is $\Delta v = -v$ if the bodies stop upon impact and $\Delta v = -2v$ if they bounce directly backward with no change in their speed.



The collision of a ball with a bat collapses part of the ball.

Collision and Impulse

The momentum \vec{p} of any particle-like body cannot change unless a net external force changes it. For example, we could push on the body to change its momentum. More dramatically, we could arrange for the body to collide with a baseball bat. In such a *collision* (or *crash*), the external force on the body is brief, has large magnitude, and suddenly changes the body's momentum. Collisions occur commonly in our world, but before we get to them, we need to consider a simple collision in which a moving particle-like body (a *projectile*) collides with some other body (a *target*).

Single Collision

Let the projectile be a ball and the target be a bat. The collision is brief, and the ball experiences a force that is great enough to slow, stop, or even reverse its motion. Figure 9-8 depicts the collision at one instant. The ball experiences a force $\vec{F}(t)$ that varies during the collision and changes the linear momentum \vec{p} of the ball. That change is related to the force by Newton's second law written in the form $\vec{F} = d\vec{p}/dt$. By rearranging this second-law expression, we see that, in time interval dt, the change in the ball's momentum is

$$d\vec{p} = \vec{F}(t) dt. (9-28)$$

We can find the net change in the ball's momentum due to the collision if we integrate both sides of Eq. 9-28 from a time t_i just before the collision to a time t_f just after the collision:

$$\int_{t_i}^{t_f} d\vec{p} = \int_{t_i}^{t_f} \vec{F}(t) dt.$$
 (9-29)

The left side of this equation gives us the change in momentum: $\vec{p}_f - \vec{p}_i = \Delta \vec{p}$. The right side, which is a measure of both the magnitude and the duration of the collision force, is called the **impulse** \vec{J} of the collision:

$$\vec{J} = \int_{t_i}^{t_f} \vec{F}(t) \ dt \quad \text{(impulse defined)}. \tag{9-30}$$

Thus, the change in an object's momentum is equal to the impulse on the object:

$$\Delta \vec{p} = \vec{J}$$
 (linear momentum-impulse theorem). (9-31)

This expression can also be written in the vector form

$$\vec{p}_f - \vec{p}_i = \vec{J} \tag{9-32}$$

and in such component forms as

$$\Delta p_x = J_x \tag{9-33}$$

and

$$p_{fx} - p_{ix} = \int_{t_i}^{t_f} F_x \, dt. \tag{9-34}$$

Integrating the Force. If we have a function for $\vec{F}(t)$, we can evaluate \vec{J} (and thus the change in momentum) by integrating the function. If we have a plot of \vec{F} versus time t, we can evaluate \vec{J} by finding the area between the curve and the t axis, such as in Fig. 9-9a. In many situations we do not know how the force varies with time but we do know the average magnitude F_{avg} of the force and the duration Δt (= $t_f - t_i$) of the collision. Then we can write the magnitude of the impulse as

$$J = F_{\text{avg}} \Delta t. \tag{9-35}$$

The average force is plotted versus time as in Fig. 9-9b. The area under that curve is equal to the area under the curve for the actual force F(t) in Fig. 9-9a because both areas are equal to impulse magnitude J.

Instead of the ball, we could have focused on the bat in Fig. 9-8. At any instant, Newton's third law tells us that the force on the bat has the same magnitude but the opposite direction as the force on the ball. From Eq. 9-30, this means that the impulse on the bat has the same magnitude but the opposite direction as the impulse on the ball.

Checkpoint 4

A paratrooper whose chute fails to open lands in snow; he is hurt slightly. Had he landed on bare ground, the stopping time would have been 10 times shorter and the collision lethal. Does the presence of the snow increase, decrease, or leave unchanged the values of (a) the paratrooper's change in momentum, (b) the impulse stopping the paratrooper, and (c) the force stopping the paratrooper?

Series of Collisions

Now let's consider the force on a body when it undergoes a series of identical, repeated collisions. For example, as a prank, we might adjust one of those machines that fire tennis balls to fire them at a rapid rate directly at a wall. Each collision would produce a force on the wall, but that is not the force we are seeking. We

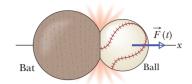
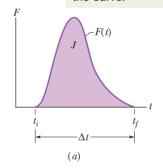


Figure 9-8 Force $\vec{F}(t)$ acts on a ball as the ball and a bat collide.

The impulse in the collision is equal to the area under the curve.



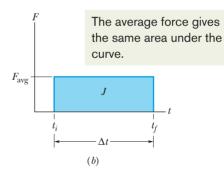


Figure 9-9 (a) The curve shows the magnitude of the time-varying force F(t) that acts on the ball in the collision of Fig. 9-8. The area under the curve is equal to the magnitude of the impulse \vec{J} on the ball in the collision. (b) The height of the rectangle represents the average force $F_{\rm avg}$ acting on the ball over the time interval Δt . The area within the rectangle is equal to the area under the curve in (a) and thus is also equal to the magnitude of the impulse \vec{J} in the collision.

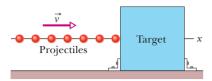


Figure 9-10 A steady stream of projectiles, with identical linear momenta, collides with a target, which is fixed in place. The average force $F_{\rm avg}$ on the target is to the right and has a magnitude that depends on the rate at which the projectiles collide with the target or, equivalently, the rate at which mass collides with the target.

want the average force F_{avg} on the wall during the bombardment—that is, the average force during a large number of collisions.

In Fig. 9-10, a steady stream of projectile bodies, with identical mass m and linear momenta $m\vec{v}$, moves along an x axis and collides with a target body that is fixed in place. Let n be the number of projectiles that collide in a time interval Δt . Because the motion is along only the x axis, we can use the components of the momenta along that axis. Thus, each projectile has initial momentum mv and undergoes a change Δp in linear momentum because of the collision. The total change in linear momentum for n projectiles during interval Δt is $n \Delta p$. The resulting impulse \vec{J} on the target during Δt is along the x axis and has the same magnitude of $n \Delta p$ but is in the opposite direction. We can write this relation in component form as

$$J = -n \,\Delta p,\tag{9-36}$$

where the minus sign indicates that J and Δp have opposite directions.

Average Force. By rearranging Eq. 9-35 and substituting Eq. 9-36, we find the average force F_{avg} acting on the target during the collisions:

$$F_{\text{avg}} = \frac{J}{\Delta t} = -\frac{n}{\Delta t} \, \Delta p = -\frac{n}{\Delta t} \, m \, \Delta v. \tag{9-37}$$

This equation gives us F_{avg} in terms of $n/\Delta t$, the rate at which the projectiles collide with the target, and Δv , the change in the velocity of those projectiles.

Velocity Change. If the projectiles stop upon impact, then in Eq. 9-37 we can substitute, for Δv ,

$$\Delta v = v_f - v_i = 0 - v = -v, \tag{9-38}$$

where v_i (= v) and v_f (= 0) are the velocities before and after the collision, respectively. If, instead, the projectiles bounce (rebound) directly backward from the target with no change in speed, then $v_f = -v$ and we can substitute

$$\Delta v = v_f - v_i = -v - v = -2v. \tag{9-39}$$

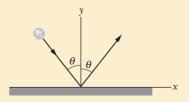
In time interval Δt , an amount of mass $\Delta m = nm$ collides with the target. With this result, we can rewrite Eq. 9-37 as

$$F_{\text{avg}} = -\frac{\Delta m}{\Delta t} \, \Delta v. \tag{9-40}$$

This equation gives the average force $F_{\rm avg}$ in terms of $\Delta m/\Delta t$, the rate at which mass collides with the target. Here again we can substitute for Δv from Eq. 9-38 or 9-39 depending on what the projectiles do.

Checkpoint 5

The figure shows an overhead view of a ball bouncing from a vertical wall without any change in its speed. Consider the change $\Delta \vec{p}$ in the ball's linear momentum. (a) Is Δp_x positive, negative, or zero? (b) Is Δp_y positive, negative, or zero? (c) What is the direction of $\Delta \vec{p}$?



Sample Problem 9.04 Two-dimensional impulse, race car-wall collision

Figure 9-11a is an overhead view of the path taken by a race car driver as his car collides with the racetrack wall. Just before the collision, he is traveling at speed $v_i = 70$ m/s along a straight line at 30° from the wall. Just after the collision, he is traveling at speed $v_f = 50$ m/s along a straight line at 10° from the wall. His mass m is 80 kg.

(a) What is the impulse \vec{J} on the driver due to the collision?

KEY IDEAS

We can treat the driver as a particle-like body and thus apply the physics of this module. However, we cannot calculate \hat{J} directly from Eq. 9-30 because we do not know anything about the force $\vec{F}(t)$ on the driver during the collision. That is, we do not have a function of $\vec{F}(t)$ or a plot for it and thus cannot integrate to find \vec{J} . However, we can find \vec{J} from the change in the driver's linear momentum \vec{p} via Eq. 9-32 ($\vec{J} = \vec{p}_f - \vec{p}_i$).

Calculations: Figure 9-11b shows the driver's momentum \vec{p}_i before the collision (at angle 30° from the positive x direction) and his momentum \vec{p}_f after the collision (at angle -10°). From Eqs. 9-32 and 9-22 ($\vec{p} = m\vec{v}$), we can write

$$\vec{J} = \vec{p}_f - \vec{p}_i = m\vec{v}_f - m\vec{v}_i = m(\vec{v}_f - \vec{v}_i). \tag{9-41}$$

We could evaluate the right side of this equation directly on a vector-capable calculator because we know m is 80 kg, \vec{v}_f is 50 m/s at -10° , and \vec{v}_i is 70 m/s at 30°. Instead, here we evaluate Eq. 9-41 in component form.

x component: Along the x axis we have

$$J_x = m(v_{fx} - v_{ix})$$

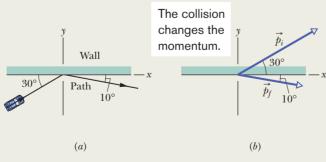
= $(80 \text{ kg})[(50 \text{ m/s}) \cos(-10^\circ) - (70 \text{ m/s}) \cos 30^\circ]$
= $-910 \text{ kg} \cdot \text{m/s}.$

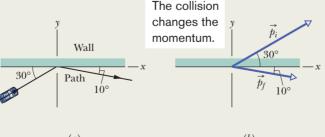
y component: Along the y axis,

$$J_y = m(v_{fy} - v_{iy})$$

= $(80 \text{ kg})[(50 \text{ m/s}) \sin(-10^\circ) - (70 \text{ m/s}) \sin 30^\circ]$
= $-3495 \text{ kg} \cdot \text{m/s} \approx -3500 \text{ kg} \cdot \text{m/s}.$

Figure 9-11 (a) Overhead view of the path taken by a race car and its driver as the car slams into the racetrack wall. (b) The initial momentum \vec{p}_i and final momentum \vec{p}_c of the driver. (c) The impulse \vec{J} on the driver during the collision.





Impulse: The impulse is then

$$\vec{J} = (-910\hat{i} - 3500\hat{j}) \text{ kg} \cdot \text{m/s}, \quad \text{(Answer)}$$

which means the impulse magnitude is

$$J = \sqrt{J_x^2 + J_y^2} = 3616 \text{ kg} \cdot \text{m/s} \approx 3600 \text{ kg} \cdot \text{m/s}.$$

The angle of \vec{J} is given by

$$\theta = \tan^{-1} \frac{J_y}{J_x},$$
 (Answer)

which a calculator evaluates as 75.4°. Recall that the physically correct result of an inverse tangent might be the displayed answer plus 180°. We can tell which is correct here by drawing the components of \vec{J} (Fig. 9-11c). We find that θ is actually $75.4^{\circ} + 180^{\circ} = 255.4^{\circ}$, which we can write as

$$\theta = -105^{\circ}$$
. (Answer)

(b) The collision lasts for 14 ms. What is the magnitude of the average force on the driver during the collision?

KEY IDEA

From Eq. 9-35 $(J = F_{\text{avg}} \Delta t)$, the magnitude F_{avg} of the average force is the ratio of the impulse magnitude J to the duration Δt of the collision.

Calculations: We have

$$F_{\text{avg}} = \frac{J}{\Delta t} = \frac{3616 \text{ kg} \cdot \text{m/s}}{0.014 \text{ s}}$$

= 2.583 × 10⁵ N ≈ 2.6 × 10⁵ N. (Answer)

Using F = ma with m = 80 kg, you can show that the magnitude of the driver's average acceleration during the collision is about 3.22×10^3 m/s² = 329g, which is fatal.

Surviving: Mechanical engineers attempt to reduce the chances of a fatality by designing and building racetrack walls with more "give," so that a collision lasts longer. For example, if the collision here lasted 10 times longer and the other data remained the same, the magnitudes of the average force and average acceleration would be 10 times less and probably survivable.

