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What Is Physics?
Every mechanical engineer who is hired as a courtroom expert witness to recon-
struct a traffic accident uses physics. Every dance trainer who coaches a ballerina
on how to leap uses physics. Indeed, analyzing complicated motion of any sort re-
quires simplification via an understanding of physics. In this chapter we discuss
how the complicated motion of a system of objects, such as a car or a ballerina,
can be simplified if we determine a special point of the system—the center of
mass of that system.

Here is a quick example. If you toss a ball into the air without much spin on the
ball (Fig. 9-1a), its motion is simple—it follows a parabolic path, as we discussed in
Chapter 4, and the ball can be treated as a particle. If, instead, you flip a baseball bat
into the air (Fig. 9-1b), its motion is more complicated. Because every part of the bat
moves differently, along paths of many different shapes, you cannot represent the
bat as a particle. Instead, it is a system of particles each of which follows its own path
through the air. However, the bat has one special point—the center of mass—that
does move in a simple parabolic path. The other parts of the bat move around the
center of mass. (To locate the center of mass, balance the bat on an outstretched fin-
ger; the point is above your finger, on the bat’s central axis.)

You cannot make a career of flipping baseball bats into the air, but you can
make a career of advising long-jumpers or dancers on how to leap properly into
the air while either moving their arms and legs or rotating their torso. Your
starting point would be to determine the person’s center of mass because of its
simple motion.

C H A P T E R  9

Center of Mass and Linear Momentum

9-1 CENTER OF MASS

After reading this module, you should be able to . . .

9.01 Given the positions of several particles along an axis or
a plane, determine the location of their center of mass.

9.02 Locate the center of mass of an extended, symmetric
object by using the symmetry.

9.03 For a two-dimensional or three-dimensional extended ob-
ject with a uniform distribution of mass, determine the center
of mass by (a) mentally dividing the object into simple geomet-
ric figures, each of which can be replaced by a particle at its
center, and (b) finding the center of mass of those particles.

● The center of mass of a system of n particles is defined to be the point whose coordinates are given by

or

where M is the total mass of the system.
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1839-1 CENTER OF MASS

The Center of Mass
We define the center of mass (com) of a system of particles (such as a person) in
order to predict the possible motion of the system.

Here we discuss how to determine where the center of mass of a system of parti-
cles is located.We start with a system of only a few particles, and then we consider
a system of a great many particles (a solid body, such as a baseball bat). Later in
the chapter, we discuss how the center of mass of a system moves when external
forces act on the system.

Systems of Particles
Two Particles. Figure 9-2a shows two particles of masses m1 and m2 separated by
distance d. We have arbitrarily chosen the origin of an x axis to coincide with the
particle of mass m1.We define the position of the center of mass of this two-particle
system to be

(9-1)

Suppose, as an example, that m2 � 0. Then there is only one particle, of mass m1,
and the center of mass must lie at the position of that particle;Eq.9-1 dutifully reduces
to xcom � 0. If m1 � 0, there is again only one particle (of mass m2), and we have, as we
expect, xcom � d. If m1 � m2, the center of mass should be halfway between the two
particles; Eq. 9-1 reduces to again as we expect. Finally, Eq. 9-1 tells us that
if neither m1 nor m2 is zero, xcom can have only values that lie between zero and d; that
is, the center of mass must lie somewhere between the two particles.

We are not required to place the origin of the coordinate system on one of
the particles. Figure 9-2b shows a more generalized situation, in which the coordi-
nate system has been shifted leftward. The position of the center of mass is now
defined as

(9-2)

Note that if we put x1 � 0, then x2 becomes d and Eq. 9-2 reduces to Eq. 9-1, as
it must. Note also that in spite of the shift of the coordinate system, the center

xcom �
m1x1 � m2x2

m1 � m2
.

xcom � 1
2d,

xcom �
m2

m1 � m2
d.

Figure 9-1 (a) A ball tossed into the air
follows a parabolic path. (b) The center 
of mass (black dot) of a baseball bat
flipped into the air follows a parabolic 
path, but all other points of the bat 
follow more complicated curved paths.
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hsThe center of mass of a system of particles is the point that moves as though

(1) all of the system’s mass were concentrated there and (2) all external forces
were applied there.

Figure 9-2 (a) Two particles of masses m1 and m2 are separated by distance d. The dot
labeled com shows the position of the center of mass, calculated from Eq. 9-1. (b) The
same as (a) except that the origin is located farther from the particles. The position of
the center of mass is calculated from Eq. 9-2. The location of the center of mass with
respect to the particles is the same in both cases.
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This is the center of mass
of the two-particle system.

Shifting the axis
does not change
the relative position
of the com.
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of mass is still the same distance from each particle. The com is a property of the
physical particles, not the coordinate system we happen to use.

We can rewrite Eq. 9-2 as

(9-3)

in which M is the total mass of the system. (Here, M � m1 � m2.)
Many Particles. We can extend this equation to a more general situation in

which n particles are strung out along the x axis.Then the total mass is M � m1 �
m2 � � mn, and the location of the center of mass is

(9-4)

The subscript i is an index that takes on all integer values from 1 to n.
Three Dimensions. If the particles are distributed in three dimensions, the cen-

ter of mass must be identified by three coordinates. By extension of Eq. 9-4, they are

(9-5)

We can also define the center of mass with the language of vectors. First
recall that the position of a particle at coordinates xi, yi, and zi is given by a posi-
tion vector (it points from the origin to the particle):

(9-6)

Here the index identifies the particle, and î, ĵ, and k̂ are unit vectors pointing,
respectively, in the positive direction of the x, y, and z axes. Similarly, the position
of the center of mass of a system of particles is given by a position vector:

(9-7)

If you are a fan of concise notation, the three scalar equations of Eq. 9-5 can now
be replaced by a single vector equation,

(9-8)

where again M is the total mass of the system. You can check that this equation
is correct by substituting Eqs. 9-6 and 9-7 into it, and then separating out the x,
y, and z components.The scalar relations of Eq. 9-5 result.

Solid Bodies
An ordinary object, such as a baseball bat, contains so many particles (atoms)
that we can best treat it as a continuous distribution of matter. The “particles”
then become differential mass elements dm, the sums of Eq. 9-5 become inte-
grals, and the coordinates of the center of mass are defined as

(9-9)

where M is now the mass of the object.The integrals effectively allow us to use Eq.
9-5 for a huge number of particles, an effort that otherwise would take many years.

Evaluating these integrals for most common objects (such as a television set or
a moose) would be difficult, so here we consider only uniform objects. Such objects
have uniform density, or mass per unit volume; that is, the density r (Greek letter
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rho) is the same for any given element of an object as for the whole object. From
Eq. 1-8, we can write

(9-10)

where dV is the volume occupied by a mass element dm, and V is the total vol-
ume of the object. Substituting dm � (M /V) dV from Eq. 9-10 into Eq. 9-9 gives

(9-11)

Symmetry as a Shortcut. You can bypass one or more of these integrals if
an object has a point, a line, or a plane of symmetry. The center of mass of such
an object then lies at that point, on that line, or in that plane. For example, the
center of mass of a uniform sphere (which has a point of symmetry) is at the
center of the sphere (which is the point of symmetry). The center of mass of a
uniform cone (whose axis is a line of symmetry) lies on the axis of the cone. The
center of mass of a banana (which has a plane of symmetry that splits it into two
equal parts) lies somewhere in the plane of symmetry.

The center of mass of an object need not lie within the object. There is no
dough at the com of a doughnut, and no iron at the com of a horseshoe.

xcom �
1
V
� x dV, ycom �

1
V
� y dV, zcom �

1
V
� z dV.

r �
dm
dV

�
M
V

,

1859-1 CENTER OF MASS

sides (Fig. 9-3). The three particles then have the following
coordinates:

Particle Mass (kg) x (cm) y (cm)

1 1.2 0 0
2 2.5 140 0
3 3.4 70 120

The total mass M of the system is 7.1 kg.
From Eq. 9-5, the coordinates of the center of mass are

(Answer)

and

(Answer)

In Fig. 9-3, the center of mass is located by the position vec-
tor , which has components xcom and ycom. If we had
chosen some other orientation of the coordinate system,
these coordinates would be different but the location of the
com relative to the particles would be the same.

r:com

� 58 cm.

�
(1.2 kg)(0) � (2.5 kg)(0) � (3.4 kg)(120 cm)

7.1 kg

 ycom �
1
M �

3

i�1
miyi �

m1y1 � m2y2 � m3y3

M

 � 83 cm

 �
(1.2 kg)(0) � (2.5 kg)(140 cm) � (3.4 kg)(70 cm)

7.1 kg

 xcom �
1
M �

3

i�1
mixi �

m1x1 � m2x2 � m3x3

M

Sample Problem 9.01 com of three particles

Three particles of masses m1 � 1.2 kg, m2 � 2.5 kg, and
m3 � 3.4 kg form an equilateral triangle of edge length
a � 140 cm.Where is the center of mass of this system?

KEY IDEA

We are dealing with particles instead of an extended solid
body, so we can use Eq. 9-5 to locate their center of mass.
The particles are in the plane of the equilateral triangle, so
we need only the first two equations.

Calculations: We can simplify the calculations by choosing
the x and y axes so that one of the particles is located at the
origin and the x axis coincides with one of the triangle’s

Figure 9-3 Three particles form an equilateral triangle of edge
length a. The center of mass is located by the position vector .r:com

y 

x 0 
50 100 150 

50 

100 

150 

ycom 

xcom m1 

m2 

m3 

rcom 

a a

0 

This is the position
vector rcom for the
com (it points from
the origin to the com).

Additional examples, video, and practice available at WileyPLUS
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186 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

Center Location
Plate of Mass of com Mass

P comP xP � ? mP

S comS xS � �R mS

C comC xC � 0 mC � mS � mP

Assume that mass mS of disk S is concentrated in a parti-
cle at xS � �R, and mass mP is concentrated in a particle
at xP (Fig. 9-4d). Next we use Eq. 9-2 to find the center of
mass xS�P of the two-particle system:

(9-12)

Next note that the combination of disk S and plate P is
composite plate C. Thus, the position xS�P of comS�P must
coincide with the position xC of comC, which is at the origin; so
xS�P � xC � 0. Substituting this into Eq. 9-12, we get

(9-13)

We can relate these masses to the face areas of S and P by
noting that

mass � density � volume
� density � thickness � area.

Then

Because the plate is uniform, the densities and thicknesses
are equal; we are left with

Substituting this and xS � �R into Eq. 9-13, we have

(Answer)xP � 1
3R.

 �
pR2

p(2R)2 � pR2 �
1
3

.

mS

mP
�

areaS

areaP
�

areaS

areaC � areaS

mS

mP
�

densityS

densityP
�

thicknessS

thicknessP
�

areaS

areaP
.

xP � �xS 
mS

mP
.

xS�P �
mSxS � mPxP

mS � mP
.

Sample Problem 9.02 com of plate with missing piece

This sample problem has lots of words to read, but they will
allow you to calculate a com using easy algebra instead of
challenging integral calculus. Figure 9-4a shows a uniform
metal plate P of radius 2R from which a disk of radius R has
been stamped out (removed) in an assembly line.The disk is
shown in Fig. 9-4b. Using the xy coordinate system shown,
locate the center of mass comP of the remaining plate.

KEY IDEAS

(1) Let us roughly locate the center of plate P by using sym-
metry. We note that the plate is symmetric about the x axis
(we get the portion below that axis by rotating the upper
portion about the axis). Thus, comP must be on the x axis.
The plate (with the disk removed) is not symmetric about
the y axis. However, because there is somewhat more mass
on the right of the y axis, comP must be somewhat to the
right of that axis. Thus, the location of comP should be
roughly as indicated in Fig. 9-4a.

(2) Plate P is an extended solid body, so in principle we
can use Eqs. 9-11 to find the actual coordinates of the center
of mass of plate P. Here we want the xy coordinates of the
center of mass because the plate is thin and uniform. If it
had any appreciable thickness, we would just say that the
center of mass is midway across the thickness. Still, using
Eqs. 9-11 would be challenging because we would need a
function for the shape of the plate with its hole, and then we
would need to integrate the function in two dimensions.

(3) Here is a much easier way: In working with centers
of mass, we can assume that the mass of a uniform object (as
we have here) is concentrated in a particle at the object’s
center of mass.Thus we can treat the object as a particle and
avoid any two-dimensional integration.

Calculations: First, put the stamped-out disk (call it disk S)
back into place (Fig. 9-4c) to form the original composite
plate (call it plate C). Because of its circular symmetry, the
center of mass comS for disk S is at the center of S, at x �
�R (as shown). Similarly, the center of mass comC for com-
posite plate C is at the center of C, at the origin (as shown).
We then have the following:

Checkpoint 1
The figure shows a uniform square plate from which four identical
squares at the corners will be removed. (a) Where is the center of mass of
the plate originally? Where is it after the removal of (b) square 1; (c)
squares 1 and 2; (d) squares 1 and 3; (e) squares 1, 2, and 3; (f) all four
squares? Answer in terms of quadrants, axes, or points (without calcula-
tion, of course).

y 

x 

1 2 

4 3 

Additional examples, video, and practice available at WileyPLUS
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1879-1 CENTER OF MASS

A

The com of the composite
plate is the same as the
com of the two pieces.

Plate P

2R

R

y

x

y

y

x

comP

comC

comS

Disk S

Composite plate
       C = S + P

(a)

(b)

(c)

(d) x
comPcomCcomS

Disk particle Plate particle

Assume the plate's
mass is concentrated
as a particle at the
plate's center of mass.

Here too, assume the
mass is concentrated
as a particle at the
center of mass.

Here too.

Here are those
three particles.

Figure 9-4 (a) Plate P is a metal plate of radius 2R, with a circular hole of radius R.The center of mass of P is at point comP. (b) Disk S.
(c) Disk S has been put back into place to form a composite plate C. The center of mass comS of disk S and the center of mass comC

of plate C are shown. (d) The center of mass comS�P of the combination of S and P coincides with comC, which is at x � 0.
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Newton’s Second Law for a System of Particles
Now that we know how to locate the center of mass of a system of particles, we
discuss how external forces can move a center of mass. Let us start with a simple
system of two billiard balls.

If you roll a cue ball at a second billiard ball that is at rest, you expect that the
two-ball system will continue to have some forward motion after impact. You
would be surprised, for example, if both balls came back toward you or if both
moved to the right or to the left. You already have an intuitive sense that some-
thing continues to move forward.

What continues to move forward, its steady motion completely unaf-
fected by the collision, is the center of mass of the two-ball system. If you fo-
cus on this point — which is always halfway between these bodies because
they have identical masses — you can easily convince yourself by trial at a bil-
liard table that this is so. No matter whether the collision is glancing, head-on,
or somewhere in between, the center of mass continues to move forward, as if
the collision had never occurred. Let us look into this center-of-mass motion
in more detail.

Motion of a System’s com. To do so, we replace the pair of billiard balls with
a system of n particles of (possibly) different masses. We are interested not in the
individual motions of these particles but only in the motion of the center of mass
of the system. Although the center of mass is just a point, it moves like a particle
whose mass is equal to the total mass of the system; we can assign a position, a ve-
locity, and an acceleration to it. We state (and shall prove next) that the vector
equation that governs the motion of the center of mass of such a system of parti-
cles is

(system of particles). (9-14)

This equation is Newton’s second law for the motion of the center of mass of
a system of particles. Note that its form is the same as the form of the equation

F
:

net � Ma:com

188 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

9-2 NEWTON’S SECOND LAW FOR A SYSTEM OF PARTICLES

After reading this module, you should be able to . . .