The impulse on the car is equal to the change in the momentum.

PLUS Additional examples, video, and practice available at WileyPLUS

9-5 CONSERVATION OF LINEAR MOMENTUM

Learning Objectives

After reading this module, you should be able to . . .

- 9.26 For an isolated system of particles, apply the conservation of linear momenta to relate the initial momenta of the particles to their momenta at a later instant.
- 9.27 Identify that the conservation of linear momentum can be done along an individual axis by using components along that axis, provided that there is no net external force component along that axis.

Key Ideas

- If a system is closed and isolated so that no net *external* force acts on it, then the linear momentum \vec{P} must be constant even if there are internal changes:
 - $\vec{P} = \text{constant}$ (closed, isolated system).
- This conservation of linear momentum can also be written in terms of the system's initial momentum and its momentum at some later instant;

$$\vec{P}_i = \vec{P}_f$$
 (closed, isolated system).

Conservation of Linear Momentum

Suppose that the net external force $\vec{F}_{\rm net}$ (and thus the net impulse \vec{J}) acting on a system of particles is zero (the system is isolated) and that no particles leave or enter the system (the system is closed). Putting $\vec{F}_{\rm net} = 0$ in Eq. 9-27 then yields $d\vec{P}/dt = 0$, which means that

$$\vec{P}$$
 = constant (closed, isolated system). (9-42)

In words,

If no net external force acts on a system of particles, the total linear momentum \vec{P} of the system cannot change.

This result is called the **law of conservation of linear momentum** and is an extremely powerful tool in solving problems. In the homework we usually write the law as

$$\vec{P}_i = \vec{P}_f$$
 (closed, isolated system). (9-43)

In words, this equation says that, for a closed, isolated system,

$$\begin{pmatrix} \text{total linear momentum} \\ \text{at some initial time } t_i \end{pmatrix} = \begin{pmatrix} \text{total linear momentum} \\ \text{at some later time } t_f \end{pmatrix}.$$

Caution: Momentum should not be confused with energy. In the sample problems of this module, momentum is conserved but energy is definitely not.

Equations 9-42 and 9-43 are vector equations and, as such, each is equivalent to three equations corresponding to the conservation of linear momentum in three mutually perpendicular directions as in, say, an *xyz* coordinate system. Depending on the forces acting on a system, linear momentum might be conserved in one or two directions but not in all directions. However,

If the component of the net *external* force on a closed system is zero along an axis, then the component of the linear momentum of the system along that axis cannot change.

In a homework problem, how can you know if linear momentum can be conserved along, say, an x axis? Check the force components along that axis. If the net of any such components is zero, then the conservation applies. As an example, suppose that you toss a grapefruit across a room. During its flight, the only external force acting on the grapefruit (which we take as the system) is the gravitational force \vec{F}_g , which is directed vertically downward. Thus, the vertical component of the linear

momentum of the grapefruit changes, but since no horizontal external force acts on the grapefruit, the horizontal component of the linear momentum cannot change.

Note that we focus on the external forces acting on a closed system. Although internal forces can change the linear momentum of portions of the system, they cannot change the total linear momentum of the entire system. For example, there are plenty of forces acting between the organs of your body, but they do not propel you across the room (thankfully).

The sample problems in this module involve explosions that are either onedimensional (meaning that the motions before and after the explosion are along a single axis) or two-dimensional (meaning that they are in a plane containing two axes). In the following modules we consider collisions.

Checkpoint 6

An initially stationary device lying on a frictionless floor explodes into two pieces, which then slide across the floor, one of them in the positive x direction. (a) What is the sum of the momenta of the two pieces after the explosion? (b) Can the second piece move at an angle to the x axis? (c) What is the direction of the momentum of the second piece?

Sample Problem 9.05 One-dimensional explosion, relative velocity, space hauler

One-dimensional explosion: Figure 9-12a shows a space hauler and cargo module, of total mass M, traveling along an x axis in deep space. They have an initial velocity \vec{v}_i of magnitude 2100 km/h relative to the Sun. With a small explosion, the hauler ejects the cargo module, of mass 0.20M (Fig. 9-12b). The hauler then travels 500 km/h faster than the module along the x axis; that is, the relative speed $v_{\rm rel}$ between the hauler and the module is 500 km/h. What then is the velocity \vec{v}_{HS} of the hauler relative to the Sun?

KEY IDEA

Because the hauler-module system is closed and isolated, its total linear momentum is conserved; that is,

$$\vec{P}_i = \vec{P}_f, \tag{9-44}$$

where the subscripts i and f refer to values before and after the ejection, respectively. (We need to be careful here: Although the momentum of the *system* does not change, the momenta of the hauler and module certainly do.)

Calculations: Because the motion is along a single axis, we can write momenta and velocities in terms of their *x* components, using a sign to indicate direction. Before the ejection, we have

$$P_i = M v_i. (9-45)$$

Let v_{MS} be the velocity of the ejected module relative to the Sun. The total linear momentum of the system after the ejection is then

$$P_f = (0.20M)v_{MS} + (0.80M)v_{HS}, (9-46)$$

where the first term on the right is the linear momentum of the module and the second term is that of the hauler. The explosive separation can change the momentum of the parts but not the momentum of the system.

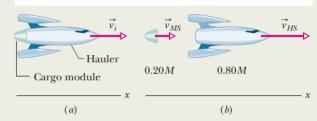


Figure 9-12 (a) A space hauler, with a cargo module, moving at initial velocity \vec{v}_i . (b) The hauler has ejected the cargo module. Now the velocities relative to the Sun are \vec{v}_{MS} for the module and \vec{v}_{HS} for the hauler

We can relate the v_{MS} to the known velocities with

$$\begin{pmatrix} \text{velocity of} \\ \text{hauler relative} \\ \text{to Sun} \end{pmatrix} = \begin{pmatrix} \text{velocity of} \\ \text{hauler relative} \\ \text{to module} \end{pmatrix} + \begin{pmatrix} \text{velocity of} \\ \text{module relative} \\ \text{to Sun} \end{pmatrix}$$

In symbols, this gives us

$$v_{HS} = v_{\text{rel}} + v_{MS}$$

$$v_{MS} = v_{HS} - v_{\text{rel}}.$$

$$(9-47)$$

Substituting this expression for v_{MS} into Eq. 9-46, and then substituting Eqs. 9-45 and 9-46 into Eq. 9-44, we find

$$Mv_i = 0.20M(v_{HS} - v_{rel}) + 0.80Mv_{HS},$$

which gives us

or

$$v_{HS} = v_i + 0.20v_{rel},$$

or $v_{HS} = 2100 \text{ km/h} + (0.20)(500 \text{ km/h})$
 $= 2200 \text{ km/h}.$ (Answer)

PLUS Additional examples, video, and practice available at WileyPLUS

Sample Problem 9.06 Two-dimensional explosion, momentum, coconut

Two-dimensional explosion: A firecracker placed inside a coconut of mass M, initially at rest on a frictionless floor, blows the coconut into three pieces that slide across the floor. An overhead view is shown in Fig. 9-13a. Piece C, with mass 0.30M, has final speed $v_{fC} = 5.0$ m/s.

(a) What is the speed of piece B, with mass 0.20M?

KEY IDEA

First we need to see whether linear momentum is conserved. We note that (1) the coconut and its pieces form a closed system, (2) the explosion forces are internal to that system, and (3) no net external force acts on the system. Therefore, the linear momentum of the system is conserved. (We need to be careful here: Although the momentum of the system does not change, the momenta of the pieces certainly do.)

Calculations: To get started, we superimpose an xy coordinate system as shown in Fig. 9-13b, with the negative direction of the x axis coinciding with the direction of \vec{v}_{fA} . The x axis is at 80° with the direction of \vec{v}_{fC} and 50° with the direction of \vec{v}_{fB} .

Linear momentum is conserved separately along each axis. Let's use the y axis and write

$$P_{iy} = P_{fy}, \tag{9-48}$$

where subscript i refers to the initial value (before the explosion), and subscript y refers to the y component of \vec{P}_i or \vec{P}_f .

The component P_{iv} of the initial linear momentum is zero, because the coconut is initially at rest. To get an expression for P_{fy} , we find the y component of the final linear momentum of each piece, using the y-component version of Eq. 9-22 ($p_v = mv_v$):

$$p_{fA,y} = 0,$$

 $p_{fB,y} = -0.20Mv_{fB,y} = -0.20Mv_{fB} \sin 50^{\circ},$
 $p_{fC,y} = 0.30Mv_{fC,y} = 0.30Mv_{fC} \sin 80^{\circ}.$

(Note that $p_{fA,y} = 0$ because of our nice choice of axes.) Equation 9-48 can now be written as

$$P_{iv} = P_{fv} = p_{fA,v} + p_{fB,v} + p_{fC,v}$$

Then, with $v_{fC} = 5.0$ m/s, we have

$$0 = 0 - 0.20Mv_{fB}\sin 50^{\circ} + (0.30M)(5.0 \text{ m/s})\sin 80^{\circ},$$

from which we find

$$v_{fB} = 9.64 \text{ m/s} \approx 9.6 \text{ m/s}.$$
 (Answer)

(b) What is the speed of piece A?

Calculations: Linear momentum is also conserved along the x axis because there is no net external force acting on the coconut and pieces along that axis. Thus we have

$$P_{ix} = P_{fx}, \tag{9-49}$$

where $P_{ix} = 0$ because the coconut is initially at rest. To get P_{fx} , we find the x components of the final momenta, using the fact that piece A must have a mass of 0.50M (=M-0.20M-0.30M):

$$\begin{aligned} p_{fA,x} &= -0.50 M v_{fA}, \\ p_{fB,x} &= 0.20 M v_{fB,x} = 0.20 M v_{fB} \cos 50^{\circ}, \\ p_{fC,x} &= 0.30 M v_{fC,x} = 0.30 M v_{fC} \cos 80^{\circ}. \end{aligned}$$

Equation 9-49 for the conservation of momentum along the x axis can now be written as

$$P_{ix} = P_{fx} = p_{fA,x} + p_{fB,x} + p_{fC,x}$$

Then, with $v_{fC} = 5.0$ m/s and $v_{fB} = 9.64$ m/s, we have $0 = -0.50Mv_{fA} + 0.20M(9.64 \text{ m/s})\cos 50^{\circ}$

 $+ 0.30M(5.0 \text{ m/s}) \cos 80^{\circ}$

from which we find

$$v_{fA} = 3.0 \text{ m/s.}$$
 (Answer)

The explosive separation can change the momentum of the parts but not the momentum of the system.

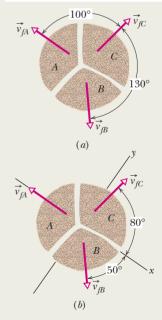


Figure 9-13 Three pieces of an exploded coconut move off in three directions along a frictionless floor. (a) An overhead view of the event. (b) The same with a two-dimensional axis system imposed.

PLUS Additional examples, video, and practice available at WileyPLUS

9-6 MOMENTUM AND KINETIC ENERGY IN COLLISIONS

Learning Objectives

After reading this module, you should be able to . . .

- 9.28 Distinguish between elastic collisions, inelastic collisions, and completely inelastic collisions.
- 9.29 Identify a one-dimensional collision as one where the objects move along a single axis, both before and after the collision.
- 9.30 Apply the conservation of momentum for an isolated one-dimensional collision to relate the initial momenta of the objects to their momenta after the collision.
- 9.31 Identify that in an isolated system, the momentum and velocity of the center of mass are not changed even if the objects collide.

Key Ideas

• In an inelastic collision of two bodies, the kinetic energy of the two-body system is not conserved. If the system is closed and isolated, the total linear momentum of the system *must* be conserved, which we can write in vector form as

$$\vec{p}_{1i} + \vec{p}_{2i} = \vec{p}_{1f} + \vec{p}_{2f},$$

where subscripts i and f refer to values just before and just after the collision, respectively.

• If the motion of the bodies is along a single axis, the collision is one-dimensional and we can write the equation in terms of

velocity components along that axis:

$$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$$
.

- ullet If the bodies stick together, the collision is a completely inelastic collision and the bodies have the same final velocity V (because they are stuck together).
- \bullet The center of mass of a closed, isolated system of two colliding bodies is not affected by a collision. In particular, the velocity \overrightarrow{v}_{com} of the center of mass cannot be changed by the collision.

Momentum and Kinetic Energy in Collisions

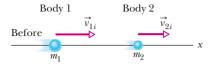
In Module 9-4, we considered the collision of two particle-like bodies but focused on only one of the bodies at a time. For the next several modules we switch our focus to the system itself, with the assumption that the system is closed and isolated. In Module 9-5, we discussed a rule about such a system: The total linear momentum \vec{P} of the system cannot change because there is no net external force to change it. This is a very powerful rule because it can allow us to determine the results of a collision *without* knowing the details of the collision (such as how much damage is done).

We shall also be interested in the total kinetic energy of a system of two colliding bodies. If that total happens to be unchanged by the collision, then the kinetic energy of the system is *conserved* (it is the same before and after the collision). Such a collision is called an **elastic collision**. In everyday collisions of common bodies, such as two cars or a ball and a bat, some energy is always transferred from kinetic energy to other forms of energy, such as thermal energy or energy of sound. Thus, the kinetic energy of the system is *not* conserved. Such a collision is called an **inelastic collision**.

However, in some situations, we can *approximate* a collision of common bodies as elastic. Suppose that you drop a Superball onto a hard floor. If the collision between the ball and floor (or Earth) were elastic, the ball would lose no kinetic energy because of the collision and would rebound to its original height. However, the actual rebound height is somewhat short, showing that at least some kinetic energy is lost in the collision and thus that the collision is somewhat inelastic. Still, we might choose to neglect that small loss of kinetic energy to approximate the collision as elastic.

The inelastic collision of two bodies always involves a loss in the kinetic energy of the system. The greatest loss occurs if the bodies stick together, in which case the collision is called a **completely inelastic collision.** The collision of a baseball and a bat is inelastic. However, the collision of a wet putty ball and a bat is completely inelastic because the putty sticks to the bat.

Here is the generic setup for an inelastic collision.



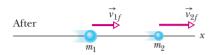


Figure 9-14 Bodies 1 and 2 move along an *x* axis, before and after they have an inelastic collision.

Inelastic Collisions in One Dimension

One-Dimensional Inelastic Collision

Figure 9-14 shows two bodies just before and just after they have a one-dimensional collision. The velocities before the collision (subscript i) and after the collision (subscript f) are indicated. The two bodies form our system, which is closed and isolated. We can write the law of conservation of linear momentum for this two-body system as

$$\left(\begin{array}{c} \text{total momentum } \overrightarrow{P}_i \\ \text{before the collision} \end{array}\right) = \left(\begin{array}{c} \text{total momentum } \overrightarrow{P}_f \\ \text{after the collision} \end{array}\right),$$

which we can symbolize as

$$\vec{p}_{1i} + \vec{p}_{2i} = \vec{p}_{1f} + \vec{p}_{2f}$$
 (conservation of linear momentum). (9-50)

Because the motion is one-dimensional, we can drop the overhead arrows for vectors and use only components along the axis, indicating direction with a sign. Thus, from p = mv, we can rewrite Eq. 9-50 as

$$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}. (9-51)$$

If we know values for, say, the masses, the initial velocities, and one of the final velocities, we can find the other final velocity with Eq. 9-51.

One-Dimensional Completely Inelastic Collision

Figure 9-15 shows two bodies before and after they have a completely inelastic collision (meaning they stick together). The body with mass m_2 happens to be initially at rest ($v_{2i} = 0$). We can refer to that body as the *target* and to the incoming body as the *projectile*. After the collision, the stuck-together bodies move with velocity V. For this situation, we can rewrite Eq. 9-51 as

$$m_1 v_{1i} = (m_1 + m_2)V (9-52)$$

$$V = \frac{m_1}{m_1 + m_2} v_{1i}. (9-53)$$

If we know values for, say, the masses and the initial velocity v_{1i} of the projectile, we can find the final velocity V with Eq. 9-53. Note that V must be less than v_{1i} because the mass ratio $m_1/(m_1 + m_2)$ must be less than unity.

Velocity of the Center of Mass

In a closed, isolated system, the velocity \vec{v}_{com} of the center of mass of the system cannot be changed by a collision because, with the system isolated, there is no net external force to change it. To get an expression for \vec{v}_{com} , let us return to the

In a completely inelastic collision, the bodies stick together.

Before $v_{2i} = 0$ m_1 Projectile Target

After

Figure 9-15 A completely inelastic collision between two bodies. Before the collision, the body with mass m_2 is at rest and the body with mass m_1 moves directly toward it. After the collision, the stucktogether bodies move with the same velocity \vec{V} .

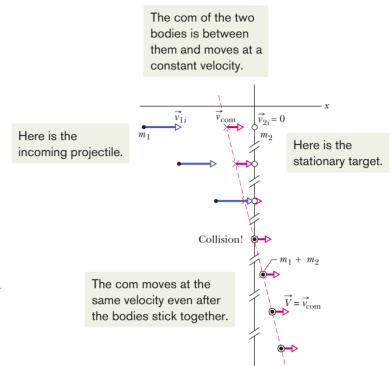


Figure 9-16 Some freeze-frames of the two-body system in Fig. 9-15, which undergoes a completely inelastic collision. The system's center of mass is shown in each freeze-frame. The velocity $\vec{v}_{\rm com}$ of the center of mass is unaffected by the collision. Because the bodies stick together after the collision, their common velocity \vec{V} must be equal to $\vec{v}_{\rm com}$.

two-body system and one-dimensional collision of Fig. 9-14. From Eq. 9-25 $(\vec{P} = M\vec{v}_{com})$, we can relate \vec{v}_{com} to the total linear momentum \vec{P} of that two-body system by writing

$$\vec{P} = M\vec{v}_{\text{com}} = (m_1 + m_2)\vec{v}_{\text{com}}.$$
 (9-54)

The total linear momentum \vec{P} is conserved during the collision; so it is given by either side of Eq. 9-50. Let us use the left side to write

$$\vec{P} = \vec{p}_{1i} + \vec{p}_{2i}. \tag{9-55}$$

Substituting this expression for \vec{P} in Eq. 9-54 and solving for \vec{v}_{com} give us

$$\vec{v}_{\text{com}} = \frac{\vec{P}}{m_1 + m_2} = \frac{\vec{p}_{1i} + \vec{p}_{2i}}{m_1 + m_2}.$$
 (9-56)

The right side of this equation is a constant, and \vec{v}_{com} has that same constant value before and after the collision.

For example, Fig. 9-16 shows, in a series of freeze-frames, the motion of the center of mass for the completely inelastic collision of Fig. 9-15. Body 2 is the target, and its initial linear momentum in Eq. 9-56 is $\vec{p}_{2i} = m_2 \vec{v}_{2i} = 0$. Body 1 is the projectile, and its initial linear momentum in Eq. 9-56 is $\vec{p}_{1i} = m_1 \vec{v}_{1i}$. Note that as the series of freeze-frames progresses to and then beyond the collision, the center of mass moves at a constant velocity to the right. After the collision, the common final speed V of the bodies is equal to \vec{v}_{com} because then the center of mass travels with the stuck-together bodies.

Checkpoint 7

Body 1 and body 2 are in a completely inelastic one-dimensional collision. What is their final momentum if their initial momenta are, respectively, (a) 10 kg \cdot m/s and 0; (b) 10 kg \cdot m/s and 4 kg \cdot m/s; (c) 10 kg \cdot m/s and -4 kg \cdot m/s?

Sample Problem 9.07 Conservation of momentum, ballistic pendulum

Here is an example of a common technique in physics. We have a demonstration that cannot be worked out as a whole (we don't have a workable equation for it). So, we break it up into steps that can be worked separately (we have equations for them).

The ballistic pendulum was used to measure the speeds of bullets before electronic timing devices were developed. The version shown in Fig. 9-17 consists of a large block of wood of mass M = 5.4 kg, hanging from two long cords. A bullet of mass m = 9.5 g is fired into the block, coming quickly to rest. The block + bullet then swing upward, their center of mass rising a vertical distance h = 6.3 cm before the pendulum comes momentarily to rest at the end of its arc. What is the speed of the bullet just prior to the collision?

KEY IDEAS

We can see that the bullet's speed v must determine the rise height h. However, we cannot use the conservation of mechanical energy to relate these two quantities because surely energy is transferred from mechanical energy to other forms (such as thermal energy and energy to break apart the wood) as the bullet penetrates the block. Nevertheless, we can split this complicated motion into two steps that we can separately analyze: (1) the bullet-block collision and (2) the bullet-block rise, during which mechanical energy is conserved.

Reasoning step 1: Because the collision within the bullet-block system is so brief, we can make two important assumptions: (1) During the collision, the gravitational force on the block and the force on the block from the cords are still balanced. Thus, during the collision, the net external impulse on the bullet-block system is zero. Therefore, the system is isolated and its total linear momentum is conserved:

$$\begin{pmatrix}
\text{total momentum} \\
\text{before the collision}
\end{pmatrix} = \begin{pmatrix}
\text{total momentum} \\
\text{after the collision}
\end{pmatrix}. (9-57)$$

(2) The collision is one-dimensional in the sense that the direction of the bullet and block just after the collision is in the bullet's original direction of motion.

Because the collision is one-dimensional, the block is initially at rest, and the bullet sticks in the block, we use Eq. 9-53 to express the conservation of linear momentum. Replacing the symbols there with the corresponding symbols here, we have

$$V = \frac{m}{m+M} v. (9-58)$$

Reasoning step 2: As the bullet and block now swing up together, the mechanical energy of the bullet-block-Earth system is conserved:

$$\begin{pmatrix}
\text{mechanical energy} \\
\text{at bottom}
\end{pmatrix} = \begin{pmatrix}
\text{mechanical energy} \\
\text{at top}
\end{pmatrix}. (9-59)$$

(This mechanical energy is not changed by the force of the cords on the block, because that force is always directed perpendicular to the block's direction of travel.) Let's take the block's initial level as our reference level of zero gravitational potential energy. Then conservation of mechanical energy means that the system's kinetic energy at the start of the swing must equal its gravitational potential energy at the highest point of the swing. Because the speed of the bullet and block at the start of the swing is the speed V immediately after the collision, we may write this conservation as

$$\frac{1}{2}(m+M)V^2 = (m+M)gh. \tag{9-60}$$

Combining steps: Substituting for V from Eq. 9-58 leads to

$$v = \frac{m+M}{m} \sqrt{2gh}$$
 (9-61)
= $\left(\frac{0.0095 \text{ kg} + 5.4 \text{ kg}}{0.0095 \text{ kg}}\right) \sqrt{(2)(9.8 \text{ m/s}^2)(0.063 \text{ m})}$
= 630 m/s. (Answer)

The ballistic pendulum is a kind of "transformer," exchanging the high speed of a light object (the bullet) for the lowand thus more easily measurable—speed of a massive object (the block).

> There are two events here. The bullet collides with the block. Then the bullet-block system swings upward by height h.

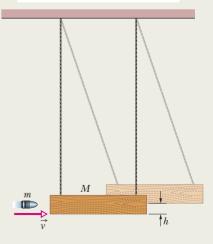


Figure 9-17 A ballistic pendulum, used to measure the speeds of bullets.

PLUS Additional examples, video, and practice available at WileyPLUS

9-7 ELASTIC COLLISIONS IN ONE DIMENSION

Learning Objectives

After reading this module, you should be able to . . .

- 9.32 For isolated elastic collisions in one dimension, apply the conservation laws for both the total energy and the net momentum of the colliding bodies to relate the initial values to the values after the collision.
- 9.33 For a projectile hitting a stationary target, identify the resulting motion for the three general cases: equal masses, target more massive than projectile, projectile more massive than target.

Key Idea

• An elastic collision is a special type of collision in which the kinetic energy of a system of colliding bodies is conserved. If the system is closed and isolated, its linear momentum is also conserved. For a one-dimensional collision in which body 2 is a target and body 1 is an incoming projectile, conservation of kinetic energy and linear momentum

yield the following expressions for the velocities immediately after the collision:

$$v_{1f} = \frac{m_1 - m_2}{m_1 + m_2} v_{1i}$$
$$v_{2f} = \frac{2m_1}{m_1 + m_2} v_{1i}.$$

Elastic Collisions in One Dimension

As we discussed in Module 9-6, everyday collisions are inelastic but we can approximate some of them as being elastic; that is, we can approximate that the total kinetic energy of the colliding bodies is conserved and is not transferred to other forms of energy:

$$\begin{pmatrix} \text{total kinetic energy} \\ \text{before the collision} \end{pmatrix} = \begin{pmatrix} \text{total kinetic energy} \\ \text{after the collision} \end{pmatrix}.$$
(9-62)

and

This means:

In an elastic collision, the kinetic energy of each colliding body may change, but the total kinetic energy of the system does not change.

For example, the collision of a cue ball with an object ball in a game of pool can be approximated as being an elastic collision. If the collision is head-on (the cue ball heads directly toward the object ball), the kinetic energy of the cue ball can be transferred almost entirely to the object ball. (Still, the collision transfers some of the energy to the sound you hear.)