9.04 Apply Newton’s second law to a system of particles by re-
lating the net force (of the forces acting on the particles) to
the acceleration of the system’s center of mass.

9.05 Apply the constant-acceleration equations to the motion
of the individual particles in a system and to the motion of
the system’s center of mass.

9.06 Given the mass and velocity of the particles in a system,
calculate the velocity of the system’s center of mass.

9.07 Given the mass and acceleration of the particles in a
system, calculate the acceleration of the system’s center
of mass.

9.08 Given the position of a system’s center of mass as a func-
tion of time, determine the velocity of the center of mass.

9.09 Given the velocity of a system’s center of mass as a
function of time, determine the acceleration of the center
of mass.

9.10 Calculate the change in the velocity of a com by integrat-
ing the com’s acceleration function with respect to time.

9.11 Calculate a com’s displacement by integrating the
com’s velocity function with respect to time.

9.12 When the particles in a two-particle system move with-
out the system’s com moving, relate the displacements of
the particles and the velocities of the particles.

● The motion of the center of mass of any system of particles
is governed by Newton’s second law for a system of parti-
cles, which is

.F
:

net � M a:com

Here is the net force of all the external forces acting on
the system, M is the total mass of the system, and is the
acceleration of the system’s center of mass.

a:com

F
:

net

Learning Objectives

Key Idea
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for the motion of a single particle. However, the three quantities that
appear in Eq. 9-14 must be evaluated with some care:

1. is the net force of all external forces that act on the system. Forces on one
part of the system from another part of the system (internal forces) are not in-
cluded in Eq. 9-14.

2. M is the total mass of the system. We assume that no mass enters or leaves the
system as it moves, so that M remains constant. The system is said to be closed.

3. is the acceleration of the center of mass of the system. Equation 9-14 gives
no information about the acceleration of any other point of the system.

Equation 9-14 is equivalent to three equations involving the components of
and along the three coordinate axes.These equations are

Fnet, x � Macom, x Fnet, y � Macom, y Fnet, z � Macom, z. (9-15)

Billiard Balls. Now we can go back and examine the behavior of the billiard
balls. Once the cue ball has begun to roll, no net external force acts on the (two-
ball) system. Thus, because � 0, Eq. 9-14 tells us that � 0 also. Because
acceleration is the rate of change of velocity, we conclude that the velocity of the
center of mass of the system of two balls does not change.When the two balls col-
lide, the forces that come into play are internal forces, on one ball from the other.
Such forces do not contribute to the net force , which remains zero. Thus, the
center of mass of the system, which was moving forward before the collision,
must continue to move forward after the collision, with the same speed and in the
same direction.

Solid Body. Equation 9-14 applies not only to a system of particles but also
to a solid body, such as the bat of Fig. 9-1b. In that case, M in Eq. 9-14 is the mass
of the bat and is the gravitational force on the bat. Equation 9-14 then tells us
that In other words, the center of mass of the bat moves as if the bat
were a single particle of mass M, with force acting on it.

Exploding Bodies. Figure 9-5 shows another interesting case. Suppose that at
a fireworks display, a rocket is launched on a parabolic path. At a certain point, it
explodes into fragments. If the explosion had not occurred, the rocket would have
continued along the trajectory shown in the figure. The forces of the explosion are
internal to the system (at first the system is just the rocket, and later it is its frag-
ments); that is, they are forces on parts of the system from other parts. If we ignore
air drag, the net external force acting on the system is the gravitational force on
the system, regardless of whether the rocket explodes. Thus, from Eq. 9-14, the ac-
celeration of the center of mass of the fragments (while they are in flight) re-
mains equal to This means that the center of mass of the fragments follows the
same parabolic trajectory that the rocket would have followed had it not exploded.

Ballet Leap. When a ballet dancer leaps across the stage in a grand jeté, she
raises her arms and stretches her legs out horizontally as soon as her feet leave the

g:.
a:com

F
:

net

F
:

g

a:com � g:.
F
:

net

F
:

net

a:comF
:

net

a:comF
:

net

a:com

F
:

net

(Fnet
:

� ma:)
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Figure 9-5 A fireworks rocket explodes in
flight. In the absence of air drag, the center
of mass of the fragments would continue to
follow the original parabolic path, until
fragments began to hit the ground.

The internal forces of the
explosion cannot change
the path of the com.
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stage (Fig. 9-6). These actions shift her center of mass upward through her body.
Although the shifting center of mass faithfully follows a parabolic path across the
stage, its movement relative to the body decreases the height that is attained by her
head and torso, relative to that of a normal jump.The result is that the head and torso
follow a nearly horizontal path,giving an illusion that the dancer is floating.

Proof of Equation 9-14
Now let us prove this important equation. From Eq. 9-8 we have, for a system of n
particles,

(9-16)

in which M is the system’s total mass and is the vector locating the position of
the system’s center of mass.

Differentiating Eq. 9-16 with respect to time gives

(9-17)

Here is the velocity of the ith particle, and is the
velocity of the center of mass.

Differentiating Eq. 9-17 with respect to time leads to

(9-18)

Here is the acceleration of the ith particle, and is
the acceleration of the center of mass. Although the center of mass is just a geo-
metrical point, it has a position, a velocity, and an acceleration, as if it were a particle.

From Newton’s second law, is equal to the resultant force that acts on
the ith particle.Thus, we can rewrite Eq. 9-18 as

(9-19)

Among the forces that contribute to the right side of Eq. 9-19 will be forces that
the particles of the system exert on each other (internal forces) and forces
exerted on the particles from outside the system (external forces). By Newton’s
third law, the internal forces form third-law force pairs and cancel out in the sum
that appears on the right side of Eq. 9-19. What remains is the vector sum of
all the external forces that act on the system. Equation 9-19 then reduces to
Eq. 9-14, the relation that we set out to prove.

Ma:com � F1
:

� F2
:

� F3
:

� � � � � Fn
:

.

Fi
:

miai
:

a:com (� d v:com /dt)a:i (� d v:i/dt)

Ma:com � m1a1
: � m2a2

: � m3a3
: � � � � � mnan

: .

v:com (� d r:com/dt)vi
: 

(� d ri
: /dt)

Mv:com � m1v1
: � m2v2

: � m3v3
: � � � � � mnvn

: .

rcom
:

M r:com � m1r1
: � m2r2

: � m3r3
: � � � � � mnrn

: ,
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Path of head 

Path of center of mass 

Figure 9-6 A grand jeté. (Based on The Physics of Dance, by Kenneth Laws, Schirmer
Books, 1984.)
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1919-2 NEWTON’S SECOND LAW FOR A SYSTEM OF PARTICLES

Checkpoint 2
Two skaters on frictionless ice hold opposite ends of a pole of negligible mass.An axis
runs along it, with the origin at the center of mass of the two-skater system. One skater,
Fred, weighs twice as much as the other skater, Ethel.Where do the skaters meet if (a)
Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls
hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand?

Sample Problem 9.03 Motion of the com of three particles

If the particles in a system all move together, the com moves
with them—no trouble there. But what happens when they
move in different directions with different accelerations?
Here is an example.

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F1 � 6.0 N, F2 � 12 N, and F3 � 14 N. What
is the acceleration of the center of mass of the system, and in
what direction does it move?

KEY IDEAS

The position of the center of mass is marked by a dot in the
figure. We can treat the center of mass as if it were a real
particle,with a mass equal to the system’s total mass M � 16 kg.
We can also treat the three external forces as if they act at the
center of mass (Fig. 9-7b).

Calculations: We can now apply Newton’s second law
to the center of mass, writing

(9-20)

or

so (9-21)

Equation 9-20 tells us that the acceleration of the 
center of mass is in the same direction as the net external force

on the system (Fig. 9-7b). Because the particles are ini-
tially at rest, the center of mass must also be at rest. As the
center of mass then begins to accelerate, it must move off in
the common direction of and 

We can evaluate the right side of Eq. 9-21 directly on
a vector-capable calculator, or we can rewrite Eq. 9-21 in
component form, find the components of and then find

Along the x axis, we have

 �
�6.0 N � (12 N) cos 45� � 14 N

16 kg
� 1.03 m/s2.

 acom, x �
F 1x � F 2x � F 3x

M

a:com.
a:com,

F
:

net.a:com

F
:

net

a:com

a:com �
F1
:

� F2
:

� F3
:

M
.

F1
:

� F2
:

� F3
:

� Ma:com

F
:

net � Ma:com

(F
:

net � ma:)

Figure 9-7 (a) Three particles, initially at rest in the positions shown,
are acted on by the external forces shown.The center of mass (com)
of the system is marked. (b) The forces are now transferred to the
center of mass of the system, which behaves like a particle with a
mass M equal to the total mass of the system.The net external force

and the acceleration of the center of mass are shown.a:comF
:

net

x 

y 

3 

2 

1 

0 

–1

–2

–3

–3    –2     –1 1      2       3      4      5 

x 

y 

3 

2 

1 

0 
–3    –2     –1 1      2       3      4      5 

45° 

8.0 kg com 

4.0 kg 

4.0 kg 

com 
θ 

M = 16 kg 

(b) 

(a) 

F1 F2 

F3 

F3 

F1 

F2 Fnet 

acom 

The com of the system
will move as if all the
mass were there and
the net force acted there.

Along the y axis, we have

From these components, we find that has the magnitude

(Answer)
and the angle (from the positive direction of the x axis)

(Answer)� � tan�1 
acom, y

acom, x
� 27�.

 � 1.16 m/s2 � 1.2 m/s2

 acom � 2(acom, x)2 � (acom, y)2

a:com

�
0 � (12 N) sin 45� � 0

16 kg
� 0.530 m/s2.

 acom, y �
F 1y � F 2y � F 3y

M

Additional examples, video, and practice available at WileyPLUS
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Linear Momentum
Here we discuss only a single particle instead of a system of particles, in order to
define two important quantities. Then we shall extend those definitions to sys-
tems of many particles.

The first definition concerns a familiar word—momentum—that has several
meanings in everyday language but only a single precise meaning in physics and
engineering. The linear momentum of a particle is a vector quantity that is
defined as

(linear momentum of a particle), (9-22)

in which m is the mass of the particle and is its velocity. (The adjective linear is of-
ten dropped, but it serves to distinguish from angular momentum, which is intro-
duced in Chapter 11 and which is associated with rotation.) Since m is always a
positive scalar quantity, Eq. 9-22 tells us that and have the same direction. Fromv:p:

p:
v:

p: � mv:

p:

192 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

9-3 LINEAR MOMENTUM

After reading this module, you should be able to . . .

9.13 Identify that momentum is a vector quantity and thus has
both magnitude and direction and also components.

9.14 Calculate the (linear) momentum of a particle as the
product of the particle’s mass and velocity.

9.15 Calculate the change in momentum (magnitude and di-
rection) when a particle changes its speed and direction of
travel.

9.16 Apply the relationship between a particle’s momentum
and the (net) force acting on the particle.

9.17 Calculate the momentum of a system of particles as the
product of the system’s total mass and its center-of-mass
velocity.

9.18 Apply the relationship between a system’s center-of-
mass momentum and the net force acting on the system.

● For a single particle, we define a quantity called its linear
momentum as

,

which is a vector quantity that has the same direction as the
particle’s velocity. We can write Newton’s second law in

p: � mv:

p: terms of this momentum:

● For a system of particles these relations become

and F
:

net �
dP

:

dt
.P

:
� Mv:com

F
:

net �
d p:

dt
.

Learning Objectives

Key Ideas

The time rate of change of the momentum of a particle is equal to the net force 
acting on the particle and is in the direction of that force.

In equation form this becomes

(9-23)

In words, Eq. 9-23 says that the net external force on a particle changes the
particle’s linear momentum Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, cannot
change. As we shall see in Module 9-5, this last fact can be an extremely power-
ful tool in solving problems.

p:
p:.

F
:

net

F
:

net �
dp:

dt
.

Eq. 9-22, the SI unit for momentum is the kilogram-meter per second (kg �m/s).
Force and Momentum. Newton expressed his second law of motion in terms

of momentum:
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Manipulating Eq. 9-23 by substituting for from Eq. 9-22 gives, for constant
mass m,

Thus, the relations and are equivalent expressions of
Newton’s second law of motion for a particle.

F
:

net � ma:F
:

net � dp:/dt

F
:

net �
dp:

dt
�

d
dt

 (mv:) � m 
dv:

dt
� ma:.

p:

1939-3 LINEAR MOMENTUM

Checkpoint 3
The figure gives the magnitude p of the linear mo-
mentum versus time t for a particle moving along
an axis.A force directed along the axis acts on the
particle.(a) Rank the four regions indicated ac-
cording to the magnitude of the force,greatest
first. (b) In which region is the particle slowing?

The Linear Momentum of a System of Particles
Let’s extend the definition of linear momentum to a system of particles. Consider
a system of n particles, each with its own mass, velocity, and linear momentum.
The particles may interact with each other, and external forces may act on them.
The system as a whole has a total linear momentum which is defined to be the
vector sum of the individual particles’ linear momenta.Thus,

(9-24)

If we compare this equation with Eq. 9-17, we see that

(linear momentum, system of particles), (9-25)

which is another way to define the linear momentum of a system of particles:

P
:

� Mv:com

� m1v:1 � m2v:2 � m3v:3 � � � � � mnv:n.

 P
:

� p:1 � p:2 � p:3 � � � � � p:n

P
:

,

The linear momentum of a system of particles is equal to the product of the total
mass M of the system and the velocity of the center of mass.

Force and Momentum. If we take the time derivative of Eq. 9-25 (the veloc-
ity can change but not the mass), we find

(9-26)

Comparing Eqs. 9-14 and 9-26 allows us to write Newton’s second law for a sys-
tem of particles in the equivalent form

(system of particles), (9-27)

where is the net external force acting on the system.This equation is the gen-
eralization of the single-particle equation to a system of many 
particles. In words, the equation says that the net external force on a system
of particles changes the linear momentum of the system. Conversely, the linear
momentum can be changed only by a net external force. If there is no net exter-
nal force, cannot change. Again, this fact gives us an extremely powerful tool
for solving problems.

P
:

P
:

F
:

net

F
:

net � dp:/dt
F
:

net

F
:

net �
dP

:

dt

dP
:

dt
� M 

dv:com

dt
� Ma:com.

p 

t 

1 

2 

3 

4 
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194 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

9-4 COLLISION AND IMPULSE

After reading this module, you should be able to . . .

9.19 Identify that impulse is a vector quantity and thus has both
magnitude and direction and also components.

9.20 Apply the relationship between impulse and momentum
change.

9.21 Apply the relationship between impulse, average force,
and the time interval taken by the impulse.

9.22 Apply the constant-acceleration equations to relate im-
pulse to average force.

9.23 Given force as a function of time, calculate the impulse (and
thus also the momentum change) by integrating the function.

9.24 Given a graph of force versus time, calculate the im-
pulse (and thus also the momentum change) by graphical
integration.

9.25 In a continuous series of collisions by projectiles, calcu-
late the average force on the target by relating it to the rate
at which mass collides and to the velocity change experi-
enced by each projectile.