Stationary Target

Figure 9-18 shows two bodies before and after they have a one-dimensional collision, like a head-on collision between pool balls. A projectile body of mass m_1 and initial velocity v_{1i} moves toward a target body of mass m_2 that is initially at rest ($v_{2i} = 0$). Let's assume that this two-body system is closed and isolated. Then the net linear momentum of the system is conserved, and from Eq. 9-51 we can write that conservation as

$$m_1 v_{1i} = m_1 v_{1f} + m_2 v_{2f}$$
 (linear momentum). (9-63)

If the collision is also elastic, then the total kinetic energy is conserved and we can write that conservation as

$$\frac{1}{2}m_1v_{1i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2 \quad \text{(kinetic energy)}. \tag{9-64}$$

In each of these equations, the subscript i identifies the initial velocities and the subscript f the final velocities of the bodies. If we know the masses of the bodies and if we also know v_{1i} , the initial velocity of body 1, the only unknown quantities are v_{1f} and v_{2f} , the final velocities of the two bodies. With two equations at our disposal, we should be able to find these two unknowns.

for an elastic collision with a stationary target.

Before $\overrightarrow{v_{1i}}$ $\overrightarrow{v_{2i}} = 0$ xProjectile Target

After $\overrightarrow{v_{1f}}$ $\overrightarrow{v_{2f}}$ x

Figure 9-18 Body 1 moves along an x axis before having an elastic collision with body 2, which is initially at rest. Both bodies move along that axis after the collision.

STUDENTS-HUB.com

Uploaded By: Ayham Nobani

Here is the generic setup

To do so, we rewrite Eq. 9-63 as

$$m_1(v_{1i} - v_{1f}) = m_2 v_{2f} (9-65)$$

and Eq. 9-64 as*

$$m_1(v_{1i} - v_{1f})(v_{1i} + v_{1f}) = m_2 v_{2f}^2.$$
 (9-66)

After dividing Eq. 9-66 by Eq. 9-65 and doing some more algebra, we obtain

$$v_{1f} = \frac{m_1 - m_2}{m_1 + m_2} v_{1i} \tag{9-67}$$

and

$$v_{2f} = \frac{2m_1}{m_1 + m_2} v_{1i}. (9-68)$$

Note that v_{2f} is always positive (the initially stationary target body with mass m_2 always moves forward). From Eq. 9-67 we see that v_{1f} may be of either sign (the projectile body with mass m_1 moves forward if $m_1 > m_2$ but rebounds if $m_1 < m_2$). Let us look at a few special situations.

1. Equal masses If $m_1 = m_2$, Eqs. 9-67 and 9-68 reduce to

$$v_{1f} = 0$$
 and $v_{2f} = v_{1i}$,

which we might call a pool player's result. It predicts that after a head-on collision of bodies with equal masses, body 1 (initially moving) stops dead in its tracks and body 2 (initially at rest) takes off with the initial speed of body 1. In head-on collisions, bodies of equal mass simply exchange velocities. This is true even if body 2 is not initially at rest.

2. A massive target In Fig. 9-18, a massive target means that $m_2 \gg m_1$. For example, we might fire a golf ball at a stationary cannonball. Equations 9-67 and 9-68 then reduce to

$$v_{1f} \approx -v_{1i}$$
 and $v_{2f} \approx \left(\frac{2m_1}{m_2}\right)v_{1i}$. (9-69)

This tells us that body 1 (the golf ball) simply bounces back along its incoming path, its speed essentially unchanged. Initially stationary body 2 (the cannonball) moves forward at a low speed, because the quantity in parentheses in Eq. 9-69 is much less than unity. All this is what we should expect.

3. A massive projectile This is the opposite case; that is, $m_1 \gg m_2$. This time, we fire a cannonball at a stationary golf ball. Equations 9-67 and 9-68 reduce to

$$v_{1f} \approx v_{1i} \text{ and } v_{2f} \approx 2v_{1i}.$$
 (9-70)

Equation 9-70 tells us that body 1 (the cannonball) simply keeps on going, scarcely slowed by the collision. Body 2 (the golf ball) charges ahead at twice the speed of the cannonball. Why twice the speed? Recall the collision described by Eq. 9-69, in which the velocity of the incident light body (the golf ball) changed from +v to -v, a velocity *change* of 2v. The same *change* in velocity (but now from zero to 2v) occurs in this example also.

Moving Target

Now that we have examined the elastic collision of a projectile and a stationary target, let us examine the situation in which both bodies are moving before they undergo an elastic collision.

For the situation of Fig. 9-19, the conservation of linear momentum is written as

$$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}, (9-71)$$

^{*}In this step, we use the identity $a^2 - b^2 = (a - b)(a + b)$. It reduces the amount of algebra needed to solve the simultaneous equations Eqs. 9-65 and 9-66.

and the conservation of kinetic energy is written as

$$\frac{1}{2}m_1v_{1i}^2 + \frac{1}{2}m_2v_{2i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2. \tag{9-72}$$

To solve these simultaneous equations for v_{1f} and v_{2f} , we first rewrite Eq. 9-71 as

$$m_1(v_{1i} - v_{1f}) = -m_2(v_{2i} - v_{2f}),$$
 (9-73)

and Eq. 9-72 as

$$m_1(v_{1i} - v_{1f})(v_{1i} + v_{1f}) = -m_2(v_{2i} - v_{2f})(v_{2i} + v_{2f}).$$
 (9-74)

After dividing Eq. 9-74 by Eq. 9-73 and doing some more algebra, we obtain

$$v_{1f} = \frac{m_1 - m_2}{m_1 + m_2} v_{1i} + \frac{2m_2}{m_1 + m_2} v_{2i}$$
 (9-75)

and

$$v_{2f} = \frac{2m_1}{m_1 + m_2} v_{1i} + \frac{m_2 - m_1}{m_1 + m_2} v_{2i}.$$
 (9-76)

Note that the assignment of subscripts 1 and 2 to the bodies is arbitrary. If we exchange those subscripts in Fig. 9-19 and in Eqs. 9-75 and 9-76, we end up with the same set of equations. Note also that if we set $v_{2i} = 0$, body 2 becomes a stationary target as in Fig. 9-18, and Eqs. 9-75 and 9-76 reduce to Eqs. 9-67 and 9-68, respectively.

Checkpoint 8

What is the final linear momentum of the target in Fig. 9-18 if the initial linear momentum of the projectile is $6 \text{ kg} \cdot \text{m/s}$ and the final linear momentum of the projectile is (a) $2 \text{ kg} \cdot \text{m/s}$ and (b) $-2 \text{ kg} \cdot \text{m/s}$? (c) What is the final kinetic energy of the target if the initial and final kinetic energies of the projectile are, respectively, 5 J and 2 J?

Here is the generic setup for an elastic collision with a moving target.

Figure 9-19 Two bodies headed for a one-dimensional elastic collision.

Sample Problem 9.08 Chain reaction of elastic collisions

In Fig. 9-20*a*, block 1 approaches a line of two stationary blocks with a velocity of $v_{1i} = 10$ m/s. It collides with block 2, which then collides with block 3, which has mass $m_3 = 6.0$ kg. After the second collision, block 2 is again stationary and block 3 has velocity $v_{3f} = 5.0$ m/s (Fig. 9-20*b*). Assume that the collisions are elastic. What are the masses of blocks 1 and 2? What is the final velocity v_{1f} of block 1?

KEY IDEAS

Because we assume that the collisions are elastic, we are to conserve mechanical energy (thus energy losses to sound, heating, and oscillations of the blocks are negligible). Because no external horizontal force acts on the blocks, we are to conserve linear momentum along the *x* axis. For these

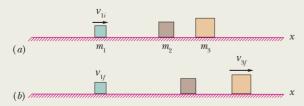


Figure 9-20 Block 1 collides with stationary block 2, which then collides with stationary block 3.

two reasons, we can apply Eqs. 9-67 and 9-68 to each of the collisions.

Calculations: If we start with the first collision, we have too many unknowns to make any progress: we do not know the masses or the final velocities of the blocks. So, let's start with the second collision in which block 2 stops because of its collision with block 3. Applying Eq. 9-67 to this collision, with changes in notation, we have

$$v_{2f} = \frac{m_2 - m_3}{m_2 + m_3} v_{2i},$$

where v_{2i} is the velocity of block 2 just before the collision and v_{2f} is the velocity just afterward. Substituting $v_{2f} = 0$ (block 2 stops) and then $m_3 = 6.0$ kg gives us

$$m_2 = m_3 = 6.00 \text{ kg.}$$
 (Answer)

With similar notation changes, we can rewrite Eq. 9-68 for the second collision as

$$v_{3f} = \frac{2m_2}{m_2 + m_3} v_{2i},$$

where v_{3f} is the final velocity of block 3. Substituting $m_2 = m_3$ and the given $v_{3f} = 5.0$ m/s, we find

$$v_{2i} = v_{3f} = 5.0 \text{ m/s}.$$

Next, let's reconsider the first collision, but we have to be careful with the notation for block 2: its velocity v_{2f} just after the first collision is the same as its velocity v_{2i} (= 5.0 m/s) just before the second collision. Applying Eq. 9-68 to the first collision and using the given $v_{1i} = 10$ m/s, we have

$$v_{2f} = \frac{2m_1}{m_1 + m_2} v_{1i},$$

$$5.0 \text{ m/s} = \frac{2m_1}{m_1 + m_2} (10 \text{ m/s}),$$

which leads to

$$m_1 = \frac{1}{3}m_2 = \frac{1}{3}(6.0 \text{ kg}) = 2.0 \text{ kg}.$$
 (Answer)

Finally, applying Eq. 9-67 to the first collision with this result and the given v_{1i} , we write

$$v_{1f} = \frac{m_1 - m_2}{m_1 + m_2} v_{1i},$$

$$= \frac{\frac{1}{3}m_2 - m_2}{\frac{1}{3}m_2 + m_2} (10 \text{ m/s}) = -5.0 \text{ m/s}.$$
 (Answer)

PLUS Additional examples, video, and practice available at WileyPLUS

9-8 COLLISIONS IN TWO DIMENSIONS

Learning Objectives

After reading this module, you should be able to . . .

- 9.34 For an isolated system in which a two-dimensional collision occurs, apply the conservation of momentum along each axis of a coordinate system to relate the momentum components along an axis before the collision to the momentum components along the same axis after the collision.
- 9.35 For an isolated system in which a two-dimensional elastic collision occurs, (a) apply the conservation of momentum along each axis of a coordinate system to relate the momentum components along an axis before the collision to the momentum components along the same axis after the collision and (b) apply the conservation of total kinetic energy to relate the kinetic energies before and after the collision.

Key Idea

• If two bodies collide and their motion is not along a single axis (the collision is not head-on), the collision is two-dimensional. If the two-body system is closed and isolated, the law of conservation of momentum applies to the collision and can be written as

$$\vec{P}_{1i} + \vec{P}_{2i} = \vec{P}_{1f} + \vec{P}_{2f}.$$

In component form, the law gives two equations that describe the collision (one equation for each of the two dimensions). If the collision is also elastic (a special case), the conservation of kinetic energy during the collision gives a third equation:

$$K_{1i} + K_{2i} = K_{1f} + K_{2f}$$
.

A glancing collision that conserves both momentum and kinetic energy.

Figure 9-21 An elastic collision between two bodies in which the collision is not headon. The body with mass m_2 (the target) is initially at rest.

Collisions in Two Dimensions

When two bodies collide, the impulse between them determines the directions in which they then travel. In particular, when the collision is not head-on, the bodies do not end up traveling along their initial axis. For such two-dimensional collisions in a closed, isolated system, the total linear momentum must still be conserved:

$$\vec{P}_{1i} + \vec{P}_{2i} = \vec{P}_{1f} + \vec{P}_{2f}. \tag{9-77}$$

If the collision is also elastic (a special case), then the total kinetic energy is also conserved:

$$K_{1i} + K_{2i} = K_{1f} + K_{2f}. (9-78)$$

Equation 9-77 is often more useful for analyzing a two-dimensional collision if we write it in terms of components on an xy coordinate system. For example, Fig. 9-21 shows a glancing collision (it is not head-on) between a projectile body and a target body initially at rest. The impulses between the bodies have sent the bodies off at angles θ_1 and θ_2 to the x axis, along which the projectile initially traveled. In this situation we would rewrite Eq. 9-77 for components along the x axis as

$$m_1 v_{1i} = m_1 v_{1f} \cos \theta_1 + m_2 v_{2f} \cos \theta_2,$$
 (9-79)

and along the y axis as

$$0 = -m_1 v_{1f} \sin \theta_1 + m_2 v_{2f} \sin \theta_2. \tag{9-80}$$

We can also write Eq. 9-78 (for the special case of an elastic collision) in terms of speeds:

$$\frac{1}{2}m_1v_{1i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2 \quad \text{(kinetic energy)}. \tag{9-81}$$

Equations 9-79 to 9-81 contain seven variables: two masses, m_1 and m_2 ; three speeds, v_{1i} , v_{1f} , and v_{2f} ; and two angles, θ_1 and θ_2 . If we know any four of these quantities, we can solve the three equations for the remaining three quantities.

Checkpoint 9

In Fig. 9-21, suppose that the projectile has an initial momentum of 6 kg·m/s, a final x component of momentum of 4 kg·m/s, and a final y component of momentum of -3 kg·m/s. For the target, what then are (a) the final x component of momentum and (b) the final y component of momentum?

9-9 SYSTEMS WITH VARYING MASS: A ROCKET

Learning Objectives

After reading this module, you should be able to . . .

- 9.36 Apply the first rocket equation to relate the rate at which the rocket loses mass, the speed of the exhaust products relative to the rocket, the mass of the rocket, and the acceleration of the rocket.
- 9.37 Apply the second rocket equation to relate the change in the rocket's speed to the relative speed of the exhaust products and the initial and final mass of the rocket.
- **9.38** For a moving system undergoing a change in mass at a given rate, relate that rate to the change in momentum.

Key Ideas

• In the absence of external forces a rocket accelerates at an instantaneous rate given by

$$Rv_{\rm rel} = Ma$$
 (first rocket equation),

in which M is the rocket's instantaneous mass (including unexpended fuel), R is the fuel consumption rate, and $\nu_{\rm rel}$ is

the fuel's exhaust speed relative to the rocket. The term $Rv_{\rm rel}$ is the thrust of the rocket engine.

• For a rocket with constant R and v_{rel} , whose speed changes from v_i to v_f when its mass changes from M_i to M_f ,

$$v_f - v_i = v_{\text{rel}} \ln \frac{M_i}{M_f}$$
 (second rocket equation).

Systems with Varying Mass: A Rocket

So far, we have assumed that the total mass of the system remains constant. Sometimes, as in a rocket, it does not. Most of the mass of a rocket on its launching pad is fuel, all of which will eventually be burned and ejected from the nozzle of the rocket engine. We handle the variation of the mass of the rocket as the rocket accelerates by applying Newton's second law, not to the rocket alone but to the rocket and its ejected combustion products taken together. The mass of *this* system does *not* change as the rocket accelerates.

Finding the Acceleration

Assume that we are at rest relative to an inertial reference frame, watching a rocket accelerate through deep space with no gravitational or atmospheric drag

The ejection of mass from the rocket's rear increases the rocket's speed.

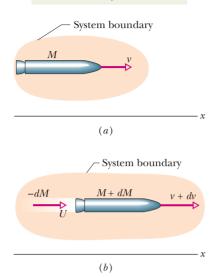


Figure 9-22 (a) An accelerating rocket of mass M at time t, as seen from an inertial reference frame. (b) The same but at time t + dt. The exhaust products released during interval dt are shown.

forces acting on it. For this one-dimensional motion, let M be the mass of the rocket and v its velocity at an arbitrary time t (see Fig. 9-22a).

Figure 9-22b shows how things stand a time interval dt later. The rocket now has velocity v + dv and mass M + dM, where the change in mass dM is a negative quantity. The exhaust products released by the rocket during interval dt have mass -dM and velocity U relative to our inertial reference frame.

Conserve Momentum. Our system consists of the rocket and the exhaust products released during interval dt. The system is closed and isolated, so the linear momentum of the system must be conserved during dt; that is,

$$P_i = P_f, (9-82)$$

where the subscripts i and f indicate the values at the beginning and end of time interval dt. We can rewrite Eq. 9-82 as

$$Mv = -dM U + (M + dM)(v + dv),$$
 (9-83)

where the first term on the right is the linear momentum of the exhaust products released during interval dt and the second term is the linear momentum of the rocket at the end of interval dt.

Use Relative Speed. We can simplify Eq. 9-83 by using the relative speed v_{rel} between the rocket and the exhaust products, which is related to the velocities relative to the frame with

$$\begin{pmatrix} \text{velocity of rocket} \\ \text{relative to frame} \end{pmatrix} = \begin{pmatrix} \text{velocity of rocket} \\ \text{relative to products} \end{pmatrix} + \begin{pmatrix} \text{velocity of products} \\ \text{relative to frame} \end{pmatrix}.$$

In symbols, this means

or

$$(v + dv) = v_{\text{rel}} + U,$$

 $U = v + dv - v_{\text{rel}}.$ (9-84)

Substituting this result for *U* into Eq. 9-83 yields, with a little algebra,

$$-dM v_{\rm rel} = M dv. (9-85)$$

Dividing each side by dt gives us

$$-\frac{dM}{dt}v_{\rm rel} = M\frac{dv}{dt}.$$
 (9-86)

We replace dM/dt (the rate at which the rocket loses mass) by -R, where R is the (positive) mass rate of fuel consumption, and we recognize that dv/dt is the acceleration of the rocket. With these changes, Eq. 9-86 becomes

$$Rv_{\rm rel} = Ma$$
 (first rocket equation). (9-87)

Equation 9-87 holds for the values at any given instant.

Note the left side of Eq. 9-87 has the dimensions of force (kg/s·m/s = kg·m/s² = N) and depends only on design characteristics of the rocket engine—namely, the rate R at which it consumes fuel mass and the speed $v_{\rm rel}$ with which that mass is ejected relative to the rocket. We call this term $Rv_{\rm rel}$ the **thrust** of the rocket engine and represent it with T. Newton's second law emerges if we write Eq. 9-87 as T = Ma, in which a is the acceleration of the rocket at the time that its mass is M.

Finding the Velocity

How will the velocity of a rocket change as it consumes its fuel? From Eq. 9-85 we have

$$dv = -v_{\rm rel} \frac{dM}{M}.$$

STUDENTS-HUB.com

Integrating leads to

$$\int_{v_i}^{v_f} dv = -v_{\rm rel} \int_{M_i}^{M_f} \frac{dM}{M},$$

in which M_i is the initial mass of the rocket and M_f its final mass. Evaluating the integrals then gives

$$v_f - v_i = v_{\text{rel}} \ln \frac{M_i}{M_f}$$
 (second rocket equation) (9-88)

for the increase in the speed of the rocket during the change in mass from M_i to M_f . (The symbol "ln" in Eq. 9-88 means the *natural logarithm*.) We see here the advantage of multistage rockets, in which M_f is reduced by discarding successive stages when their fuel is depleted. An ideal rocket would reach its destination with only its payload remaining.

Sample Problem 9.09 Rocket engine, thrust, acceleration

In all previous examples in this chapter, the mass of a system is constant (fixed as a certain number). Here is an example of a system (a rocket) that is losing mass. A rocket whose initial mass M_i is 850 kg consumes fuel at the rate R = 2.3 kg/s. The speed $v_{\rm rel}$ of the exhaust gases relative to the rocket engine is 2800 m/s. What thrust does the rocket engine provide?

KEY IDEA

Thrust T is equal to the product of the fuel consumption rate R and the relative speed v_{rel} at which exhaust gases are expelled, as given by Eq. 9-87.

Calculation: Here we find

$$T = Rv_{\text{rel}} = (2.3 \text{ kg/s})(2800 \text{ m/s})$$

= 6440 N \approx 6400 N. (Answer)

(b) What is the initial acceleration of the rocket?

KEY IDEA

We can relate the thrust T of a rocket to the magnitude a of the resulting acceleration with T = Ma, where M is the rocket's mass. However, M decreases and a increases as fuel is consumed. Because we want the initial value of a here, we must use the intial value M_i of the mass.

Calculation: We find

$$a = \frac{T}{M_i} = \frac{6440 \text{ N}}{850 \text{ kg}} = 7.6 \text{ m/s}^2.$$
 (Answer)

To be launched from Earth's surface, a rocket must have an initial acceleration greater than $g = 9.8 \text{ m/s}^2$. That is, it must be greater than the gravitational acceleration at the surface. Put another way, the thrust T of the rocket engine must exceed the initial gravitational force on the rocket, which here has the magnitude $M_i g$, which gives us

$$(850 \text{ kg})(9.8 \text{ m/s}^2) = 8330 \text{ N}.$$

Because the acceleration or thrust requirement is not met (here T = 6400 N), our rocket could not be launched from Earth's surface by itself; it would require another, more powerful, rocket.

Additional examples, video, and practice available at WileyPLUS

Review & Summary

Center of Mass The **center of mass** of a system of n particles is defined to be the point whose coordinates are given by

defined to be the point whose coordinates are given by
$$x_{\text{com}} = \frac{1}{M} \sum_{i=1}^{n} m_i x_i, \quad y_{\text{com}} = \frac{1}{M} \sum_{i=1}^{n} m_i y_i, \quad z_{\text{com}} = \frac{1}{M} \sum_{i=1}^{n} m_i z_i,$$
(9-5)

or
$$\vec{r}_{\text{com}} = \frac{1}{M} \sum_{i=1}^{n} m_i \vec{r}_i, \qquad (9-8)$$

where M is the total mass of the system.

Newton's Second Law for a System of Particles The motion of the center of mass of any system of particles is governed by **Newton's second law for a system of particles**, which is

$$\vec{F}_{\text{net}} = M\vec{a}_{\text{com}}.\tag{9-14}$$

Here \vec{F}_{net} is the net force of all the *external* forces acting on the system, M is the total mass of the system, and \vec{a}_{com} is the acceleration of the system's center of mass.

Linear Momentum and Newton's Second Law For a single particle, we define a quantity \vec{p} called its **linear momentum** as

$$\vec{p} = m\vec{v},\tag{9-22}$$

and can write Newton's second law in terms of this momentum:

$$\vec{F}_{\text{net}} = \frac{d\vec{p}}{dt}.$$
 (9-23)

For a system of particles these relations become

$$\vec{P} = M\vec{v}_{\text{com}}$$
 and $\vec{F}_{\text{net}} = \frac{d\vec{P}}{dt}$. (9-25, 9-27)

Collision and Impulse Applying Newton's second law in momentum form to a particle-like body involved in a collision leads to the **impulse-linear momentum theorem:**

$$\vec{p}_f - \vec{p}_i = \Delta \vec{p} = \vec{J}, \qquad (9-31, 9-32)$$

where $\vec{p}_f - \vec{p}_i = \Delta \vec{p}$ is the change in the body's linear momentum, and \vec{J} is the **impulse** due to the force $\vec{F}(t)$ exerted on the body by the other body in the collision:

$$\vec{J} = \int_{t_i}^{t_f} \vec{F}(t) dt. \tag{9-30}$$

If F_{avg} is the average magnitude of $\vec{F}(t)$ during the collision and Δt is the duration of the collision, then for one-dimensional motion

$$J = F_{\text{avg}} \, \Delta t. \tag{9-35}$$

When a steady stream of bodies, each with mass m and speed v, collides with a body whose position is fixed, the average force on the fixed body is

$$F_{\text{avg}} = -\frac{n}{\Delta t} \, \Delta p = -\frac{n}{\Delta t} \, m \, \Delta v, \tag{9-37}$$

where $n/\Delta t$ is the rate at which the bodies collide with the fixed body, and Δv is the change in velocity of each colliding body. This average force can also be written as

$$F_{\text{avg}} = -\frac{\Delta m}{\Delta t} \, \Delta \nu,\tag{9-40}$$

where $\Delta m/\Delta t$ is the rate at which mass collides with the fixed body. In Eqs. 9-37 and 9-40, $\Delta v = -v$ if the bodies stop upon impact and $\Delta v = -2v$ if they bounce directly backward with no change in their speed.

Conservation of Linear Momentum If a system is isolated so that no net *external* force acts on it, the linear momentum \vec{P} of the system remains constant:

$$\vec{P}$$
 = constant (closed, isolated system). (9-42)

This can also be written as

$$\vec{P}_i = \vec{P}_f$$
 (closed, isolated system), (9-43)

where the subscripts refer to the values of \vec{P} at some initial time and at a later time. Equations 9-42 and 9-43 are equivalent statements of the **law of conservation of linear momentum.**

Inelastic Collision in One Dimension In an *inelastic collision* of two bodies, the kinetic energy of the two-body system is not conserved (it is not a constant). If the system is closed and isolated, the total linear momentum of the system

must be conserved (it is a constant), which we can write in vector form as

$$\vec{p}_{1i} + \vec{p}_{2i} = \vec{p}_{1f} + \vec{p}_{2f}, \tag{9-50}$$

where subscripts i and f refer to values just before and just after the collision, respectively.