● Applying Newton’s second law in momentum form to a
particle-like body involved in a collision leads to the
impulse–linear momentum theorem:

,

where is the change in the body’s linear momen-p:f � p:i � 	p:
p:f � p:i � 	p: � J

:

● When a steady stream of bodies, each with mass m and
speed v, collides with a body whose position is fixed, the aver-
age force on the fixed body is

where n/	t is the rate at which the bodies collide with the
fixed body, and 	v is the change in velocity of each colliding
body. This average force can also be written as

where 	m/	t is the rate at which mass collides with the fixed
body. The change in velocity is 	v � �v if the bodies stop
upon impact and 	v � �2v if they bounce directly backward
with no change in their speed.

Favg � �
	m
	t

 	v,

Favg � �
n
	t

 	p � �
n
	t

 m 	v,

Learning Objectives

Key Ideas

tum, and is the impulse due to the force exerted on the
body by the other body in the collision:

● If Favg is the average magnitude of during the collisionF
:

(t)

J
:

� �tf

ti

 F
:

(t) dt.

F
:

(t)J
:

and 	t is the duration of the collision, then for one-dimensional
motion

J � Favg 	t.

Collision and Impulse
The momentum of any particle-like body cannot change unless a net
external force changes it. For example, we could push on the body to change its
momentum. More dramatically, we could arrange for the body to collide with a
baseball bat. In such a collision (or crash), the external force on the body is brief,
has large magnitude, and suddenly changes the body’s momentum. Collisions oc-
cur commonly in our world, but before we get to them, we need to consider a sim-
ple collision in which a moving particle-like body (a projectile) collides with some
other body (a target).

Single Collision
Let the projectile be a ball and the target be a bat.The collision is brief, and the ball
experiences a force that is great enough to slow, stop, or even reverse its motion.
Figure 9-8 depicts the collision at one instant. The ball experiences a force that
varies during the collision and changes the linear momentum of the ball. Thatp:

F
:
(t)

p:

The collision of a ball with a bat collapses
part of the ball.

P
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change is related to the force by Newton’s second law written in the form 
By rearranging this second-law expression, we see that, in time interval dt, the
change in the ball’s momentum is

(9-28)dp: � F
:

(t) dt.

F
:

� dp:/dt.
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We can find the net change in the ball’s momentum due to the collision if we inte-
grate both sides of Eq. 9-28 from a time ti just before the collision to a time tf just
after the collision:

(9-29)

The left side of this equation gives us the change in momentum:
The right side, which is a measure of both the magnitude and the duration of the
collision force, is called the impulse of the collision:

(impulse defined). (9-30)

Thus, the change in an object’s momentum is equal to the impulse on the object:

(linear momentum–impulse theorem). (9-31)

This expression can also be written in the vector form

(9-32)

and in such component forms as

	px � Jx (9-33)

and (9-34)

Integrating the Force. If we have a function for we can evaluate (and
thus the change in momentum) by integrating the function. If we have a plot of 
versus time t, we can evaluate by finding the area between the curve and the t
axis, such as in Fig. 9-9a. In many situations we do not know how the force varies
with time but we do know the average magnitude Favg of the force and the duration
	t (� tf � ti) of the collision. Then we can write the magnitude of the impulse as

J � Favg 	t. (9-35)

The average force is plotted versus time as in Fig. 9-9b. The area under that curve
is equal to the area under the curve for the actual force F(t) in Fig. 9-9a because
both areas are equal to impulse magnitude J.

Instead of the ball, we could have focused on the bat in Fig. 9-8. At any
instant, Newton’s third law tells us that the force on the bat has the same
magnitude but the opposite direction as the force on the ball. From Eq. 9-30, this
means that the impulse on the bat has the same magnitude but the opposite
direction as the impulse on the ball.

J
:

F
:

J
:

F
:

(t),

pfx � pix � �tf

ti

F x dt.

p:f � p:i � J
:

	p: � J
:

J
:

� �tf

ti

  F
:

(t) dt

J
:

p:f � p:i � 	p:.

�tf

ti

dp: � �tf

ti

 F
:
(t) dt.

1959-4 COLLISION AND IMPULSE

Figure 9-8 Force acts on a ball as the
ball and a bat collide.

F
:

(t)

x 

Bat Ball 

F (t) 

Figure 9-9 (a) The curve shows the magni-
tude of the time-varying force F(t) that acts
on the ball in the collision of Fig. 9-8. The
area under the curve is equal to the magni-
tude of the impulse on the ball in the col-
lision. (b) The height of the rectangle repre-
sents the average force Favg acting on the
ball over the time interval 	t.The area within
the rectangle is equal to the area under the
curve in (a) and thus is also equal to the
magnitude of the impulse in the collision.J

:

J
:

ti 

F 

J 
F(t) 

tf 
Δt 

Δt 

t 

ti 

F 

Favg 

tf 

t 

J 

(a) 

(b) 

The impulse in the collision
is equal to the area under
the curve.

The average force gives
the same area under the
curve.

Checkpoint 4
A paratrooper whose chute fails to open lands in snow; he is hurt slightly. Had he
landed on bare ground, the stopping time would have been 10 times shorter and the
collision lethal. Does the presence of the snow increase, decrease, or leave unchanged
the values of (a) the paratrooper’s change in momentum, (b) the impulse stopping the
paratrooper, and (c) the force stopping the paratrooper?

Series of Collisions
Now let’s consider the force on a body when it undergoes a series of identical, re-
peated collisions. For example, as a prank, we might adjust one of those machines
that fire tennis balls to fire them at a rapid rate directly at a wall. Each collision
would produce a force on the wall, but that is not the force we are seeking. We
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want the average force Favg on the wall during the bombardment—that is, the av-
erage force during a large number of collisions.

In Fig. 9-10, a steady stream of projectile bodies, with identical mass m and
linear momenta moves along an x axis and collides with a target body that ismv:,

196 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

Figure 9-10 A steady stream of projectiles,
with identical linear momenta, collides
with a target, which is fixed in place. The
average force Favg on the target is to the
right and has a magnitude that depends on
the rate at which the projectiles collide
with the target or, equivalently, the rate at
which mass collides with the target.

x Target 

v 

Projectiles 

fixed in place. Let n be the number of projectiles that collide in a time interval 	t.
Because the motion is along only the x axis, we can use the components of the
momenta along that axis. Thus, each projectile has initial momentum mv and
undergoes a change 	p in linear momentum because of the collision. The total
change in linear momentum for n projectiles during interval 	t is n 	p. The
resulting impulse on the target during 	t is along the x axis and has the same
magnitude of n 	p but is in the opposite direction. We can write this relation in
component form as

J � �n 	p, (9-36)

where the minus sign indicates that J and 	p have opposite directions.
Average Force. By rearranging Eq. 9-35 and substituting Eq. 9-36, we find

the average force Favg acting on the target during the collisions:

(9-37)

This equation gives us Favg in terms of n/	t, the rate at which the projectiles
collide with the target, and 	v, the change in the velocity of those projectiles.

Velocity Change. If the projectiles stop upon impact, then in Eq. 9-37 we can
substitute, for 	v,

	v � vf � vi � 0 � v � �v, (9-38)

where vi (� v) and vf (� 0) are the velocities before and after the collision,
respectively. If, instead, the projectiles bounce (rebound) directly backward from
the target with no change in speed, then vf � �v and we can substitute

	v � vf � vi � �v � v � �2v. (9-39)

In time interval 	t, an amount of mass 	m � nm collides with the target.
With this result, we can rewrite Eq. 9-37 as

(9-40)

This equation gives the average force Favg in terms of 	m/	t, the rate at which
mass collides with the target. Here again we can substitute for 	v from Eq. 9-38
or 9-39 depending on what the projectiles do.

F avg � �
	m
	t

 	v.

F avg �
J

	t
� �

n
	t

 	p � �
n
	t

 m 	v.

J
:

Checkpoint 5
The figure shows an overhead view of a ball bouncing from a vertical wall without any
change in its speed. Consider the change in the ball’s linear momentum. (a) Is 	px

positive, negative, or zero? (b) Is 	py positive, negative, or zero? (c) What is the direc-
tion of ?	p:

	p:

θ θ 

y 

x 
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1979-4 COLLISION AND IMPULSE

Impulse: The impulse is then

(Answer)

which means the impulse magnitude is

The angle of is given by

(Answer)

which a calculator evaluates as 75.4�. Recall that the physi-
cally correct result of an inverse tangent might be the
displayed answer plus 180�. We can tell which is correct here
by drawing the components of (Fig. 9-11c). We find that u
is actually 75.4� � 180� � 255.4�, which we can write as

u � �105�. (Answer)

(b) The collision lasts for 14 ms. What is the magnitude of
the average force on the driver during the collision?

KEY IDEA

From Eq. 9-35 (J � Favg 	t), the magnitude Favg of the aver-
age force is the ratio of the impulse magnitude J to the dura-
tion 	t of the collision.

Calculations: We have

. (Answer)

Using F � ma with m � 80 kg, you can show that the magni-
tude of the driver’s average acceleration during the collision
is about 3.22 � 103 m/s2 � 329g, which is fatal.

Surviving: Mechanical engineers attempt to reduce the
chances of a fatality by designing and building racetrack
walls with more “give,” so that a collision lasts longer. For
example, if the collision here lasted 10 times longer and the
other data remained the same, the magnitudes of the aver-
age force and average acceleration would be 10 times less
and probably survivable.

� 2.583 � 105 N � 2.6 � 105 N

F avg �
J

	t
�

3616 kg �m/s
0.014 s

J
:

u � tan�1 
Jy

Jx
,

J
:

J � 2J x
2 � J y

2 � 3616 kg �m/s � 3600 kg �m/s.

J
:

� (�910î � 3500 ĵ) kg �m/s,

Sample Problem 9.04 Two-dimensional impulse, race car–wall collision

Figure 9-11a is an overhead view of the path taken by a race
car driver as his car collides with the racetrack wall. Just
before the collision, he is traveling at speed vi � 70 m/s along
a straight line at 30� from the wall. Just after the collision, he is
traveling at speed vf � 50 m/s along a straight line at 10� from
the wall. His mass m is 80 kg.

(a) What is the impulse on the driver due to the collision?

KEY IDEAS

We can treat the driver as a particle-like body and thus apply
the physics of this module. However, we cannot calculate 
directly from Eq. 9-30 because we do not know anything about
the force on the driver during the collision. That is, we do
not have a function of or a plot for it and thus cannot
integrate to find . However, we can find from the change in
the driver’s linear momentum via Eq.9-32 .

Calculations: Figure 9-11b shows the driver’s momentum p:i

( J
:

� p:f � p:i)p:
J
:

J
:

F
:

(t)
F
:

(t)

J
:

J
:

Wall 

x 

y 

30° 
10° 

30° 

Path 

(a) 

x 

y 

10° 

(b) 

pi 

pf –105°
x

y

(c)

Jy

Jx

J

The impulse on the car 
is equal to the change 
in the momentum.

The collision 
changes the 
momentum.

Figure 9-11 (a) Overhead
view of the path taken by a
race car and its driver as the
car slams into the racetrack
wall. (b) The initial momen-
tum and final momentum

of the driver. (c) The
impulse on the driver
during the collision.

J
:

p:
f

p:i

before the collision (at angle 30� from the positive x direction)
and his momentum after the collision (at angle 10�). From
Eqs. 9-32 and 9-22 , we can write

(9-41)

We could evaluate the right side of this equation directly on
a vector-capable calculator because we know m is 80 kg,
is 50 m/s at �10�, and is 70 m/s at 30�. Instead, here we
evaluate Eq. 9-41 in component form.

x component: Along the x axis we have

Jx � m(vfx � vix)

� (80 kg)[(50 m/s) cos(�10�) � (70 m/s) cos 30�]

� �910 kg �m/s.

y component: Along the y axis,

Jy � m(vfy � viy)

� (80 kg)[(50 m/s) sin(�10�) � (70 m/s) sin 30�]

� �3495 kg �m/s � �3500 kg �m/s.

v:i

v:f

J
:

� p:f � p:i � mv:f � mvi
: � m(v:f � v:i).

mv:)( p: �
�p:f

Additional examples, video, and practice available at WileyPLUS
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Conservation of Linear Momentum
Suppose that the net external force (and thus the net impulse ) acting on a
system of particles is zero (the system is isolated) and that no particles leave or
enter the system (the system is closed). Putting in Eq. 9-27 then yields

, which means that

(closed, isolated system). (9-42)

In words,

P
:

� constant

dP
:

/dt � 0
F
:

net � 0

J
:

F
:

net
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9-5 CONSERVATION OF LINEAR MOMENTUM

After reading this module, you should be able to . . .

9.26 For an isolated system of particles, apply the conservation
of linear momenta to relate the initial momenta of the particles
to their momenta at a later instant.

9.27 Identify that the conservation of linear momentum can be
done along an individual axis by using components along
that axis, provided that there is no net external force com-
ponent along that axis.

● If a system is closed and isolated so that no net external
force acts on it, then the linear momentum must be constant
even if there are internal changes:

(closed, isolated system). P
:

� constant

P
:

● This conservation of linear momentum can also be written
in terms of the system’s initial momentum and its momentum
at some later instant:

(closed, isolated system).P
:

i � P
:

f

Learning Objectives

Key Ideas

If no net external force acts on a system of particles, the total linear momentum 
of the system cannot change.

P
:

This result is called the law of conservation of linear momentum and is an extremely
powerful tool in solving problems. In the homework we usually write the law as

(closed, isolated system). (9-43)

In words, this equation says that, for a closed, isolated system,

.

Caution: Momentum should not be confused with energy. In the sample problems
of this module, momentum is conserved but energy is definitely not.

Equations 9-42 and 9-43 are vector equations and, as such, each is equivalent
to three equations corresponding to the conservation of linear momentum in
three mutually perpendicular directions as in, say, an xyz coordinate system.
Depending on the forces acting on a system, linear momentum might be
conserved in one or two directions but not in all directions. However,

�total linear momentum
at some initial time ti

� � �total linear momentum
at some later time tf �

P
:

i � P
:

f

If the component of the net external force on a closed system is zero along an axis, then
the component of the linear momentum of the system along that axis cannot change.

In a homework problem, how can you know if linear momentum can be con-
served along, say, an x axis? Check the force components along that axis. If the net of
any such components is zero, then the conservation applies.As an example, suppose
that you toss a grapefruit across a room. During its flight, the only external force act-
ing on the grapefruit (which we take as the system) is the gravitational force ,
which is directed vertically downward. Thus, the vertical component of the linear

F
:

g
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momentum of the grapefruit changes, but since no horizontal external force acts on
the grapefruit, the horizontal component of the linear momentum cannot change.

Note that we focus on the external forces acting on a closed system.
Although internal forces can change the linear momentum of portions of the sys-
tem, they cannot change the total linear momentum of the entire system. For ex-
ample, there are plenty of forces acting between the organs of your body, but they
do not propel you across the room (thankfully).

The sample problems in this module involve explosions that are either one-
dimensional (meaning that the motions before and after the explosion are along
a single axis) or two-dimensional (meaning that they are in a plane containing
two axes). In the following modules we consider collisions.

1999-5 CONSERVATION OF LINEAR MOMENTUM

We can relate the  vMS to the known velocities with

.

In symbols, this gives us
vHS � vrel � vMS (9-47)

or vMS � vHS � vrel.