If the motion of the bodies is along a single axis, the collision is one-dimensional and we can write Eq. 9-50 in terms of velocity components along that axis:

$$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}. (9-51)$$

If the bodies stick together, the collision is a *completely* inelastic collision and the bodies have the same final velocity V (because they are stuck together).

Motion of the Center of Mass The center of mass of a closed, isolated system of two colliding bodies is not affected by a collision. In particular, the velocity \vec{v}_{com} of the center of mass cannot be changed by the collision.

Elastic Collisions in One Dimension An *elastic collision* is a special type of collision in which the kinetic energy of a system of colliding bodies is conserved. If the system is closed and isolated, its linear momentum is also conserved. For a one-dimensional collision in which body 2 is a target and body 1 is an incoming projectile, conservation of kinetic energy and linear momentum yield the following expressions for the velocities immediately after the collision:

$$v_{1f} = \frac{m_1 - m_2}{m_1 + m_2} v_{1i} \tag{9-67}$$

and

$$v_{2f} = \frac{2m_1}{m_1 + m_2} v_{1i}. (9-68)$$

Collisions in Two Dimensions If two bodies collide and their motion is not along a single axis (the collision is not head-on), the collision is two-dimensional. If the two-body system is closed and isolated, the law of conservation of momentum applies to the collision and can be written as

$$\vec{P}_{1i} + \vec{P}_{2i} = \vec{P}_{1f} + \vec{P}_{2f}. \tag{9-77}$$

In component form, the law gives two equations that describe the collision (one equation for each of the two dimensions). If the collision is also elastic (a special case), the conservation of kinetic energy during the collision gives a third equation:

$$K_{1i} + K_{2i} = K_{1f} + K_{2f}. (9-78)$$

Variable-Mass Systems In the absence of external forces a rocket accelerates at an instantaneous rate given by

$$Rv_{\rm rel} = Ma$$
 (first rocket equation), (9-87)

in which M is the rocket's instantaneous mass (including unexpended fuel), R is the fuel consumption rate, and $v_{\rm rel}$ is the fuel's exhaust speed relative to the rocket. The term $Rv_{\rm rel}$ is the **thrust** of the rocket engine. For a rocket with constant R and $v_{\rm rel}$, whose speed changes from v_i to v_f when its mass changes from M_i to M_f ,

$$v_f - v_i = v_{\text{rel}} \ln \frac{M_i}{M_f}$$
 (second rocket equation). (9-88)

- 1 Three particles of mass 1.0 kg, 2.0 kg, and 3.0 kg are placed at the vertices A, B, and C, respectively, of an equilateral triangle ABC of edge 1.0 m (Fig 9-23). Find the distance of their center of mass from A.
- **2** Figure 9-24 shows a three-particle system, with masses $m_1 = 2.0 \text{ kg}$, $m_2 = 4.0 \text{ kg}$, and $m_3 = 8.0 \text{ kg}$. The scales on the axes are set by $x_s = 2.0 \text{ m}$ and $y_s = 2.0 \text{ m}$. What are (a) the *x* coordinate and (b) the *y* coordinate of the system's center of mass? (c) If m_3 is gradually increased, does the center of mass of the system shift toward or away from that particle, or does it remain stationary?
- **3** Figure 9-25 shows a slab with dimensions $d_1 = 11.0$

C C B x

Figure 9-23 Problem 1.

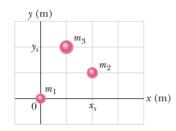


Figure 9-24 Problem 2.

cm, $d_2 = 2.80$ cm, and $d_3 = 13.0$ cm. Half the slab consists of aluminum (density = 2.70 g/cm³) and half consists of iron (density = 7.85 g/cm³). What are (a) the *x* coordinate, (b) the *y* coordinate, and (c) the *z* coordinate of the slab's center of mass?

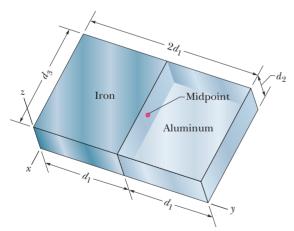
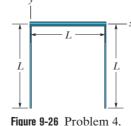


Figure 9-25 Problem 3.

4 In Fig. 9-26, three uniform thin rods, each of length L = 24 cm, form an inverted U. The vertical rods each have a mass of 14 g; the horizontal rod has a mass of 42 g. What are (a) the x coordinate and (b) the y coordinate of the system's center of mass?



5 What are (a) the x coordinate and (b) the y coordinate of the center of mass for the uniform plate shown in Fig. 9-27 if L = 5.0 cm?

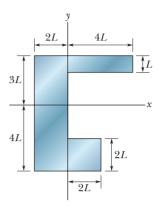
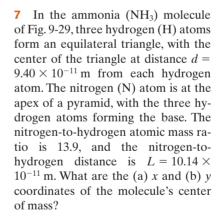


Figure 9-27 Problem 5.

6 Figure 9-28 shows a cubical box that has been constructed from uniform metal plate of negligible thickness. The box is open at the top and has edge length L = 50 cm. Find (a) the x coordinate, (b) the y coordinate, and (c) the z coordinate of the center of mass of the box.



8 A uniform soda can of mass 0.140 kg is 12.0 cm tall and filled with 0.354 kg of soda (Fig. 9-30). Then small holes are drilled in the top and bottom (with negligible loss of metal) to drain the soda. What is the height *h* of the com of the can and contents (a) initially and (b) after the can loses all the soda? (c) What happens to *h* as the soda drains out? (d) If *x* is the height of the remaining soda at any given instant, find *x* when the com reaches its lowest point.

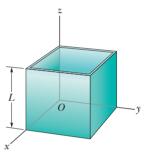


Figure 9-28 Problem 6.

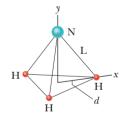


Figure 9-29 Problem 7.

Figure 9-30 Problem 8.

9 In the arrangement shown in Fig. 9-31, $m_A = 2.0$ kg and $m_B = 1.0$ kg. The pulley is massless; the string is massless and long.

The system is released at t = 0 s. Find (a) the acceleration of the center of mass of the blocks, (b) the displacement of the center of mass at t = 2.0 s, and (c) the speed of the center of mass when m_A strikes the floor.

10 A 1000 kg automobile is at rest at a traffic signal. At the instant the light turns green, the automobile starts to move with a constant acceleration of 3.0 m/s^2 . At the same instant a 2000 kg truck, traveling at a constant speed of 8.0 m/s, overtakes and passes the automobile. (a) How far is the com of the automobile—truck system from the traffic light at t = 5.0 s? (b) What is the speed of the com then?

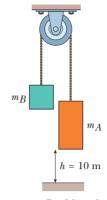


Figure 9-31 Problem 9.

- 11 A big olive (m = 0.50 kg) lies at the origin of an xy coordinate system, and a big Brazil nut (M = 1.5 kg) lies at the point (1.0, 2.0) m. At t = 0, a force $\vec{F}_o = (2.0\hat{i} + 3.0\hat{j})$ N begins to act on the olive, and a force $\vec{F}_n = (-3.0\hat{i} 2.0\hat{j})$ N begins to act on the nut. In unit-vector notation, what is the displacement of the center of mass of the olive-nut system at t = 4.0 s, with respect to its position at t = 0?
- 12 Two skaters, one with mass 75 kg and the other with mass 40 kg, stand on an ice rink holding a pole of length 10 m and negligible mass. Starting from the ends of the pole, the skaters pull themselves along the pole until they meet. How far does the 40 kg skater move?
- 13 A shell is shot with an initial velocity \vec{v}_0 of 20 m/s, at an angle of $\theta_0 = 60^\circ$ with the horizontal. At the top of the trajectory, the shell explodes into two fragments of equal mass (Fig. 9-32). One fragment, whose speed immediately after the explosion is zero, falls vertically. How far from the gun does the other fragment land, assuming that the terrain is level and that air drag is negligible?

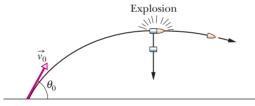


Figure 9-32 Problem 13.

14 In Figure 9-33, two particles are launched from the origin of the coordinate system at time t = 0. Particle 1 of mass $m_1 = 5.00$ g is shot directly along the x axis on a frictionless floor, with constant speed 10.0 m/s. Particle 2 of mass $m_2 = 3.00$ g is shot with a

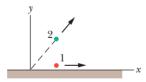


Figure 9-33 Problem 14.

velocity of magnitude 20.0 m/s, at an upward angle such that it always stays directly above particle 1. (a) What is the maximum height H_{max} reached by the com of the two-particle system? In unit-vector notation, what are the (b) velocity and (c) acceleration of the com when the com reaches H_{max} ?

Figure 9-34 shows an arrangement with an air track, in which a cart is connected by a cord to a hanging block. The cart has mass $m_1 = 0.600$ kg, and its center is initially at xy coordinates (-0.500 m, 0 m); the block has mass $m_2 = 0.400$ kg, and its center is initially at xy coordinates (0, -0.100 m). The mass of the cord and pulley are negligible. The cart is released from rest, and both cart and block move until the cart hits the pulley. The friction between the cart and the air track and between the pulley and its axle is

negligible. (a) In unit-vector notation, what is the acceleration of the center of mass of the cart-block system? (b) What is the velocity of the com as a function of time t? (c) Sketch the path taken by the com. (d) If the path is curved, determine whether it bulges upward to the right or downward to the left, and if it is straight, find the angle between it and the x axis.

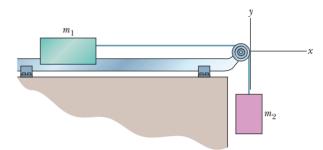
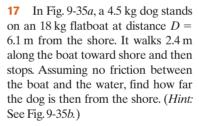
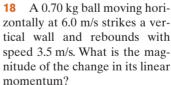


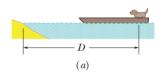
Figure 9-34 Problem 15.

- **16** Ricardo, of mass 80 kg, and Carmelita, who is lighter, are enjoying Lake Merced at dusk in a 30 kg canoe. When the canoe is at
- rest in the placid water, they exchange seats, which are 3.0 m apart and symmetrically located with respect to the canoe's center. If the canoe moves 45 cm horizontally relative to a pier post, what is Carmelita's mass?





19 A 100 kg motorbike moves along AB at 10.0 km/h, and after some time, the motorbike turns to travel along BC at the same speed as shown in Fig. 9-36. Find \overline{A} (a) the change in its kinetic energy and the (b) magnitude and (c)



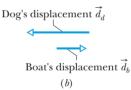


Figure 9-35 Problem 17.

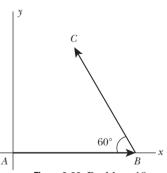
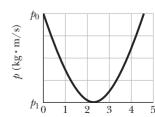


Figure 9-36 Problem 19.

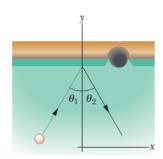
direction (relative to +x) of the change in its momentum.

20 At time t = 0, a ball is struck at ground level and sent over level ground. The momentum p versus t during the flight is given by Fig. 9-37 (with $p_0 = 6.0 \text{ kg} \cdot \text{m/s}$ and $p_1 = 4.0 \text{ kg} \cdot \text{m/s}$). At what initial angle is the ball launched? (*Hint*: Find a solution that does not require you to read the time corresponding to the



read the time corresponding to the low point of the plot.) Uploaded By: Pfollowing Nobani

- 21 A ball of mass 50 g moving with a speed of 2.0 m/s strikes a wall at an angle of incidence 45° and is reflected from the wall at the same angle and with the same speed. See the overhead view in Fig. 9-38. Calculate (a) the magnitude of the change $\Delta \vec{p}$ in the momentum of the ball, (b) the change in the magnitude of the momentum \vec{p} of the ball, and (c) the change in the magnitude of the momentum of the wall.
- 22 Figure 9-39 gives an overhead view of the path taken by a 0.150 kg cue ball as it bounces from a rail of a pool table. The ball's initial speed is 2.00 m/s, and the angle θ_1 is 30.0°. The bounce reverses the *y* component of the ball's velocity but does not alter the *x* component. What are (a) angle θ_2 and (b) the change in the ball's linear momentum in unit-vector notation? (The fact that the ball rolls is irrelevant to the problem.)



9.0 m/s

45°

 $2.0 \, \text{m/s}$

Figure 9-38 Problem 21.

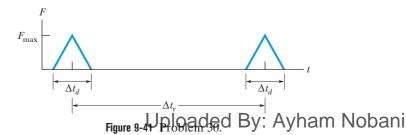
Figure 9-39 Problem 22.

23 Until his seventies, Henri LaMothe (Fig. 9-40) excited audi-

ences by belly-flopping from a height of 12 m into 30 cm of water. Assuming that he stops just as he reaches the bottom of the water and estimating his mass, find the magnitude of the impulse on him from the water.

George Long/Getty Images, Inc.

- 24 In February 1955, a paratrooper fell 370 m from an airplane without being able to open his chute but happened to land in snow, suffering only minor injuries. Assume that his speed at impact was 56 m/s (terminal speed), that his mass (including gear) was 85 kg, and that the magnitude of the force on him from the snow was at the survivable limit of 1.2×10^5 N. What are (a) the minimum depth of snow that would have stopped him safely and (b) the magnitude of the impulse on him from the snow?
- 25 A 5.00 g bullet moving at 100 m/s strikes a log. Assume that the bullet undergoes a uniform deceleration and stops after penetrating 6.00 cm. Find (a) the time taken by the bullet to stop, (b) the impulse on the log, and (c) the magnitude of the average force experienced by the log.
- 26 In a common but dangerous prank, a chair is pulled away as a person is moving downward to sit on it, causing the victim to land hard on the floor. Suppose the victim falls by 0.50 m, the mass that moves downward is 75 kg, and the collision on the floor lasts 0.088 s. What are the magnitudes of the (a) impulse and (b) average force acting on the victim from the floor during the collision?
- A 3.00 kg block slides on a frictionless horizontal surface, first moving to the left at 50.0 m/s. It collides with a spring whose other end is fixed to a wall, compresses the spring, and is brought to rest momentarily. Then it continues to be accelerated toward the right by the force of the compressed spring. The block acquires a final speed of 40.0 m/s. It is in contact with the spring for 0.020 s. Find (a) the magnitude and (b) the direction of the impulse of the spring force on the block. (c) What is the magnitude of the spring's average force on the block?
- 28 In tae-kwon-do, a hand is slammed down onto a target at a speed of 13 m/s and comes to a stop during the 5.5 ms collision. Assume that during the impact the hand is independent of the arm and has a mass of 0.70 kg. What are the magnitudes of the (a) impulse and (b) average force on the hand from the target?
- 29 A ball of mass 1.00 kg is attached to a loose string fixed to a ceiling. The ball is released from rest and falls 2.00 m, where the string suddenly stops it. Find the impulse on it from the string.
- 30 Two average forces. A steady stream of 0.250 kg snowballs is shot perpendicularly into a wall at a speed of 4.00 m/s. Each ball sticks to the wall. Figure 9-41 gives the magnitude F of the force on the wall as a function of time t for two of the snowball impacts. Impacts occur with a repetition time interval $\Delta t_r = 50.0$ ms, last a duration time interval $\Delta t_d = 10$ ms, and produce isosceles triangles on the graph, with each impact reaching a force maximum $F_{\text{max}} = 160 \text{ N}$. During each impact, what are the magnitudes of (a) the impulse and (b) the average force on the wall? (c) During a time interval of many impacts, what is the magnitude of the average force on the wall?



31 Jumping up before the elevator hits. After the cable snaps and the safety system fails, an elevator cab free-falls from a height of 36 m. During the collision at the bottom of the elevator shaft, a 90 kg passenger is stopped in 5.0 ms. (Assume that neither the passenger nor the cab rebounds.) What are the magnitudes of the (a) impulse and (b) average force on the passenger during the collision? If the passenger were to jump upward with a speed of 7.0 m/s relative to the cab floor just before the cab hits the bottom of the shaft, what are the

magnitudes of the (c) impulse and (d) average force (assuming the same stopping time)?

32 A 2.5 kg toy car can move along an x axis; Fig. 9-42 gives F_x of the force acting on the car, which begins at rest at time t = 0. The scale on the F_x axis is set by $F_{xs} = 5.0$ N. In unit-vector notation, what is \vec{p} at (a) t = 4.0 s and (b) t = 7.0 s, and (c) what is \vec{v} at t = 9.0 s?

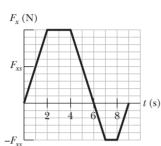


Figure 9-42 Problem 32.

33 Figure 9-43 shows a 0.300 kg baseball just before and just after it collides with a bat. Just before, the ball has velocity \vec{v}_1 of magnitude 12.0 m/s and angle $\theta_1 = 35.0^{\circ}$. Just after, it is traveling directly upward with velocity \vec{v}_2 of magnitude 10.0 m/s. The duration of the collision is 2.00 ms. What are the (a)

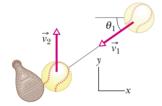


Figure 9-43 Problem 33.

magnitude and (b) direction (relative to the positive direction of the *x* axis) of the impulse on the ball from the bat? What are the (c) magnitude and (d) direction of the average force on the ball from the bat?

34 Basilisk lizards can run across the top of a water surface (Fig. 9-44). With each step, a lizard first slaps its foot against the water and then pushes it down into the water rapidly enough to form an air cavity around the top of the foot. To avoid having to pull the foot back up against water drag in order to complete the step, the lizard withdraws the foot before water can flow into the air cavity. If the lizard is not to sink, the average upward impulse on the lizard during this full action of slap, downward push, and withdrawal must match the downward impulse due to the gravitational

Stephen Dalton/Photo Researchers, Inc.

Figure 9-44 Problem 34. Lizard running across water.

force. Suppose the mass of a basilisk lizard is 90.0 g, the mass of each foot is 3.00 g, the speed of a foot as it slaps the water is 1.50 m/s, and the time for a single step is 0.600 s. (a) What is the magnitude of the impulse on the lizard during the slap? (Assume this impulse is directly upward.) (b) During the 0.600 s duration of a step, what is the downward impulse on the lizard due to the gravitational force? (c) Which action, the slap or the push, provides the primary support for the lizard, or are they approximately equal in their support?

35 Figure 9-45 shows an approximate plot of force magnitude F versus time t during the collision of a 58 g Superball with a wall. The initial velocity of the ball is 34 m/s perpendicular to the wall; the ball rebounds directly back with approximately the same speed, also perpendicular to the wall. What is $F_{\rm max}$, the maximum magnitude of the

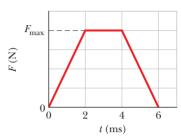


Figure 9-45 Problem 35.

force on the ball from the wall during the collision?

- **36** A 0.25 kg puck is initially stationary on an ice surface with negligible friction. At time t=0, a horizontal force begins to move the puck. The force is given by $\vec{F}=(12.0-3.00t^2)\hat{\mathbf{i}}$, with \vec{F} in newtons and t in seconds, and it acts until its magnitude is zero. (a) What is the magnitude of the impulse on the puck from the force between t=0.750 s and t=1.25 s? (b) What is the change in momentum of the puck between t=0 and the instant at which t=0?
- **37** A particle of unknown mass is acted upon by a force $\vec{F} = (100e^{-2t}\hat{i})$ N. If at t = 0.00 s the particle is at rest, for the time interval t = 0.00 s to t = 2.00 s find (a) the impulse on the particle and (b) the average force on the particle.
- 38 In the overhead view of Fig. 9-46, a 300 g ball with a speed v of 6.0 m/s strikes a wall at an angle θ of 30° and then rebounds with the same speed and angle. It is in contact with the wall for 10 ms. In unit-vector notation, what are (a) the impulse on the ball from the wall

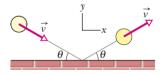


Figure 9-46 Problem 38.

and (b) the average force on the wall from the ball?

- **39** A man of mass $m_1 = 80$ kg is standing on a platform of mass $m_2 = 20$ kg that lies on a frictionless horizontal surface. The man starts moving on the platform with a velocity $v_r = 10$ m/s relative to the platform. Find the recoil speed of the platform.
- 40 A space vehicle is traveling at 4800 km/h relative to Earth when the exhausted rocket motor (mass 4m) is disengaged and sent backward with a speed of 82 km/h relative to the command module (mass m). What is the speed of the command module relative to Earth just after the separation?
- 41 Figure 9-47 shows a two-ended "rocket" that is initially stationary on a frictionless floor, with its center at the origin of an x axis. The rocket consists of a central block C (of mass M = 6.00 kg) and blocks L and R (each of mass m = 2.00 kg) on the

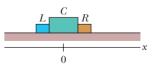


Figure 9-47 Problem 41.

left and right sides. Small explosions can shoot either of the side

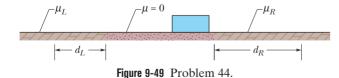
blocks away from block C and along the x axis. Here is the sequence: (1) At time t = 0, block L is shot to the left with a speed of 3.00 m/s *relative* to the velocity that the explosion gives the rest of the rocket. (2) Next, at time t = 0.80 s, block R is shot to the right with a speed of 3.00 m/s *relative* to the velocity that block C then has. At t = 2.80 s, what are (a) the velocity of block C and (b) the position of its center?

- 42 A 15.0 kg package is moving at a speed of 10.0 m/s vertically upward along a y axis when it explodes into three fragments: a 2.00 kg fragment is shot upward with an initial speed of 20.0 m/s and a 3.00 kg fragment is shot in the positive direction of a horizontal x axis with an initial speed of 5.00 m/s. Find (a) the speed of the third fragment right after the explosion and (b) the total kinetic energy provided by the explosion.
- 43 In the Olympiad of 708 B.C., some athletes competing in the standing long jump used handheld weights called *halteres* to lengthen their jumps (Fig. 9-48). The weights were swung up in front just before liftoff and then swung down and thrown backward during the flight. Suppose a modern 78 kg long jumper similarly uses two 5.50 kg halteres, throwing them horizontally to the rear at his maximum height such that their horizontal velocity is zero relative to the ground. Let his liftoff velocity be $\vec{v} = (9.5\hat{i} + 4.0\hat{j})$ m/s with or without the halteres, and assume that he lands at the liftoff level. What distance would the use of the halteres add to his range?

Réunion des Musées Nationaux/ Art Resource

Figure 9-48 Problem 43.

44 In Fig. 9-49, a stationary block explodes into two pieces L and R that slide across a frictionless floor and then into regions with friction, where they stop. Piece L, with a mass of 2.0 kg, encounters a coefficient of kinetic friction $\mu_L = 0.35$ and slides to a stop in distance $d_L = 0.15$ m. Piece R encounters a coefficient of kinetic friction $\mu_R = 0.50$ and slides to a stop in distance $d_R = 0.30$ m. What was the mass of the block?



45 A vase of mass m falls onto a floor and breaks into three pieces that then slide across the frictionless floor. One piece of mass 0.25m moves at speed v along an x axis. The second piece of the same mass and speed moves along the y axis. Find the speed of the third piece.

- **46** A 4.0 kg mess kit sliding on a frictionless surface explodes into two 2.0 kg parts: 3.0 m/s, due north, and 6.0 m/s, 30° north of east. What is the original speed of the mess kit?
- 47 A particle of mass 2.0 m is projected at an angle of 45° with the horizontal with a speed of $20\sqrt{2}$ m/s. After 1.0 s, an explosion occurs and the particle is broken into two equal pieces. One piece is momentarily at rest before it falls. Find the maximum height attained by the other piece.
- 48 Particle A and particle B are held together with a compressed spring between them. When they are released, the spring pushes them apart, and they then fly off in opposite directions, free of the spring. The mass of A is 2.00 times the mass of B, and the energy stored in the spring was 80 J. Assume that the spring has negligible mass and that all its stored energy is transferred to the particles. Once that transfer is complete, what are the kinetic energies of (a) particle A and (b) particle B?
- **49** A bullet of mass 10 g strikes a ballistic pendulum of mass 2.0 kg. The center of mass of the pendulum rises a vertical distance of 12 cm. Assuming that the bullet remains embedded in the pendulum, calculate the bullet's initial speed.
- 50 A 5.20 g bullet moving at 700 m/s strikes a 700 g wooden block at rest on a frictionless surface. The bullet emerges, traveling in the same direction with its speed reduced to 450 m/s. (a) What is the resulting speed of the block? (b) What is the speed of the bullet–block center of mass?
- 51 In Fig. 9-50*a*, a 3.50 g bullet is fired horizontally at two blocks at rest on a frictionless table. The bullet passes through block 1 (mass 1.20 kg) and embeds itself in block 2 (mass 1.80 kg). The blocks end up with speeds $v_1 = 0.630$ m/s and $v_2 = 1.40$ m/s (Fig. 9-50*b*). Neglecting the material removed from block 1 by the bullet, find the speed of the bullet as it (a) leaves and (b) enters block 1.

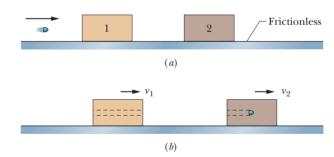


Figure 9-50 Problem 51.