Substituting this expression for vMS into Eq. 9-46, and then
substituting Eqs. 9-45 and 9-46 into Eq. 9-44, we find

Mvi � 0.20M(vHS � vrel) � 0.80MvHS,
which gives us

vHS � vi � 0.20vrel,
or vHS � 2100 km/h � (0.20)(500 km/h)

� 2200 km/h. (Answer)

� velocity of
hauler relative

to Sun � � � velocity of
hauler relative

to module � � � velocity of
module relative

to Sun �

Sample Problem 9.05 One-dimensional explosion, relative velocity, space hauler

One-dimensional explosion: Figure 9-12a shows a space hauler
and cargo module, of total mass M, traveling along an x axis in
deep space. They have an initial velocity of magnitude 2100
km/h relative to the Sun. With a small explosion, the hauler
ejects the cargo module, of mass 0.20M (Fig. 9-12b).The hauler
then travels 500 km/h faster than the module along the x axis;
that is, the relative speed vrel between the hauler and the mod-
ule is 500 km/h.What then is the velocity of the hauler rela-
tive to the Sun?

KEY IDEA

Because the hauler–module system is closed and isolated,
its total linear momentum is conserved; that is,

, (9-44)

where the subscripts i and f refer to values before and after
the ejection, respectively. (We need to be careful here:
Although the momentum of the system does not change, the
momenta of the hauler and module certainly do.)

Calculations: Because the motion is along a single axis,we can
write momenta and velocities in terms of their x components,
using a sign to indicate direction. Before the ejection, we have

Pi � Mvi. (9-45)

Let vMS be the velocity of the ejected module relative to the
Sun.The total linear momentum of the system after the ejec-
tion is then

Pf � (0.20M)vMS � (0.80M)vHS, (9-46)

where the first term on the right is the linear momentum of
the module and the second term is that of the hauler.

P
:

i � P
:

f

v:HS

v:i

Figure 9-12 (a) A space hauler, with a cargo module, moving at initial
velocity (b) The hauler has ejected the cargo module. Now the
velocities relative to the Sun are for the module and for the
hauler.

v:HSv:MS

v:i.

(a) (b) 

Cargo module 

Hauler 
0.20M 

vMS vHS vi 

0.80M 

x x 

The explosive separation can change the momentum
of the parts but not the momentum of the system.

Checkpoint 6
An initially stationary device lying on a frictionless floor explodes into two pieces, which
then slide across the floor, one of them in the positive x direction. (a) What is the sum of
the momenta of the two pieces after the explosion? (b) Can the second piece move at an
angle to the x axis? (c) What is the direction of the momentum of the second piece?

Additional examples, video, and practice available at WileyPLUS
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200 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

Calculations: Linear momentum is also conserved along
the x axis because there is no net external force acting on
the coconut and pieces along that axis.Thus we have

Pix � Pfx, (9-49)

where Pix � 0 because the coconut is initially at rest. To
get Pfx, we find the x components of the final momenta,
using the fact that piece A must have a mass of 0.50M
(� M � 0.20M � 0.30M):

pfA,x � �0.50MvfA,

pfB,x � 0.20MvfB,x � 0.20MvfB cos 50�,

pfC,x � 0.30MvfC,x � 0.30MvfC cos 80�.

Equation 9-49 for the conservation of momentum along the
x axis can now be written as

Pix � Pfx � pfA,x � pfB,x � pfC,x.

Then, with vfC � 5.0 m/s and vfB � 9.64 m/s, we have

0 � �0.50MvfA � 0.20M(9.64 m/s) cos 50�

� 0.30M(5.0 m/s) cos 80�,

from which we find

vfA � 3.0 m/s. (Answer)

Sample Problem 9.06 Two-dimensional explosion, momentum, coconut

Two-dimensional explosion: A firecracker placed inside a
coconut of mass M, initially at rest on a frictionless floor,
blows the coconut into three pieces that slide across the floor.
An overhead view is shown in Fig. 9-13a. Piece C, with mass
0.30M, has final speed vfC � 5.0 m/s.

(a) What is the speed of piece B, with mass 0.20M?

KEY IDEA

First we need to see whether linear momentum is con-
served. We note that (1) the coconut and its pieces form a
closed system, (2) the explosion forces are internal to that
system, and (3) no net external force acts on the system.
Therefore, the linear momentum of the system is conserved.
(We need to be careful here: Although the momentum of
the system does not change, the momenta of the pieces cer-
tainly do.)

Calculations: To get started, we superimpose an xy coordinate
system as shown in Fig. 9-13b, with the negative direction of the
x axis coinciding with the direction of The x axis is at 80�v:fA.

Figure 9-13 Three pieces of an
exploded coconut move off in
three directions along a
frictionless floor. (a) An over-
head view of the event. (b) The
same with a two-dimensional
axis system imposed.

with the direction of and 50� with the direction of .
Linear momentum is conserved separately along each

axis. Let’s use the y axis and write

Piy � Pfy, (9-48)

where subscript i refers to the initial value (before the ex-
plosion), and subscript y refers to the y component of 
or .

The component Piy of the initial linear momentum is
zero, because the coconut is initially at rest. To get an ex-
pression for Pfy, we find the y component of the final linear
momentum of each piece, using the y-component version of
Eq. 9-22 ( py � mvy):

pfA,y � 0,

pfB,y � �0.20MvfB,y � �0.20MvfB sin 50�,

pfC,y � 0.30MvfC,y � 0.30MvfC sin 80�.

(Note that pfA,y � 0 because of our nice choice of axes.)
Equation 9-48 can now be written as

Piy � Pfy � pfA,y � pfB,y � pfC,y.

Then, with vfC � 5.0 m/s, we have

0 � 0 � 0.20MvfB sin 50� � (0.30M)(5.0 m/s) sin 80�,

from which we find

vfB � 9.64 m/s � 9.6 m/s. (Answer)

(b) What is the speed of piece A?

Pf
:

Pi
:

v:f Bv:f C

A 

B

C 

vfB

vfCvfA

100° 

130° 

(a) 

B

C

vfB

vfC
vfA

80°

(b)

x

y

50°

A

The explosive separation
can change the momentum
of the parts but not the
momentum of the system.

Additional examples, video, and practice available at WileyPLUS

halliday_c09_182-220v4.0.1.qxd  3/10/14  11:11 AM  Page 200

Uploaded By: Ayham NobaniSTUDENTS-HUB.com



Momentum and Kinetic Energy in Collisions
In Module 9-4, we considered the collision of two particle-like bodies but focused
on only one of the bodies at a time. For the next several modules we switch our
focus to the system itself, with the assumption that the system is closed and iso-
lated. In Module 9-5, we discussed a rule about such a system: The total linear
momentum of the system cannot change because there is no net external force
to change it. This is a very powerful rule because it can allow us to determine the
results of a collision without knowing the details of the collision (such as how
much damage is done).

We shall also be interested in the total kinetic energy of a system of two col-
liding bodies. If that total happens to be unchanged by the collision, then the
kinetic energy of the system is conserved (it is the same before and after the
collision). Such a collision is called an elastic collision. In everyday collisions of
common bodies, such as two cars or a ball and a bat, some energy is always trans-
ferred from kinetic energy to other forms of energy, such as thermal energy or
energy of sound. Thus, the kinetic energy of the system is not conserved. Such a
collision is called an inelastic collision.

However, in some situations, we can approximate a collision of common bod-
ies as elastic. Suppose that you drop a Superball onto a hard floor. If the collision
between the ball and floor (or Earth) were elastic, the ball would lose no kinetic
energy because of the collision and would rebound to its original height.
However, the actual rebound height is somewhat short, showing that at least
some kinetic energy is lost in the collision and thus that the collision is somewhat
inelastic. Still, we might choose to neglect that small loss of kinetic energy to ap-
proximate the collision as elastic.

The inelastic collision of two bodies always involves a loss in the kinetic
energy of the system. The greatest loss occurs if the bodies stick together, in
which case the collision is called a completely inelastic collision. The collision of a
baseball and a bat is inelastic. However, the collision of a wet putty ball and a bat
is completely inelastic because the putty sticks to the bat.

P
:

2019-6 MOMENTUM AND KINETIC ENERGY IN COLLISIONS

9-6 MOMENTUM AND KINETIC ENERGY IN COLLISIONS

After reading this module, you should be able to . . .

9.28 Distinguish between elastic collisions, inelastic collisions,
and completely inelastic collisions.

9.29 Identify a one-dimensional collision as one where the ob-
jects move along a single axis, both before and after the
collision.

9.30 Apply the conservation of momentum for an isolated
one-dimensional collision to relate the initial momenta of
the objects to their momenta after the collision.

9.31 Identify that in an isolated system, the momentum and
velocity of the center of mass are not changed even if the
objects collide.

● In an inelastic collision of two bodies, the kinetic energy of
the two-body system is not conserved. If the system is closed
and isolated, the total linear momentum of the system must
be conserved, which we can write in vector form as

,

where subscripts i and f refer to values just before and just
after the collision, respectively.

● If the motion of the bodies is along a single axis, the collision
is one-dimensional and we can write the equation in terms of

p:1i � p:2i � p:1f � p:2f

velocity components along that axis:

m1v1i � m2v2i � m1v1f � m2v2f .

● If the bodies stick together, the collision is a completely
inelastic collision and the bodies have the same final veloc-
ity V (because they are stuck together).

● The center of mass of a closed, isolated system of two col-
liding bodies is not affected by a collision. In particular, the ve-
locity of the center of mass cannot be changed by the
collision.

v:com

Learning Objectives

Key Ideas
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Inelastic Collisions in One Dimension
One-Dimensional Inelastic Collision
Figure 9-14 shows two bodies just before and just after they have a one-
dimensional collision. The velocities before the collision (subscript i) and after
the collision (subscript f ) are indicated.The two bodies form our system, which is
closed and isolated.We can write the law of conservation of linear momentum for
this two-body system as

,

which we can symbolize as

(conservation of linear momentum). (9-50)

Because the motion is one-dimensional, we can drop the overhead arrows for
vectors and use only components along the axis, indicating direction with a sign.
Thus, from p � mv, we can rewrite Eq. 9-50 as

m1v1i � m2v2i � m1v1f � m2v2f. (9-51)

If we know values for, say, the masses, the initial velocities, and one of the final ve-
locities, we can find the other final velocity with Eq. 9-51.

One-Dimensional Completely Inelastic Collision
Figure 9-15 shows two bodies before and after they have a completely inelastic
collision (meaning they stick together).The body with mass m2 happens to be ini-
tially at rest (v2i � 0). We can refer to that body as the target and to the incoming
body as the projectile. After the collision, the stuck-together bodies move with
velocity V. For this situation, we can rewrite Eq. 9-51 as

m1v1i � (m1 � m2)V (9-52)

or . (9-53)

If we know values for, say, the masses and the initial velocity v1i of the projectile,
we can find the final velocity V with Eq. 9-53. Note that V must be less than v1i be-
cause the mass ratio m1/(m1 � m2) must be less than unity.

Velocity of the Center of Mass
In a closed, isolated system, the velocity of the center of mass of the system
cannot be changed by a collision because, with the system isolated, there is no net
external force to change it. To get an expression for , let us return to the v:com

v:com

V �
m1

m1 � m2
 v1i

p:1i � p:2i � p:1f � p:2f 

�total momentum P
:

i

before the collision� � �total momentum P
:

f

after the collision �

202 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

Figure 9-14 Bodies 1 and 2 move along an
x axis, before and after they have an
inelastic collision.

m1 m2 

Before 

Body 1 Body 2 

x 

v1i v2i 

m1 m2 

After 
x 

v1f v2f 

Here is the generic setup
for an inelastic collision.

Figure 9-15 A completely inelastic collision between
two bodies. Before the collision, the body with mass
m2 is at rest and the body with mass m1 moves
directly toward it. After the collision, the stuck-
together bodies move with the same velocity .V

:

m1
Projectile 

m2
Target 

x 

x 

V 

v1i 

After 

Before 

m1 + m2

v2i = 0 

In a completely inelastic
collision, the bodies
stick together.
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two-body system and one-dimensional collision of Fig. 9-14. From Eq. 9-25
, we can relate to the total linear momentum of that two-body

system by writing

. (9-54)

The total linear momentum is conserved during the collision; so it is given by
either side of Eq. 9-50. Let us use the left side to write

. (9-55)

Substituting this expression for in Eq. 9-54 and solving for give us

. (9-56)

The right side of this equation is a constant, and has that same constant value
before and after the collision.

For example, Fig. 9-16 shows, in a series of freeze-frames, the motion of the
center of mass for the completely inelastic collision of Fig. 9-15. Body 2 is the tar-
get, and its initial linear momentum in Eq. 9-56 is Body 1 is
the projectile, and its initial linear momentum in Eq. 9-56 is Note
that as the series of freeze-frames progresses to and then beyond the collision,
the center of mass moves at a constant velocity to the right. After the
collision, the common final speed V of the bodies is equal to because then
the center of mass travels with the stuck-together bodies.

v:com

p:1i � m1v:1i.
p:2i � m2v:2i � 0.

v:com

v:com �
P
:

m1 � m2
�

p:1i � p:2i

m1 � m2

v:comP
:

P
:

� p:1i � p:2i

P
:

P
:

� M v:com � (m1 � m2)v:com

P
:

v:com(P
:

� M v:com)

2039-6 MOMENTUM AND KINETIC ENERGY IN COLLISIONS

x 

m1

v1i v2i = 0 
m2

m1 +  m2

V   = vcom 

Collision! 

vcom 

The com of the two
bodies is between
them and moves at a
constant velocity.

Here is the
incoming projectile.

The com moves at the
same velocity even after
the bodies stick together.

Here is the
stationary target.

Figure 9-16 Some freeze-frames of the two-body system
in Fig. 9-15, which undergoes a completely inelastic col-
lision. The system’s center of mass is shown in each
freeze-frame. The velocity of the center of mass is
unaffected by the collision. Because the bodies stick
together after the collision, their common velocity 
must be equal to .v:com

V
:

v:com

Checkpoint 7
Body 1 and body 2 are in a completely inelastic one-dimensional collision.What is
their final momentum if their initial momenta are, respectively, (a) 10 kg �m/s and 0;
(b) 10 kg �m/s and 4 kg �m/s; (c) 10 kg �m/s and �4 kg �m/s?
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m 

h 

M 

v 

There are two events here.
The bullet collides with the
block. Then the bullet–block
system swings upward by
height h.

Figure 9-17 A ballistic
pendulum, used to
measure the speeds
of bullets.

Sample Problem 9.07 Conservation of momentum, ballistic pendulum

Here is an example of a common technique in physics. We
have a demonstration that cannot be worked out as a whole
(we don’t have a workable equation for it). So, we break it
up into steps that can be worked separately (we have equa-
tions for them).

The ballistic pendulum was used to measure the speeds of
bullets before electronic timing devices were developed. The
version shown in Fig. 9-17 consists of a large block of wood of
mass M � 5.4 kg, hanging from two long cords. A bullet of
mass m � 9.5 g is fired into the block, coming quickly to rest.
The block � bullet then swing upward, their center of mass
rising a vertical distance h � 6.3 cm before the pendulum
comes momentarily to rest at the end of its arc. What is the
speed of the bullet just prior to the collision?

KEY IDEAS

We can see that the bullet’s speed v must determine the rise
height h. However, we cannot use the conservation of mechan-
ical energy to relate these two quantities because surely energy
is transferred from mechanical energy to other forms (such as
thermal energy and energy to break apart the wood) as the
bullet penetrates the block. Nevertheless, we can split this com-
plicated motion into two steps that we can separately analyze:
(1) the bullet–block collision and (2) the bullet–block rise,
during which mechanical energy is conserved.