52 In Fig. 9-51, a 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest. The bullet emerges from the block moving directly upward at 300 m/s. To what maximum height does the block then rise above its initial position?

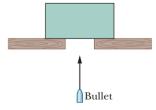


Figure 9-51 Problem 52.

53 In Anchorage, collisions of a vehicle with a moose are so common that they are referred to with the abbreviation MVC. Suppose a 1000 kg car slides into a stationary 500 kg moose on a very slippery road, with the moose being thrown through the windshield

(a common MVC result). (a) What percentage of the original kinetic energy is lost in the collision to other forms of energy? A similar danger occurs in Saudi Arabia because of camel-vehicle collisions (CVC). (b) What percentage of the original kinetic energy is lost if the car hits a 300 kg camel? (c) Generally, does the percentage loss increase or decrease if the animal mass decreases?

- **54** A completely inelastic collision occurs between two balls of wet putty that move directly toward each other along a vertical axis. Just before the collision, one ball, of mass 3.0 kg, is moving upward at 20 m/s and the other ball, of mass 2.0 kg, is moving downward at 10 m/s. How high do the combined two balls of putty rise above the collision point? (Neglect air drag.)
- Block 1 of mass 3.0 kg is sliding across a floor with speed $\nu_1 = 2.0$ m/s when it makes a head-on, one-dimensional, elastic collision with initially stationary block 2 of mass 2.0 kg. The coefficient of kinetic friction between the blocks and the floor is $\mu_k = 0.30$. Find the speeds of (a) block 1 and (b) block 2 just after the collision. Also find (c) their final separation after friction has stopped them and (d) the energy lost to thermal energy because of the friction.
- 56 In the "before" part of Fig. 9-52, car A (mass 1100 kg) is stopped at a traffic light when it is rear-ended by car B (mass 1400 kg). Both cars then slide with locked wheels until the frictional force from the slick road (with a low μ_k of 0.10) stops them, at distances $d_A = 8.2$ m and $d_B = 6.1$ m. What are the speeds of (a) car A and (b) car B at the start of the sliding, just after the collision? (c) Assuming that linear momentum is conserved during the collision, find the speed of car B just before the collision. (d) Explain why this assumption may be invalid.

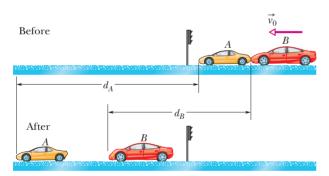


Figure 9-52 Problem 56.

57 In Fig. 9-53, a ball of mass m = 60 g is shot with speed $v_i = 22$ m/s into the barrel of a spring gun of mass M = 240 g initially at rest on a frictionless surface. The ball sticks in the

Figure 9-53 Problem 57.

barrel at the point of maximum compression of the spring. Assume that the increase in thermal energy due to friction between the ball and the barrel is negligible. (a) What is the speed of the spring gun after the ball stops in the barrel? (b) What fraction of the initial kinetic energy of the ball is stored in the spring?

58 In Fig. 9-54, block 2 (mass 1.0 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 230 N/m. The other end of the

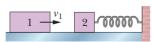


Figure 9-54 Problem 58.

spring is fixed to a wall. Block 1 (mass 2.0 kg), traveling at speed

 $v_1 = 4.0$ m/s, collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed?

59 In Fig. 9-55, block 1 (mass 2.0 kg) is moving rightward at 10 m/s and block 2 (mass 5.0 kg) is moving rightward at 3.0 m/s. The surface is frictionless, and a spring with a

Figure 9-55 Problem 59.

spring constant of 1120 N/m is fixed to block 2. When the blocks collide, the compression of the spring is maximum at the instant the blocks have the same velocity. Find the maximum compression.

60 In Fig. 9-56, block A (mass 1.6 kg) slides into block B (mass 2.4 kg), along a frictionless surface. The directions of three velocities before (i) and after (f) the collision are indicated; the corresponding speeds are $v_{Ai} = 5.5$ m/s, $v_{Bi} = 2.5$ m/s, and $v_{Bf} = 4.9$ m/s. What are the (a) speed and (b) direction (left or right) of velocity \vec{v}_{Af} ? (c) Is the collision elastic?

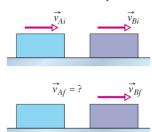


Figure 9-56 Problem 60.

- 61 Two bodies of masses m = 0.30 kg and 2m are connected by a long string of negligible mass. The string is looped over a pulley and, with the string taut, the bodies are released at time t = 0 so that the heavier one descends and the lighter one ascends. At time t = 4.0 s, the lighter one undergoes a fully inelastic collision with a third body of mass m. Because the first two bodies move in rigid fashion, the collision is effectively between the third body and the system of the first two bodies. (a) Just after the collision, what is the speed of the three bodies? (b) By how much was the kinetic energy of the descending body decreased because of the collision?
- 62 Two titanium spheres approach each other head-on with the same speed and collide elastically. After the collision, one of the spheres, whose mass is 250 g, remains at rest. (a) What is the mass of the other sphere? (b) What is the speed of the two-sphere center of mass if the initial speed of each sphere is 2.00 m/s?
- **63** Block 1 of mass m_1 slides along a frictionless floor and into a one-dimensional elastic collision with stationary block 2 of mass $m_2 = 3m_1$. Prior to the collision, the center of mass of the two-block system had a speed of 3.00 m/s. Afterward, what are the speeds of (a) the center of mass and (b) block 2?
- 64 A steel ball of mass 0.600 kg is fastened to a cord that is 70.0 cm long and fixed at the far end. The ball is then released when the cord is horizontal (Fig. 9-57). At the bottom of its path, the ball strikes a 2.80 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find (a) the speed of the ball and (b) the speed of the block, both just after the collision.

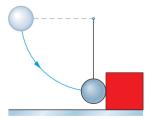


Figure 9-57 Problem 64.

Particle 1 with mass m and velocity v and particle 2 with mass 2m and velocity -2v are moving toward each other along an x axis when they undergo a one-dimensional elastic collision. After the collision, what are the velocities of (a) particle 1 and (b) particle 2? What is the velocity of the center of mass of the two-particle system (c) before and (d) after the collision?

- Block 1, with mass m_1 and speed 3.0 m/s, slides along an x axis on a frictionless floor and then undergoes a one-dimensional elastic collision with stationary block 2, with mass $m_2 = 0.40m_1$. The two blocks then slide into a region where the coefficient of kinetic friction is 0.50; there they stop. How far into that region do (a) block 1 and (b) block 2 slide?
- 67 In Fig. 9-58, particle 1 of mass $m_1 = 0.30$ kg slides rightward along an x axis on a frictionless floor with a speed of 2.0 m/s. When it reaches x = 0, it undergoes a one-dimensional elastic collision with stationary parti-

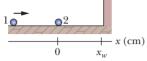


Figure 9-58 Problem 67.

- cle 2 of mass $m_2 = 0.40$ kg. When particle 2 then reaches a wall at $x_w = 70$ cm, it bounces from the wall with no loss of speed. At what position on the x axis does particle 2 then collide with particle 1?
- 68 In Fig. 9-59, block 1 of mass m_1 slides from rest along a frictionless ramp from height h = 3.00 m and then collides with stationary block 2, which has mass $m_2 = 2.00m_1$. After the collision, block 2 slides into a region where the coefficient of kinetic friction μ_k is 0.450 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?

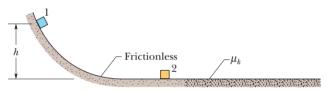


Figure 9-59 Problem 68.

69 A small ball of mass m is aligned above a larger ball of mass M = 0.63 kg (with a slight separation, as with the baseball and basketball of Fig. 9-60a), and the two are dropped simultaneously from a height of h = 1.8 m. (Assume the radius of each ball is negligible relative to h.) (a) If the larger ball rebounds elastically from the floor and then the small ball rebounds elastically from the larger ball, what value of m results in the larger ball stopping when it collides with the small ball? (b) What height does the small ball then reach (Fig. 9-60b)?

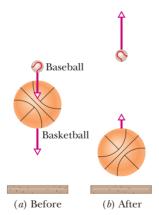


Figure 9-60 Problem 69.

70 In Fig. 9-61, puck 1 of mass $m_1 = 0.25$ kg is sent sliding across a frictionless lab bench, to undergo a one-dimensional elastic collision with stationary puck 2. Puck 2 then slides off the bench and

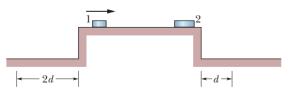


Figure 9-61 Problem 70.

- lands a distance d from the base of the bench. Puck 1 rebounds from the collision and slides off the opposite edge of the bench, landing a distance 2d from the base of the bench. What is the mass of puck 2? (*Hint:* Be careful with signs.)
- 71 In Fig. 9-21, projectile particle 1 is an alpha particle and target particle 2 is an oxygen nucleus. The alpha particle is scattered at angle $\theta_1 = 64.0^{\circ}$ and the oxygen nucleus recoils with speed 1.20×10^{5} m/s and at angle $\theta_2 = 51.0^{\circ}$. In atomic mass units, the mass of the alpha particle is 4.00 u and the mass of the oxygen nucleus is 16.0 u. What are the (a) final and (b) initial speeds of the alpha particle?
- 72 In the two-dimensional collision in Fig. 9-21, the projectile particle has mass $m_1 = m$, initial speed $v_{1i} = 3v_0$, and final speed $v_{1f} = \sqrt{5}v_0$. The initially stationary target particle has mass $m_1 = 2m$ and final speed $v_{2f} = v_2$. The projectile is scattered at an angle given by $\tan \theta_1 = 2.0$. (a) Find angle θ_2 . (b) Find v_2 in terms of v_0 . (c) Is the collision elastic?
- 73 After a completely inelastic collision, two objects of the same mass and same initial speed move away together at half their initial speed. Find the angle between the initial velocities of the objects.
- 74 A force \vec{F} acts on two particles of masses m and 4.0m moving at the same speed but at right angles to each other, as shown in Fig. 9-62. The force acts on both the particles for a time T. Consequently, the particle of mass m moves with a velocity 4v in its original direction. (a) Find the new velocity v' of the other particle. (b) Also find the change in the kinetic energy of the system.

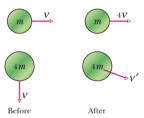


Figure 9-62 Problem 74.

75 In Fig. 9-63, a bob of mass 10m is suspended from an inextensible string with negligible mass. When the bob is in equilibrium (at rest), two particles each of mass m strike it simultaneously with the speeds indicated. The particles stick to the bob. Find (a) the magnitude of the net impulse on the string due to the collision, (b) the velocity of the system just after the collision, and (c) the mechanical energy lost in the collision.

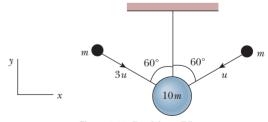


Figure 9-63 Problem 75.

- **76** A 6090 kg space probe moving nose-first toward Jupiter at 120 m/s relative to the Sun fires its rocket engine, ejecting 70.0 kg of exhaust at a speed of 253 m/s relative to the space probe. What is the final velocity of the probe?
- 77 In Fig. 9-64, two long barges are moving in the same direction in still water, one with a speed of 10 km/h and the other with a speed of 20 km/h. While they are passing each other, coal is shoveled from the slower to the faster one at a rate of 1000 kg/min. How much additional force must be provided by the driving engines of (a) the faster barge and (b) the slower barge if neither is to change speed? Assume that the shoveling is always perfectly

sideways and that the frictional forces between the barges and the water do not depend on the mass of the barges.

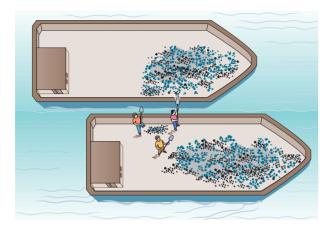


Figure 9-64 Problem 77.

- 78 Consider a rocket that is in deep space and at rest relative to an inertial reference frame. The rocket's engine is to be fired for a certain interval. What must be the rocket's *mass ratio* (ratio of initial to final mass) over that interval if the rocket's original speed relative to the inertial frame is to be equal to (a) the exhaust speed (speed of the exhaust products relative to the rocket) and (b) 2.0 times the exhaust speed?
- **79** A rocket that is set for a vertical launch has a mass of 50.0 kg and contains 450 kg of fuel. The rocket can have a maximum exhaust velocity of 2.00 km/s. What should be the minimum rate of fuel consumption (a) to just lift it off the launching pad and (b) to give it an acceleration of 20.0 m/s 2 ? (c) If the consumption rate is set at 10.0 kg/s, what is the rocket speed at the moment when the fuel is fully consumed?