Reasoning step 1: Because the collision within the
bullet – block system is so brief, we can make two impor-
tant assumptions: (1) During the collision, the gravita-
tional force on the block and the force on the block from
the cords are still balanced. Thus, during the collision, the
net external impulse on the bullet–block system is zero.
Therefore, the system is isolated and its total linear momen-
tum is conserved:

(9-57)

(2) The collision is one-dimensional in the sense that the di-
rection of the bullet and block just after the collision is in the
bullet’s original direction of motion.

Because the collision is one-dimensional, the block is ini-
tially at rest,and the bullet sticks in the block,we use Eq.9-53 to
express the conservation of linear momentum. Replacing the
symbols there with the corresponding symbols here,we have

(9-58)

Reasoning step 2: As the bullet and block now swing up to-
gether, the mechanical energy of the bullet–block–Earth

V �
m

m � M
 v.

� total momentum
before the collision� � � total momentum

after the collision�.

system is conserved:

(9-59)

(This mechanical energy is not changed by the force of the
cords on the block, because that force is always directed
perpendicular to the block’s direction of travel.) Let’s take the
block’s initial level as our reference level of zero gravitational
potential energy. Then conservation of mechanical energy
means that the system’s kinetic energy at the start of the swing
must equal its gravitational potential energy at the highest
point of the swing. Because the speed of the bullet and block
at the start of the swing is the speed V immediately after the
collision, we may write this conservation as

(9-60)

Combining steps: Substituting for V from Eq. 9-58 leads to

(9-61)

(Answer)

The ballistic pendulum is a kind of “transformer,” exchang-
ing the high speed of a light object (the bullet) for the low—
and thus more easily measurable—speed of a massive ob-
ject (the block).

 � 630 m/s.

 � � 0.0095 kg � 5.4 kg
0.0095 kg � 2(2)(9.8 m/s2)(0.063 m)

 v �
m � M

m
 22gh

1
2(m � M)V 2 � (m � M)gh.

� mechanical energy
at bottom � � �mechanical energy

at top �.

Additional examples, video, and practice available at WileyPLUS
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Elastic Collisions in One Dimension
As we discussed in Module 9-6, everyday collisions are inelastic but we can
approximate some of them as being elastic; that is, we can approximate that the
total kinetic energy of the colliding bodies is conserved and is not transferred to
other forms of energy:

. (9-62)

This means:

�total kinetic energy
before the collision� � �total kinetic energy

after the collision �

2059-7 ELASTIC COLLISIONS IN ONE DIMENSION

9-7 ELASTIC COLLISIONS IN ONE DIMENSION

After reading this module, you should be able to . . .

9.32 For isolated elastic collisions in one dimension, apply the
conservation laws for both the total energy and the net mo-
mentum of the colliding bodies to relate the initial values to
the values after the collision.

9.33 For a projectile hitting a stationary target, identify the re-
sulting motion for the three general cases: equal masses,
target more massive than projectile, projectile more mas-
sive than target.

● An elastic collision is a special type of collision in which
the kinetic energy of a system of colliding bodies is con-
served. If the system is closed and isolated, its linear mo-
mentum is also conserved. For a one-dimensional collision in
which body 2 is a target and body 1 is an incoming projec-
tile, conservation of kinetic energy and linear momentum

yield the following expressions for the velocities immediately
after the collision:

and v2f �
2m1

m1 � m2
 v1i.

v1f �
m1 � m2

m1 � m2
 v1i

Learning Objectives

Key Idea

In an elastic collision, the kinetic energy of each colliding body may change, but 
the total kinetic energy of the system does not change.

For example, the collision of a cue ball with an object ball in a game of pool
can be approximated as being an elastic collision. If the collision is head-on
(the cue ball heads directly toward the object ball), the kinetic energy of the cue
ball can be transferred almost entirely to the object ball. (Still, the collision trans-
fers some of the energy to the sound you hear.)

Stationary Target
Figure 9-18 shows two bodies before and after they have a one-dimensional colli-
sion, like a head-on collision between pool balls. A projectile body of mass m1

and initial velocity v1i moves toward a target body of mass m2 that is initially at
rest (v2i � 0). Let’s assume that this two-body system is closed and isolated. Then
the net linear momentum of the system is conserved, and from Eq. 9-51 we can write
that conservation as

m1v1i � m1v1f � m2v2f (linear momentum). (9-63)

If the collision is also elastic, then the total kinetic energy is conserved and we
can write that conservation as

(kinetic energy). (9-64)

In each of these equations, the subscript i identifies the initial velocities and the
subscript f the final velocities of the bodies. If we know the masses of the bodies
and if we also know v1i, the initial velocity of body 1, the only unknown quantities
are v1f and v2f, the final velocities of the two bodies.With two equations at our dis-
posal, we should be able to find these two unknowns.

1
2m1v1i

2 � 1
2m1v1f

2 � 1
2m2v2f

2

Figure 9-18 Body 1 moves along an x axis
before having an elastic collision with
body 2, which is initially at rest. Both
bodies move along that axis after the
collision.

x 

Before v1i 

m1 
Projectile 

m2 
Target 

v2i = 0 

x 
After 

v1f 

m1 m2 

v2f  

Here is the generic setup
for an elastic collision with
a stationary target.
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To do so, we rewrite Eq. 9-63 as

m1(v1i � v1f) � m2v2f (9-65)
and Eq. 9-64 as*

(9-66)

After dividing Eq. 9-66 by Eq. 9-65 and doing some more algebra, we obtain

(9-67)

and (9-68)

Note that v2f is always positive (the initially stationary target body with mass m2

always moves forward). From Eq. 9-67 we see that v1f may be of either sign (the
projectile body with mass m1 moves forward if m1 
 m2 but rebounds if m1 � m2).

Let us look at a few special situations.

1. Equal masses If m1 � m2, Eqs. 9-67 and 9-68 reduce to

v1f � 0 and v2f � v1i,

which we might call a pool player’s result. It predicts that after a head-on colli-
sion of bodies with equal masses, body 1 (initially moving) stops dead in its
tracks and body 2 (initially at rest) takes off with the initial speed of body 1. In
head-on collisions, bodies of equal mass simply exchange velocities. This is
true even if body 2 is not initially at rest.

2. A massive target In Fig. 9-18, a massive target means that m2 m1. For
example, we might fire a golf ball at a stationary cannonball. Equations 9-67
and 9-68 then reduce to

(9-69)

This tells us that body 1 (the golf ball) simply bounces back along its incom-
ing path, its speed essentially unchanged. Initially stationary body 2 (the
cannonball) moves forward at a low speed, because the quantity in paren-
theses in Eq. 9-69 is much less than unity.All this is what we should expect.

3. A massive projectile This is the opposite case; that is, m1 m2. This time, we
fire a cannonball at a stationary golf ball. Equations 9-67 and 9-68 reduce to

v1f � v1i and v2f � 2v1i. (9-70)

Equation 9-70 tells us that body 1 (the cannonball) simply keeps on going,
scarcely slowed by the collision. Body 2 (the golf ball) charges ahead at twice
the speed of the cannonball. Why twice the speed? Recall the collision de-
scribed by Eq. 9-69, in which the velocity of the incident light body (the golf
ball) changed from �v to �v, a velocity change of 2v. The same change in ve-
locity (but now from zero to 2v) occurs in this example also.

Moving Target
Now that we have examined the elastic collision of a projectile and a stationary
target, let us examine the situation in which both bodies are moving before they
undergo an elastic collision.

For the situation of Fig. 9-19, the conservation of linear momentum is written as

m1v1i � m2v2i � m1v1f � m2v2f , (9-71)

�

v1f � �v1i and v2f � � 2m1

m2
�v1i.

�

v2f �
2m1

m1 � m2
 v1i.

v1f �
m1 � m2

m1 � m2
 v1i

m1(v1i � v1f)(v1i � v1f) � m2v2f
2 .

206 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

*In this step, we use the identity a2 � b2 � (a � b)(a � b). It reduces the amount of algebra needed to
solve the simultaneous equations Eqs. 9-65 and 9-66.
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and the conservation of kinetic energy is written as

(9-72)

To solve these simultaneous equations for v1f and v2f , we first rewrite Eq. 9-71 as

m1(v1i � v1f) � �m2(v2i � v2f), (9-73)
and Eq. 9-72 as

m1(v1i � v1f)(v1i � v1f) � �m2(v2i � v2f)(v2i � v2f). (9-74)

After dividing Eq. 9-74 by Eq. 9-73 and doing some more algebra, we obtain

(9-75)

and (9-76)

Note that the assignment of subscripts 1 and 2 to the bodies is arbitrary. If we ex-
change those subscripts in Fig. 9-19 and in Eqs. 9-75 and 9-76, we end up with the
same set of equations. Note also that if we set v2i � 0, body 2 becomes a stationary
target as in Fig. 9-18, and Eqs. 9-75 and 9-76 reduce to Eqs. 9-67 and 9-68, respectively.

v2f �
2m1

m1 � m2
 v1i �

m2 � m1

m1 � m2
 v2i.

v1f �
m1 � m2

m1 � m2
 v1i �

2m2

m1 � m2
 v2i

1
2m1v1i

2 � 1
2m2v2i

2 � 1
2m1v1f

2 � 1
2m2v2f

2 .

2079-7 ELASTIC COLLISIONS IN ONE DIMENSION

Figure 9-19 Two bodies headed for a one-
dimensional elastic collision.

x 
m1 

v1i 

m2

v2i 

Here is the generic setup
for an elastic collision with
a moving target.

Checkpoint 8
What is the final linear momentum of the target in Fig. 9-18 if the initial linear momen-
tum of the projectile is 6 kg �m/s and the final linear momentum of the projectile is (a)
2 kg �m/s and (b) �2 kg �m/s? (c) What is the final kinetic energy of the target if the
initial and final kinetic energies of the projectile are, respectively, 5 J and 2 J?

two reasons, we can apply Eqs. 9-67 and 9-68 to each of the
collisions.

Calculations: If we start with the first collision, we have too
many unknowns to make any progress: we do not know the
masses or the final velocities of the blocks. So, let’s start with
the second collision in which block 2 stops because of its col-
lision with block 3. Applying Eq. 9-67 to this collision, with
changes in notation, we have

where v2i is the velocity of block 2 just before the collision
and v2f is the velocity just afterward. Substituting v2f � 0
(block 2 stops) and then m3 � 6.0 kg gives us

(Answer)

With similar notation changes, we can rewrite Eq. 9-68 for
the second collision as

where v3f is the final velocity of block 3. Substituting m2 � m3

and the given v3f � 5.0 m/s, we find

v2i � v3f � 5.0 m/s.

v3f �
2m2

m2 � m3
 v2i,

m2 � m3 � 6.00 kg.

v2f �
m2 � m3

m2 � m3
 v2i,

Sample Problem 9.08 Chain reaction of elastic collisions

Figure 9-20 Block 1 collides with stationary block 2, which then
collides with stationary block 3.

In Fig. 9-20a, block 1 approaches a line of two stationary
blocks with a velocity of v1i � 10 m/s. It collides with block 2,
which then collides with block 3, which has mass m3 � 6.0 kg.
After the second collision, block 2 is again stationary and
block 3 has velocity v3f � 5.0 m/s (Fig. 9-20b).Assume that the
collisions are elastic. What are the masses of blocks 1 and 2?
What is the final velocity v1f of block 1?

KEY IDEAS

Because we assume that the collisions are elastic, we are to
conserve mechanical energy (thus energy losses to sound,
heating, and oscillations of the blocks are negligible).
Because no external horizontal force acts on the blocks, we
are to conserve linear momentum along the x axis. For these

(a)

(b)

v1i

v1f

v3f

m1 m2 m3

x 

x 
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Collisions in Two Dimensions
When two bodies collide, the impulse between them determines the directions in
which they then travel. In particular, when the collision is not head-on, the bodies
do not end up traveling along their initial axis. For such two-dimensional
collisions in a closed, isolated system, the total linear momentum must still be
conserved:

. (9-77)

If the collision is also elastic (a special case), then the total kinetic energy is also
conserved:

K1i � K2i � K1f � K2f . (9-78)

Equation 9-77 is often more useful for analyzing a two-dimensional collision
if we write it in terms of components on an xy coordinate system. For example,
Fig. 9-21 shows a glancing collision (it is not head-on) between a projectile body and a
target body initially at rest.The impulses between the bodies have sent the bodies off
at angles u1 and u2 to the x axis,along which the projectile initially traveled. In this situ-

P
:

1i � P
:

2i � P
:

1f � P
:

2f

208 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

which leads to

(Answer)

Finally, applying Eq. 9-67 to the first collision with this result
and the given v1i, we write

(Answer)�
1
3m2 � m2
1
3m2 � m2

(10 m/s) � �5.0 m/s.

v1f �
m1 � m2

m1 � m2
 v1i,

m1 � 1
3m2 � 1

3(6.0 kg) � 2.0 kg.

Next, let’s reconsider the first collision, but we have to
be careful with the notation for block 2: its velocity v2f just
after the first collision is the same as its velocity v2i (� 5.0 m/s)
just before the second collision. Applying Eq. 9-68 to the
first collision and using the given v1i � 10 m/s, we have

5.0 m/s �
2m1

m1 � m2
 (10 m/s),

v2f �
2m1

m1 � m2
 v1i,

9-8 COLLISIONS IN TWO DIMENSIONS

After reading this module, you should be able to . . .

9.34 For an isolated system in which a two-dimensional colli-
sion occurs, apply the conservation of momentum along
each axis of a coordinate system to relate the momentum
components along an axis before the collision to the momen-
tum components along the same axis after the collision.

9.35 For an isolated system in which a two-dimensional elastic
collision occurs, (a) apply the conservation of momentum
along each axis of a coordinate system to relate the momen-
tum components along an axis before the collision to the 
momentum components along the same axis after the colli-
sion and (b) apply the conservation of total kinetic energy to
relate the kinetic energies before and after the collision.

● If two bodies collide and their motion is not along a single axis
(the collision is not head-on), the collision is two-dimensional.
If the two-body system is closed and isolated, the law of con-
servation of momentum applies to the collision and can be
written as

.P
:

1i � P
:

2i � P
:

1f � P
:

2f

In component form, the law gives two equations that de-
scribe the collision (one equation for each of the two dimen-
sions). If the collision is also elastic (a special case), the
conservation of kinetic energy during the collision gives a
third equation:

K1i � K2i � K1f � K2f .

Learning Objectives

Key Idea

Figure 9-21 An elastic collision between two
bodies in which the collision is not head-
on. The body with mass m2 (the target) is
initially at rest.

x

y

θ2 

θ1 v1i

v2f

v1f

m1

m2

A glancing collision
that conserves
both momentum and
kinetic energy.

Additional examples, video, and practice available at WileyPLUS
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ation we would rewrite Eq.9-77 for components along the x axis as

m1v1i � m1v1f cos u1 � m2v2f cos u2, (9-79)
and along the y axis as

(9-80)

We can also write Eq. 9-78 (for the special case of an elastic collision) in terms of
speeds:

(kinetic energy). (9-81)

Equations 9-79 to 9-81 contain seven variables: two masses, m1 and m2; three
speeds, v1i, v1f , and v2f ; and two angles, u1 and u2. If we know any four of these
quantities, we can solve the three equations for the remaining three quantities.

1
2m1v1i

2 � 1
2m1v1f

2 � 1
2m2v2f

2

0 � �m1v1f  sin u1 � m2v2f  sin u2.

2099-9 SYSTEMS WITH VARYING MASS: A ROCKET

Checkpoint 9
In Fig. 9-21, suppose that the projectile has an initial momentum of 6 kg �m/s, a final
x component of momentum of 4 kg �m/s, and a final y component of momentum of
�3 kg �m/s. For the target, what then are (a) the final x component of momentum
and (b) the final y component of momentum?

9-9 SYSTEMS WITH VARYING MASS: A ROCKET

After reading this module, you should be able to . . .

9.36 Apply the first rocket equation to relate the rate at which
the rocket loses mass, the speed of the exhaust products rel-
ative to the rocket, the mass of the rocket, and the accelera-
tion of the rocket.

9.37 Apply the second rocket equation to relate the change in
the rocket’s speed to the relative speed of the exhaust
products and the initial and final mass of the rocket.

9.38 For a moving system undergoing a change in mass at a
given rate, relate that rate to the change in momentum.

● In the absence of external forces a rocket accelerates at an
instantaneous rate given by

Rvrel � Ma (first rocket equation),

in which M is the rocket’s instantaneous mass (including
unexpended fuel), R is the fuel consumption rate, and vrel is

the fuel’s exhaust speed relative to the rocket. The term Rvrel

is the thrust of the rocket engine.

● For a rocket with constant R and vrel, whose speed
changes from vi to vf when its mass changes from Mi to Mf ,

(second rocket equation).vf � vi � vrel ln 
Mi

Mf

Learning Objectives

Key Ideas

Systems with Varying Mass: A Rocket
So far, we have assumed that the total mass of the system remains constant.
Sometimes, as in a rocket, it does not. Most of the mass of a rocket on its launch-
ing pad is fuel, all of which will eventually be burned and ejected from the nozzle
of the rocket engine. We handle the variation of the mass of the rocket as the
rocket accelerates by applying Newton’s second law, not to the rocket alone but
to the rocket and its ejected combustion products taken together.The mass of this
system does not change as the rocket accelerates.

Finding the Acceleration
Assume that we are at rest relative to an inertial reference frame, watching a
rocket accelerate through deep space with no gravitational or atmospheric drag
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210 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

Figure 9-22 (a) An accelerating rocket of
mass M at time t, as seen from an inertial
reference frame. (b) The same but at time
t � dt. The exhaust products released dur-
ing interval dt are shown.

forces acting on it. For this one-dimensional motion, let M be the mass of the
rocket and v its velocity at an arbitrary time t (see Fig. 9-22a).

Figure 9-22b shows how things stand a time interval dt later. The rocket now
has velocity v � dv and mass M � dM, where the change in mass dM is a negative
quantity. The exhaust products released by the rocket during interval dt have
mass �dM and velocity U relative to our inertial reference frame.

Conserve Momentum. Our system consists of the rocket and the exhaust
products released during interval dt. The system is closed and isolated, so the lin-
ear momentum of the system must be conserved during dt; that is,

Pi � Pf , (9-82)

where the subscripts i and f indicate the values at the beginning and end of time
interval dt. We can rewrite Eq. 9-82 as

Mv � �dM U � (M � dM)(v � dv), (9-83)

where the first term on the right is the linear momentum of the exhaust products
released during interval dt and the second term is the linear momentum of the
rocket at the end of interval dt.

Use Relative Speed. We can simplify Eq.9-83 by using the relative speed vrel be-
tween the rocket and the exhaust products,which is related to the velocities relative to
the frame with

.

In symbols, this means

(v � dv) � vrel � U,

or U � v � dv � vrel. (9-84)

Substituting this result for U into Eq. 9-83 yields, with a little algebra,

�dM vrel � M dv. (9-85)

Dividing each side by dt gives us

(9-86)

We replace dM/dt (the rate at which the rocket loses mass) by �R, where R is the
(positive) mass rate of fuel consumption, and we recognize that dv/dt is the accel-
eration of the rocket.With these changes, Eq. 9-86 becomes

Rvrel � Ma (first rocket equation). (9-87)

Equation 9-87 holds for the values at any given instant.
Note the left side of Eq. 9-87 has the dimensions of force (kg/s �m/s �

kg �m/s2 � N) and depends only on design characteristics of the rocket engine—
namely, the rate R at which it consumes fuel mass and the speed vrel with which that
mass is ejected relative to the rocket.We call this term Rvrel the thrust of the rocket
engine and represent it with T. Newton’s second law emerges if we write Eq. 9-87 as
T � Ma, in which a is the acceleration of the rocket at the time that its mass is M.

Finding the Velocity
How will the velocity of a rocket change as it consumes its fuel? From Eq. 9-85
we have

dv � �vrel 
dM
M

.

�
dM
dt

vrel � M 
dv
dt

.

�velocity of rocket
relative to frame � � � velocity of rocket

relative to products� � �velocity of products
relative to frame �

x

vM

System boundary

(a)

x

v + dvM + dM

System boundary

(b)

–dM

U

The ejection of mass from
the rocket's rear increases
the rocket's speed.
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Integrating leads to

in which Mi is the initial mass of the rocket and Mf its final mass. Evaluating the
integrals then gives

(second rocket equation) (9-88)

for the increase in the speed of the rocket during the change in mass from Mi to
Mf . (The symbol “ln” in Eq. 9-88 means the natural logarithm.) We see here the
advantage of multistage rockets, in which Mf is reduced by discarding successive
stages when their fuel is depleted. An ideal rocket would reach its destination
with only its payload remaining.

vf � vi � vrel ln 
Mi

Mf

�vf

vi

 dv � �vrel �Mf

Mi

dM
M

,

211REVIEW & SUMMARY

rocket’s mass. However, M decreases and a increases as fuel
is consumed. Because we want the initial value of a here, we
must use the intial value Mi of the mass.

Calculation: We find

(Answer)

To be launched from Earth’s surface, a rocket must have
an initial acceleration greater than . That is, it
must be greater than the gravitational acceleration at the
surface. Put another way, the thrust T of the rocket engine
must exceed the initial gravitational force on the rocket,
which here has the magnitude Mig, which gives us 

(850 kg)(9.8 m/s2) � 8330 N.

Because the acceleration or thrust requirement is not met
(here T � 6400 N), our rocket could not be launched from
Earth’s surface by itself; it would require another, more
powerful, rocket.

g � 9.8 m/s2

a �
T
Mi

�
6440 N
850 kg

� 7.6 m/s2.

Sample Problem 9.09 Rocket engine, thrust, acceleration

In all previous examples in this chapter, the mass of a system
is constant (fixed as a certain number). Here is an example of
a system (a rocket) that is losing mass.A rocket whose initial
mass Mi is 850 kg consumes fuel at the rate The
speed vrel of the exhaust gases relative to the rocket engine is
2800 m/s.What thrust does the rocket engine provide?

KEY IDEA

Thrust T is equal to the product of the fuel consumption
rate R and the relative speed vrel at which exhaust gases are
expelled, as given by Eq. 9-87.

Calculation: Here we find

(Answer)

(b) What is the initial acceleration of the rocket?

KEY IDEA

We can relate the thrust T of a rocket to the magnitude a of
the resulting acceleration with , where M is theT � Ma

 � 6440 N � 6400 N.

 T � Rvrel � (2.3 kg/s)(2800 m/s)

R � 2.3 kg/s.

Center of Mass The center of mass of a system of n particles is
defined to be the point whose coordinates are given by

(9-5)

or (9-8)

where M is the total mass of the system.

r:com �
1
M �

n

i�1
mi r:i ,

xcom �
1
M �

n

i�1
 mi xi , ycom �

1
M �

n

i�1
 mi yi , zcom �

1
M �

n

i�1
 mi zi ,

Review & Summary

Newton’s Second Law for a System of Particles The
motion of the center of mass of any system of particles is governed
by Newton’s second law for a system of particles, which is

. (9-14)

Here is the net force of all the external forces acting on the sys-F
:

net

F
:

net � M a:com

tem, M is the total mass of the system, and is the acceleration
of the system’s center of mass.

a:com

Additional examples, video, and practice available at WileyPLUS
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212 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

must be conserved (it is a constant), which we can write in vector
form as

, (9-50)

where subscripts i and f refer to values just before and just after the
collision, respectively.

If the motion of the bodies is along a single axis, the collision is
one-dimensional and we can write Eq. 9-50 in terms of velocity
components along that axis:

m1v1i � m2v2i � m1v1f � m2v2f . (9-51)

If the bodies stick together, the collision is a completely
inelastic collision and the bodies have the same final velocity V
(because they are stuck together).

Motion of the Center of Mass The center of mass of a
closed, isolated system of two colliding bodies is not affected by a
collision. In particular, the velocity of the center of mass can-
not be changed by the collision.

Elastic Collisions in One Dimension An elastic collision
is a special type of collision in which the kinetic energy of a system
of colliding bodies is conserved. If the system is closed and
isolated, its linear momentum is also conserved. For a one-
dimensional collision in which body 2 is a target and body 1 is an
incoming projectile, conservation of kinetic energy and linear
momentum yield the following expressions for the velocities
immediately after the collision:

(9-67)

and (9-68)

Collisions in Two Dimensions If two bodies collide and
their motion is not along a single axis (the collision is not head-on),
the collision is two-dimensional. If the two-body system is closed
and isolated, the law of conservation of momentum applies to the
collision and can be written as

. (9-77)

In component form, the law gives two equations that describe the
collision (one equation for each of the two dimensions). If the col-
lision is also elastic (a special case), the conservation of kinetic en-
ergy during the collision gives a third equation:

K1i � K2i � K1f � K2f . (9-78)

Variable-Mass Systems In the absence of external forces a
rocket accelerates at an instantaneous rate given by

Rvrel � Ma (first rocket equation), (9-87)

in which M is the rocket’s instantaneous mass (including
unexpended fuel), R is the fuel consumption rate, and vrel is the fuel’s
exhaust speed relative to the rocket. The term Rvrel is the thrust of
the rocket engine. For a rocket with constant R and vrel, whose speed
changes from vi to vf when its mass changes from Mi to Mf,

(second rocket equation). (9-88)vf � vi � vrel ln 
Mi

Mf

P
:

1i � P
:

2i � P
:

1f � P
:

2f

v2f �
2m1

m1 � m2
 v1i.

v1f �
m1 � m2

m1 � m2
 v1i

v:com

p:1i � p:2i � p:1f � p:2f

tum, and is the impulse due to the force exerted on the body
by the other body in the collision:

(9-30)

If Favg is the average magnitude of during the collision and 	t
is the duration of the collision, then for one-dimensional motion

J � Favg 	t. (9-35)

When a steady stream of bodies, each with mass m and speed v, col-
lides with a body whose position is fixed, the average force on the
fixed body is

(9-37)

where n/	t is the rate at which the bodies collide with the fixed
body, and 	v is the change in velocity of each colliding body. This
average force can also be written as

(9-40)

where 	m/	t is the rate at which mass collides with the fixed body. In
Eqs. 9-37 and 9-40, 	v � �v if the bodies stop upon impact and 	v �
�2v if they bounce directly backward with no change in their speed.

Conservation of Linear Momentum If a system is isolated
so that no net external force acts on it, the linear momentum of
the system remains constant:

(closed, isolated system). (9-42)

This can also be written as

(closed, isolated system), (9-43)

where the subscripts refer to the values of at some initial time and
at a later time. Equations 9-42 and 9-43 are equivalent statements of
the law of conservation of linear momentum.

Inelastic Collision in One Dimension In an inelastic
collision of two bodies, the kinetic energy of the two-body
system is not conserved (it is not a constant). If the system is
closed and isolated, the total linear momentum of the system

P
:

P
:

i � P
:

f

 P
:

� constant

P
:

Favg � �
	m
	t

 	v,

Favg � �
n
	t

 	p � �
n
	t

 m 	v,

F
:

(t)

J
:

� �tf

ti

 F
:

(t) dt.

F
:

(t)J
:

Linear Momentum and Newton’s Second Law For a sin-
gle particle, we define a quantity called its linear momentum as

, (9-22)

and can write Newton’s second law in terms of this momentum:

(9-23)

For a system of particles these relations become

and (9-25, 9-27)

Collision and Impulse Applying Newton’s second law in
momentum form to a particle-like body involved in a collision
leads to the impulse– linear momentum theorem:

, (9-31, 9-32)

where is the change in the body’s linear momen-p:f � p:i � 	p:

p:f � p:i � 	p: � J
:

F
:

net �
dP

:

dt
.P

:
� Mv:com

F
:

net �
d p:

dt
.

p: � mv:
p:
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6 Figure 9-28 shows a cubical box
that has been constructed from uni-
form metal plate of negligible thick-
ness. The box is open at the top and
has edge length L � 50 cm. Find (a)
the x coordinate, (b) the y coordinate,
and (c) the z coordinate of the center
of mass of the box.

7 In the ammonia (NH3) molecule
of Fig. 9-29, three hydrogen (H) atoms
form an equilateral triangle, with the
center of the triangle at distance d �
9.40 � 10�11 m from each hydrogen
atom. The nitrogen (N) atom is at the
apex of a pyramid, with the three hy-
drogen atoms forming the base. The
nitrogen-to-hydrogen atomic mass ra-
tio is 13.9, and the nitrogen-to-
hydrogen distance is L � 10.14 �
10�11 m. What are the (a) x and (b) y
coordinates of the molecule’s center
of mass?

8 A uniform soda can of mass 
0.140 kg is 12.0 cm tall and filled with
0.354 kg of soda (Fig. 9-30). Then
small holes are drilled in the top and
bottom (with negligible loss of metal)
to drain the soda. What is the height h
of the com of the can and contents (a)
initially and (b) after the can loses all
the soda? (c) What happens to h as the
soda drains out? (d) If x is the height
of the remaining soda at any given in-
stant, find x when the com reaches its
lowest point.

9 In the arrangement shown in Fig. 9-31, mA � 2.0 kg and 
mB � 1.0 kg. The pulley is massless; the string is massless and long.
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Problems

1 Three particles of mass 
1.0 kg, 2.0 kg, and 3.0 kg are
placed at the vertices A, B,
and C, respectively, of an equi-
lateral triangle ABC of edge 
1.0 m (Fig 9-23). Find the dis-
tance of their center of mass
from A.

2 Figure 9-24 shows a
three-particle system, with
masses m1 � 2.0 kg, m2 � 4.0
kg, and m3 � 8.0 kg. The
scales on the axes are set by
xs � 2.0 m and ys � 2.0 m.
What are (a) the x coordinate
and (b) the y coordinate of
the system’s center of mass?
(c) If m3 is gradually in-
creased, does the center of
mass of the system shift
toward or away from that
particle, or does it remain sta-
tionary?

3 Figure 9-25 shows a  slab
with dimensions d1 � 11.0
cm, d2 � 2.80 cm, and d3 � 13.0 cm. Half the slab consists of alu-
minum (density � 2.70 g/cm3) and half consists of iron (density �
7.85 g/cm3). What are (a) the x coordinate, (b) the y coordinate, and
(c) the z coordinate of the slab’s center of mass?

Aluminum 

Iron Midpoint 

2d1 

d2 

d1 

d1 

d 3 

y 

z 

x 

4 In Fig. 9-26, three uniform thin rods,
each of length L � 24 cm, form an in-
verted U. The vertical rods each have a
mass of 14 g; the horizontal rod has a
mass of 42 g. What are (a) the x coordi-
nate and (b) the y coordinate of the sys-
tem’s center of mass?

Figure 9-25 Problem 3.

y (m)

x (m)

ys

0 xs

m1

m3

m2

Figure 9-24 Problem 2.
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Figure 9-26 Problem 4.
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Figure 9-27 Problem 5.

5 What are (a) the x coordinate and (b) the y coordinate of 
the center of mass for the uniform plate shown in Fig. 9-27 if
L 5.0 cm?�

N 

L 

H 

H 

H 

d 

x 

y 

Figure 9-29 Problem 7.

x 

Figure 9-30 Problem 8.

L 
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x 

z 

Figure 9-28 Problem 6.

Figure 9-23 Problem 1.
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16 Ricardo, of mass 80 kg, and Carmelita, who is lighter, are en-
joying Lake Merced at dusk in a 30 kg canoe. When the canoe is at
rest in the placid water, they ex-
change seats, which are 3.0 m apart
and symmetrically located with re-
spect to the canoe’s center. If the
canoe moves 45 cm horizontally rel-
ative to a pier post, what is
Carmelita’s mass?

17 In Fig. 9-35a, a 4.5 kg dog stands
on an 18 kg flatboat at distance D �
6.1 m from the shore. It walks 2.4 m
along the boat toward shore and then
stops. Assuming no friction between
the boat and the water, find how far
the dog is then from the shore. (Hint:
See Fig.9-35b.)

18 A 0.70 kg ball moving hori-
zontally at 6.0 m/s strikes a ver-
tical wall and rebounds with
speed 3.5 m/s. What is the mag-
nitude of the change in its linear
momentum?

19 A 100 kg motorbike moves
along AB at 10.0 km/h, and after
some time, the motorbike turns
to travel along BC at the same
speed as shown in Fig. 9-36. Find
(a) the change in its kinetic en-
ergy and the (b) magnitude and (c)
direction (relative to �x) of the change in its momentum.

20 At time t � 0, a ball is struck at
ground level and sent over level
ground. The momentum p versus t
during the flight is given by Fig. 9-37
(with and 

). At what initial angle is
the ball launched? (Hint: Find a so-
lution that does not require you to
read the time corresponding to the
low point of the plot.)

4.0 kg �m/s
p1 �p0 � 6.0 kg �m/s

14 In Figure 9-33, two particles are
launched from the origin of the coor-
dinate system at time t � 0. Particle 1
of mass m1 � 5.00 g is shot directly
along the x axis on a frictionless floor,
with constant speed 10.0 m/s. Particle
2 of mass m2 � 3.00 g is shot with a
velocity of magnitude 20.0 m/s, at an upward angle such that it al-
ways stays directly above particle 1. (a) What is the maximum height
Hmax reached by the com of the two-particle system? In unit-vector
notation, what are the (b) velocity and (c) acceleration of the com
when the com reaches Hmax?

15 Figure 9-34 shows an arrangement with an air track, in which
a cart is connected by a cord to a hanging block. The cart has mass
m1 � 0.600 kg, and its center is initially at xy coordinates (�0.500
m, 0 m); the block has mass m2 � 0.400 kg, and its center is initially
at xy coordinates (0, �0.100 m). The mass of the cord and pulley
are negligible. The cart is released from rest, and both cart and
block move until the cart hits the pulley. The friction between the
cart and the air track and between the pulley and its axle is

The system is released at t � 0 s. Find (a) the
acceleration of the center of mass of the
blocks, (b) the displacement of the center of
mass at t � 2.0 s, and (c) the speed of the cen-
ter of mass when mA strikes the floor.

10 A 1000 kg automobile is at rest at a traffic
signal. At the instant the light turns green, the
automobile starts to move with a constant ac-
celeration of 3.0 m/s2. At the same instant a
2000 kg truck, traveling at a constant speed of
8.0 m/s, overtakes and passes the automobile.
(a) How far is the com of the automobile–
truck system from the traffic light at t �
5.0 s? (b) What is the speed of the com
then?

11 A big olive (m � 0.50 kg) lies at the origin of an xy
coordinate system, and a big Brazil nut (M � 1.5 kg) lies at the
point (1.0, 2.0) m. At t � 0, a force begins to
act on the olive, and a force begins to act on
the nut. In unit-vector notation, what is the displacement of the
center of mass of the olive–nut system at t � 4.0 s, with respect to
its position at t � 0?

12 Two skaters, one with mass 75 kg and the other with mass 40 kg,
stand on an ice rink holding a pole of length 10 m and negligible
mass. Starting from the ends of the pole, the skaters pull themselves
along the pole until they meet. How far does the 40 kg skater move?

13 A shell is shot with an initial velocity of 20 m/s, at an angle
of with the horizontal. At the top of the trajectory, the
shell explodes into two fragments of equal mass (Fig. 9-32). One
fragment, whose speed immediately after the explosion is zero,
falls vertically. How far from the gun does the other fragment land,
assuming that the terrain is level and that air drag is negligible?

�0 � 60�
v:0

F
:

n � (�3.0î � 2.0ĵ ) N
F
:

o � (2.0î � 3.0ĵ ) N

negligible. (a) In unit-vector notation, what is the acceleration of
the center of mass of the cart–block system? (b) What is the
velocity of the com as a function of time t? (c) Sketch the path
taken by the com. (d) If the path is curved, determine whether it
bulges upward to the right or downward to the left, and if it is
straight, find the angle between it and the x axis.
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Figure 9-33 Problem 14.
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Figure 9-32 Problem 13.

Figure 9-34 Problem 15.
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Figure 9-35 Problem 17.
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Figure 9-37 Problem 20.
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Figure 9-31 Problem 9.

Figure 9-36 Problem 19.
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21 A ball of mass 50 g moving with a
speed of 2.0 m/s strikes a wall at an an-
gle of incidence 45° and is reflected
from the wall at the same angle and
with the same speed. See the overhead
view in Fig. 9-38. Calculate (a) the mag-
nitude of the change 	 in the momen-
tum of the ball, (b) the change in the
magnitude of the momentum of the
ball, and (c) the change in the magni-
tude of the momentum of the wall.

22 Figure 9-39 gives an overhead
view of the path taken by a 0.150 kg
cue ball as it bounces from a rail of
a pool table. The ball’s initial speed
is 2.00 m/s, and the angle u1 is 30.0°.
The bounce reverses the y compo-
nent of the ball’s velocity but does
not alter the x component. What
are (a) angle u2 and (b) the change
in the ball’s linear momentum in
unit-vector notation? (The fact that
the ball rolls is irrelevant to the
problem.)

23 Until his seventies, Henri
LaMothe (Fig. 9-40) excited audi-
ences by belly-flopping from a height of 12 m into 30 cm of water.
Assuming that he stops just as he reaches the bottom of the water
and estimating his mass, find the magnitude of the impulse on him
from the water.

p:

p:

45°

2.0 m/s

2.0 m/s

45°

Wall

x

y

y 

x 

θ 2 θ 1 

Figure 9-39 Problem 22.

George Long/Getty Images, Inc.

Figure 9-40 Problem 23. Belly-flopping into 30 cm of water.

24 In February 1955, a paratrooper fell 370 m from an air-
plane without being able to open his chute but happened to
land in snow, suffering only minor injuries. Assume that his
speed at impact was 56 m/s (terminal speed), that his mass (in-
cluding gear) was 85 kg, and that the magnitude of the force on
him from the snow was at the survivable limit of 1.2 � 105 N.
What are (a) the minimum depth of snow that would have
stopped him safely and (b) the magnitude of the impulse on him
from the snow?

25 A 5.00 g bullet moving at 100 m/s strikes a log. Assume that
the bullet undergoes a uniform deceleration and stops after pene-
trating 6.00 cm. Find (a) the time taken by the bullet to stop, (b) the
impulse on the log, and (c) the magnitude of the average force ex-
perienced by the log.

26 In a common but dangerous prank, a chair is pulled away as
a person is moving downward to sit on it, causing the victim to
land hard on the floor. Suppose the victim falls by 0.50 m, the
mass that moves downward is 75 kg, and the collision on the floor
lasts 0.088 s. What are the magnitudes of the (a) impulse and (b)
average force acting on the victim from the floor during the
collision?

27 A 3.00 kg block slides on a frictionless horizontal surface,
first moving to the left at 50.0 m/s. It collides with a spring whose
other end is fixed to a wall, compresses the spring, and is brought
to rest momentarily. Then it continues to be accelerated toward
the right by the force of the compressed spring.The block acquires
a final speed of 40.0 m/s. It is in contact with the spring for 0.020 s.
Find (a) the magnitude and (b) the direction of the impulse of the
spring force on the block. (c) What is the magnitude of the spring’s
average force on the block?

28 In tae-kwon-do, a hand is slammed down onto a target at a
speed of 13 m/s and comes to a stop during the 5.5 ms collision.
Assume that during the impact the hand is independent of the
arm and has a mass of 0.70 kg. What are the magnitudes of 
the (a) impulse and (b) average force on the hand from the
target?

29 A ball of mass 1.00 kg is attached to a loose string fixed to a
ceiling. The ball is released from rest and falls 2.00 m, where the
string suddenly stops it. Find the impulse on it from the string.

30 Two average forces. A steady stream of 0.250 kg snowballs is
shot perpendicularly into a wall at a speed of 4.00 m/s. Each ball
sticks to the wall. Figure 9-41 gives the magnitude F of the force on
the wall as a function of time t for two of the snowball impacts.
Impacts occur with a repetition time interval 	tr � 50.0 ms, last a
duration time interval 	td � 10 ms, and produce isosceles triangles
on the graph, with each impact reaching a force maximum Fmax �
160 N. During each impact, what are the magnitudes of (a) the im-
pulse and (b) the average force on the wall? (c) During a time in-
terval of many impacts, what is the magnitude of the average force
on the wall?

Δtr 

Δtd Δtd 

F 

Fmax 

t 

Figure 9-41 Problem 30.

Figure 9-38 Problem 21.
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12.0 m/s and angle u1 � 35.0�. Just
after, it is traveling directly upward
with velocity of magnitude 
10.0 m/s. The duration of the colli-
sion is 2.00 ms. What are the (a)
magnitude and (b) direction (relative to the positive direction of
the x axis) of the impulse on the ball from the bat? What are the
(c) magnitude and (d) direction of the average force on the ball
from the bat?

34 Basilisk lizards can run across the top of a water surface (Fig.
9-44). With each step, a lizard first slaps its foot against the water
and then pushes it down into the water rapidly enough to form an
air cavity around the top of the foot. To avoid having to pull the
foot back up against water drag in order to complete the step, the
lizard withdraws the foot before water can flow into the air cavity.
If the lizard is not to sink, the average upward impulse on the
lizard during this full action of slap, downward push, and with-
drawal must match the downward impulse due to the gravitational

v:2
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force. Suppose the mass of a basilisk lizard is 90.0 g, the mass of
each foot is 3.00 g, the speed of a foot as it slaps the water is 1.50
m/s, and the time for a single step is 0.600 s. (a) What is the magni-
tude of the impulse on the lizard during the slap? (Assume this im-
pulse is directly upward.) (b) During the 0.600 s duration of a step,
what is the downward impulse on the lizard due to the gravita-
tional force? (c) Which action, the slap or the push, provides the
primary support for the lizard, or are they approximately equal in
their support?

35 Figure 9-45 shows an ap-
proximate plot of force magni-
tude F versus time t during the
collision of a 58 g Superball with
a wall. The initial velocity of the
ball is 34 m/s perpendicular to
the wall; the ball rebounds di-
rectly back with approximately
the same speed,also perpendicu-
lar to the wall. What is Fmax, the
maximum magnitude of the
force on the ball from the wall during the collision?

36 A 0.25 kg puck is initially stationary on an ice surface with
negligible friction. At time t � 0, a horizontal force begins to
move the puck. The force is given by � (12.0 � , with 
in newtons and t in seconds, and it acts until its magnitude is
zero. (a) What is the magnitude of the impulse on the puck from
the force between t � 0.750 s and t � 1.25 s? (b) What is the
change in momentum of the puck between t � 0 and the instant
at which F � 0?

37 A particle of unknown mass is acted upon by a force 
� (100e�2t ) N. If at t � 0.00 s the particle is at rest, for the time

interval t � 0.00 s to t � 2.00 s find (a) the impulse on the particle
and (b) the average force on the particle.

38 In the overhead view of Fig.
9-46, a 300 g ball with a speed v of
6.0 m/s strikes a wall at an angle u
of 30� and then rebounds with the
same speed and angle. It is in con-
tact with the wall for 10 ms. In unit-
vector notation, what are (a) the
impulse on the ball from the wall
and (b) the average force on the wall from the ball?

39 A man of mass m1 � 80 kg is standing on a platform of mass
m2 � 20 kg that lies on a frictionless horizontal surface. The man
starts moving on the platform with a velocity vr � 10 m/s relative to
the platform. Find the recoil speed of the platform.

40 A space vehicle is traveling at 4800 km/h relative to Earth when
the exhausted rocket motor (mass 4m) is disengaged and sent back-
ward with a speed of 82 km/h relative to the command module (mass
m). What is the speed of the command module relative to Earth just
after the separation?

41 Figure 9-47 shows a two-ended
“rocket” that is initially stationary
on a frictionless floor, with its center
at the origin of an x axis. The rocket
consists of a central block C (of
mass M � 6.00 kg) and blocks L and
R (each of mass m � 2.00 kg) on the
left and right sides. Small explosions can shoot either of the side

 îF
:

F
:

3.00t2)îF
:

Stephen Dalton/Photo Researchers, Inc.

Figure 9-44 Problem 34. Lizard running across water.

31 Jumping up before the elevator hits. After the cable snaps and
the safety system fails, an elevator cab free-falls from a height of 36
m. During the collision at the bottom of the elevator shaft, a 90 kg
passenger is stopped in 5.0 ms. (Assume that neither the passenger
nor the cab rebounds.) What are the magnitudes of the (a) impulse
and (b) average force on the passenger during the collision? If the
passenger were to jump upward with a speed of 7.0 m/s relative to the
cab floor just before the cab hits the bottom of the shaft, what are the
magnitudes of the (c) impulse and
(d) average force (assuming the
same stopping time)?

32 A 2.5 kg toy car can move
along an x axis; Fig. 9-42 gives Fx of
the force acting on the car, which
begins at rest at time t � 0. The
scale on the Fx axis is set by

In unit-vector nota-
tion, what is at (a) t 4.0 s and
(b) t 7.0 s, and (c) what is at
t 9.0 s?

33 Figure 9-43 shows a 0.300 kg
baseball just before and just after it
collides with a bat. Just before, the
ball has velocity of magnitudev:1

�
v:�

�p:
Fxs � 5.0 N.
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Figure 9-43 Problem 33.
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Figure 9-42 Problem 32.
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Figure 9-45 Problem 35.
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Figure 9-46 Problem 38.
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Figure 9-47 Problem 41.
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blocks away from block C and along the x axis. Here is the se-
quence: (1) At time t � 0, block L is shot to the left with a speed of
3.00 m/s relative to the velocity that the explosion gives the rest of
the rocket. (2) Next, at time t � 0.80 s, block R is shot to the right
with a speed of 3.00 m/s relative to the velocity that block C then
has. At t � 2.80 s, what are (a) the velocity of block C and (b) the
position of its center?

42 A 15.0 kg package is moving at a speed of 10.0 m/s vertically
upward along a y axis when it explodes into three fragments: a 2.00
kg fragment is shot upward with an initial speed of 20.0 m/s and a
3.00 kg fragment is shot in the positive direction of a horizontal x
axis with an initial speed of 5.00 m/s. Find (a) the speed of the third
fragment right after the explosion and (b) the total kinetic energy
provided by the explosion.

43 In the Olympiad of 708 B.C., some athletes competing in the
standing long jump used handheld weights called halteres to
lengthen their jumps (Fig. 9-48). The weights were swung up in
front just before liftoff and then swung down and thrown back-
ward during the flight. Suppose a modern 78 kg long jumper simi-
larly uses two 5.50 kg halteres, throwing them horizontally to the
rear at his maximum height such that their horizontal velocity is
zero relative to the ground. Let his liftoff velocity be

m/s with or without the halteres, and assume that
he lands at the liftoff level. What distance would the use of the
halteres add to his range?  

v:
 
� (9.5î � 4.0ĵ)

Réunion des Musées Nationaux/
Art Resource

Figure 9-48 Problem 43.

44 In Fig. 9-49, a stationary block explodes into two pieces L and R
that slide across a frictionless floor and then into regions with fric-
tion, where they stop. Piece L, with a mass of 2.0 kg, encounters a co-
efficient of kinetic friction mL � 0.35 and slides to a stop in distance
dL � 0.15 m. Piece R encounters a coefficient of kinetic friction mR �
0.50 and slides to a stop in distance dR � 0.30 m. What was the mass
of the block?

μ  = 0 μ L μ R 

dR dL 

Figure 9-49 Problem 44.

45 A vase of mass m falls onto a floor and breaks into three
pieces that then slide across the frictionless floor. One piece of
mass 0.25m moves at speed v along an x axis. The second piece of
the same mass and speed moves along the y axis. Find the speed of
the third piece.

46 A 4.0 kg mess kit sliding on a frictionless surface explodes
into two 2.0 kg parts: 3.0 m/s, due north, and 6.0 m/s, 30° north of
east.What is the original speed of the mess kit?

47 A particle of mass 2.0 m is projected at an angle of 45° with
the horizontal with a speed of 20 m/s.After 1.0 s, an explosion oc-
curs and the particle is broken into two equal pieces. One piece is
momentarily at rest before it falls. Find the maximum height
attained by the other piece.

48 Particle A and particle B are held together with a compressed
spring between them. When they are released, the spring pushes
them apart, and they then fly off in opposite directions, free of the
spring. The mass of A is 2.00 times the mass of B, and the energy
stored in the spring was 80 J. Assume that the spring has negligible
mass and that all its stored energy is transferred to the particles.
Once that transfer is complete, what are the kinetic energies of (a)
particle A and (b) particle B?

49 A bullet of mass 10 g strikes a ballistic pendulum of mass
2.0 kg. The center of mass of the pendulum rises a vertical distance
of 12 cm. Assuming that the bullet remains embedded in the pen-
dulum, calculate the bullet’s initial speed.

50 A 5.20 g bullet moving at 700 m/s strikes a 700 g wooden
block at rest on a frictionless surface. The bullet emerges, traveling
in the same direction with its speed reduced to 450 m/s. (a) What is
the resulting speed of the block? (b) What is the speed of the bul-
let–block center of mass?

51 In Fig. 9-50a, a 3.50 g bullet is fired horizontally at two blocks
at rest on a frictionless table. The bullet passes through block 1
(mass 1.20 kg) and embeds itself in block 2 (mass 1.80 kg). The
blocks end up with speeds v1 � 0.630 m/s and v2 � 1.40 m/s (Fig.
9-50b). Neglecting the material removed from block 1 by the bullet,
find the speed of the bullet as it (a) leaves and (b) enters block 1.

22

1 2
Frictionless 

(a) 

(b)

v1 v2

Figure 9-50 Problem 51.

52 In Fig. 9-51, a 10 g bullet mov-
ing directly upward at 1000 m/s
strikes and passes through the cen-
ter of mass of a 5.0 kg block initially
at rest. The bullet emerges from the
block moving directly upward at 300
m/s. To what maximum height does
the block then rise above its initial
position?

53 In Anchorage, collisions of a vehicle with a moose are so com-
mon that they are referred to with the abbreviation MVC. Suppose
a 1000 kg car slides into a stationary 500 kg moose on a very slip-
pery road, with the moose being thrown through the windshield 

Bullet 

Figure 9-51 Problem 52.
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v1 � 4.0 m/s, collides with block 2, and the two blocks stick to-
gether. When the blocks momentarily stop, by what distance is the
spring compressed?

59 In Fig. 9-55, block 1 (mass 2.0
kg) is moving rightward at 10 m/s
and block 2 (mass 5.0 kg) is moving
rightward at 3.0 m/s. The surface is
frictionless, and a spring with a
spring constant of 1120 N/m is fixed to block 2. When the blocks
collide, the compression of the spring is maximum at the instant
the blocks have the same velocity. Find the maximum compression.

60 In Fig. 9-56, block A (mass 1.6
kg) slides into block B (mass 2.4
kg), along a frictionless surface. The
directions of three velocities before
(i) and after ( f ) the collision are indi-
cated; the corresponding speeds are
vAi 5.5 m/s, vBi 2.5 m/s, and
vBf 4.9 m/s. What are the (a)
speed and (b) direction (left or
right) of velocity ? (c) Is the col-
lision elastic?

61 Two bodies of masses m = 0.30 kg and 2m are connected by a
long string of negligible mass.The string is looped over a pulley and,
with the string taut, the bodies are released at time t � 0 so that the
heavier one descends and the lighter one ascends. At time t � 4.0 s,
the lighter one undergoes a fully inelastic collision with a third body
of mass m. Because the first two bodies move in rigid fashion, the
collision is effectively between the third body and the system of the
first two bodies. (a) Just after the collision, what is the speed of 
the three bodies? (b) By how much was the kinetic energy of the de-
scending body decreased because of the collision?

62 Two titanium spheres approach each other head-on with
the same speed and collide elastically. After the collision, one of
the spheres, whose mass is 250 g, remains at rest. (a) What is the
mass of the other sphere? (b) What is the speed of the two-
sphere center of mass if the initial speed of each sphere is 
2.00 m/s?

63 Block 1 of mass m1 slides along a frictionless floor and into a
one-dimensional elastic collision with stationary block 2 of mass
m2 � 3m1. Prior to the collision, the center of mass of the two-
block system had a speed of 3.00 m/s. Afterward, what are the
speeds of (a) the center of mass and (b) block 2?

64 A steel ball of mass 0.600 kg is
fastened to a cord that is 70.0 cm long
and fixed at the far end.The ball is then
released when the cord is horizontal
(Fig. 9-57). At the bottom of its path,
the ball strikes a 2.80 kg steel block ini-
tially at rest on a frictionless surface.
The collision is elastic. Find (a) the
speed of the ball and (b) the speed of
the block, both just after the collision.

65 Particle 1 with mass m and velocity v and particle 2 with mass
2m and velocity �2v are moving toward each other along an x axis
when they undergo a one-dimensional elastic collision. After the
collision, what are the velocities of (a) particle 1 and (b) particle 2?
What is the velocity of the center of mass of the two-particle sys-
tem (c) before and (d) after the collision?

v:Af

�
��

1 2

Figure 9-55 Problem 59.

vAf  = ? vBf

vAi vBi 

Figure 9-56 Problem 60.

Figure 9-57 Problem 64.
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57 In Fig.9-53,a ball of mass m � 60
g is shot with speed vi 22 m/s into
the barrel of a spring gun of mass
M 240 g initially at rest on a fric-
tionless surface. The ball sticks in the
barrel at the point of maximum compression of the spring.Assume
that the increase in thermal energy due to friction between the ball
and the barrel is negligible. (a) What is the speed of the spring gun
after the ball stops in the barrel? (b) What fraction of the initial ki-
netic energy of the ball is stored in the spring?

58 In Fig.9-54,block 2 (mass 1.0 kg)
is at rest on a frictionless surface
and touching the end of an un-
stretched spring of spring constant
230 N/m. The other end of the
spring is fixed to a wall. Block 1 (mass 2.0 kg), traveling at speed 

�

�

(a common MVC result). (a) What percentage of the original ki-
netic energy is lost in the collision to other forms of energy? A sim-
ilar danger occurs in Saudi Arabia because of camel–vehicle colli-
sions (CVC). (b) What percentage of the original kinetic energy is
lost if the car hits a 300 kg camel? (c) Generally, does the percent-
age loss increase or decrease if the animal mass decreases?

54 A completely inelastic collision occurs between two balls of
wet putty that move directly toward each other along a vertical
axis. Just before the collision, one ball, of mass 3.0 kg, is moving up-
ward at 20 m/s and the other ball, of mass 2.0 kg, is moving down-
ward at 10 m/s. How high do the combined two balls of putty rise
above the collision point? (Neglect air drag.)

55 Block 1 of mass 3.0 kg is sliding across a floor with speed 
v1 � 2.0 m/s when it makes a head-on, one-dimensional, elastic
collision with initially stationary block 2 of mass 2.0 kg. The coef-
ficient of kinetic friction between the blocks and the floor is mk �
0.30. Find the speeds of (a) block 1 and (b) block 2 just after the
collision. Also find (c) their final separation after friction has
stopped them and (d) the energy lost to thermal energy because
of the friction.

56 In the “before” part of Fig. 9-52, car A (mass 1100 kg) is
stopped at a traffic light when it is rear-ended by car B (mass 1400
kg). Both cars then slide with locked wheels until the frictional
force from the slick road (with a low mk of 0.10) stops them, at dis-
tances dA � 8.2 m and dB � 6.1 m. What are the speeds of (a) car
A and (b) car B at the start of the sliding, just after the collision?
(c) Assuming that linear momentum is conserved during the colli-
sion, find the speed of car B just before the collision. (d) Explain
why this assumption may be invalid.

vi 
m

M 

Figure 9-53 Problem 57.

Figure 9-52 Problem 56.
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Figure 9-54 Problem 58.
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219PROBLEMS

66 Block 1, with mass m1 and speed 3.0 m/s, slides along an x axis
on a frictionless floor and then undergoes a one-dimensional elastic
collision with stationary block 2, with mass m2 � 0.40m1. The two
blocks then slide into a region where the coefficient of kinetic fric-
tion is 0.50; there they stop. How far into that region do (a) block 1
and (b) block 2 slide?

67 In Fig. 9-58, particle 1 of mass 
m1 � 0.30 kg slides rightward along
an x axis on a frictionless floor with a
speed of 2.0 m/s.When it reaches x
0, it undergoes a one-dimensional
elastic collision with stationary parti-
cle 2 of mass m2 0.40 kg. When particle 2 then reaches a wall at
xw 70 cm, it bounces from the wall with no loss of speed. At
what position on the x axis does particle 2 then collide with 
particle 1?

68 In Fig. 9-59, block 1 of mass m1 slides from rest along a fric-
tionless ramp from height h 3.00 m and then collides with sta-
tionary block 2, which has mass m2 � 2.00m1. After the collision,
block 2 slides into a region where the coefficient of kinetic friction
mk is 0.450 and comes to a stop in distance d within that region.
What is the value of distance d if the collision is (a) elastic and (b)
completely inelastic?

�

�
�

� x (cm)
0 xw 

1 2

Figure 9-58 Problem 67.

h 

1 

2 
Frictionless μ k 

Figure 9-59 Problem 68.

69 A small ball of mass m is
aligned above a larger ball of mass
M � 0.63 kg (with a slight separa-
tion, as with the baseball and bas-
ketball of Fig. 9-60a), and the two
are dropped simultaneously from a
height of h � 1.8 m. (Assume the
radius of each ball is negligible rel-
ative to h.) (a) If the larger ball re-
bounds elastically from the floor
and then the small ball rebounds
elastically from the larger ball,
what value of m results in the
larger ball stopping when it collides
with the small ball? (b) What
height does the small ball then
reach (Fig. 9-60b)?

70 In Fig. 9-61, puck 1 of mass m1 � 0.25 kg is sent sliding across
a frictionless lab bench, to undergo a one-dimensional elastic colli-
sion with stationary puck 2. Puck 2 then slides off the bench and

Basketball 

Baseball 

(a) Before (b) After 

Figure 9-60 Problem 69.

lands a distance d from the base of the bench. Puck 1 rebounds
from the collision and slides off the opposite edge of the bench,
landing a distance 2d from the base of the bench. What is the mass
of puck 2? (Hint: Be careful with signs.)

71 In Fig. 9-21, projectile particle 1 is an alpha particle and target
particle 2 is an oxygen nucleus. The alpha particle is scattered 
at angle u1 64.0� and the oxygen nucleus recoils with speed 
1.20 � 105 m/s and at angle u2 51.0�. In atomic mass units, the
mass of the alpha particle is 4.00 u and the mass of the oxygen 
nucleus is 16.0 u.What are the (a) final and (b) initial speeds of the
alpha particle?

72 In the two-dimensional collision in Fig. 9-21, the projectile
particle has mass m1 � m, initial speed v1i � 3v0, and final speed v1f

� v0. The initially stationary target particle has mass m1 � 2m25

�
�

1 2

2d d 

Figure 9-61 Problem 70.

and final speed v2f � v2.The projectile is scattered at an angle given
by tan u1 = 2.0. (a) Find angle u2. (b) Find v2 in terms of v0. (c) Is the
collision elastic?

73 After a completely inelastic collision, two objects of the same
mass and same initial speed move away together at half their initial
speed. Find the angle between the initial velocities of the objects.

74 A force acts on two particles of
masses m and 4.0m moving at the same
speed but at right angles to each other, as
shown in Fig. 9-62.The force acts on both
the particles for a time T. Consequently,
the particle of mass m moves with a ve-
locity 4v in its original direction. (a) Find
the new velocity v
 of the other particle.
(b) Also find the change in the kinetic
energy of the system.

75 In Fig. 9-63, a bob of mass 10m is suspended from an inexten-
sible string with negligible mass. When the bob is in equilibrium 
(at rest), two particles each of mass m strike it simultaneously with
the speeds indicated. The particles stick to the bob. Find (a) the
magnitude of the net impulse on the string due to the collision,
(b) the velocity of the system just after the collision, and (c) the
mechanical energy lost in the collision.
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10m

Figure 9-62 Problem 74.

Figure 9-63 Problem 75.

76 A 6090 kg space probe moving nose-first toward Jupiter at
120 m/s relative to the Sun fires its rocket engine, ejecting 70.0 kg
of exhaust at a speed of 253 m/s relative to the space probe.What is
the final velocity of the probe?

77 In Fig. 9-64, two long barges are moving in the same direction
in still water, one with a speed of 10 km/h and the other with a
speed of 20 km/h. While they are passing each other, coal is shov-
eled from the slower to the faster one at a rate of 1000 kg/min.
How much additional force must be provided by the driving
engines of (a) the faster barge and (b) the slower barge if neither is
to change speed? Assume that the shoveling is always perfectly
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220 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

sideways and that the frictional forces between the barges and the
water do not depend on the mass of the barges.

78 Consider a rocket that is in deep space and at rest relative to
an inertial reference frame. The rocket’s engine is to be fired for a
certain interval. What must be the rocket’s mass ratio (ratio of ini-
tial to final mass) over that interval if the rocket’s original speed
relative to the inertial frame is to be equal to (a) the exhaust speed
(speed of the exhaust products relative to the rocket) and (b) 2.0
times the exhaust speed?

79 A rocket that is set for a vertical launch has a mass of 50.0 kg
and contains 450 kg of fuel. The rocket can have a maximum 
exhaust velocity of 2.00 km/s. What should be the minimum rate of
fuel consumption (a) to just lift it off the launching pad and (b) to
give it an acceleration of 20.0 m/s2? (c) If the consumption rate is
set at 10.0 kg/s, what is the rocket speed at the moment when the
fuel is fully consumed?

Figure 9-64 Problem 77.
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