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STUDENT PROBLEM COMPANION
To Accompany

BASIC ENGINEERING CIRCUIT ANALYSIS, NINTH EDITION
By
J. David Irwin and R. Mark Nelms

PREFACE

This Student Problem Companion is designed to be used in conjunction with Basic
Engineering Circuit Analysis, 8e, authored by J. David Irwin and R. Mark Nelms and
published by John Wiley & Sons, Inc.. The material tracts directly the chapters in the
book and is organized in the following manner. For each chapter there is a set of
problems that are representative of the end-of-chapter problems in the book. Each of the
problem sets could be thought of as a mini-quiz on the particular chapter. The student is
encouraged to try to work the problems first without any aid. If they are unable to work
the problems for any reason, the solutions to each of the problem sets are also included.
An analysis of the solution will hopefully clarify any issues that are not well understood.
Thus this companion document is prepared as a helpful adjunct to the book.
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CHAPTER 1 PROBLEMS

1.1 Determine whether the element in Fig. 1.1 is absorbing or supplying power and how
much.

-2A

<

12V

Fig. 1.1

1.2 InFig. 1.2, element 2 absorbs 24W of power. Is element 1 absorbing or supplying power
and how much.

12V

6V

Fig. 1.2

1.3.  Given the network in Fig.1.3 find the value of the unknown voltage Vx.

L4V TV
2A
CA & 1 2

2A

+w 4A

+

12\/(_) gv | 3 Vy

Fig. 1.3
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CHAPTER 1 SOLUTIONS

1.1 One of the easiest ways to examine this problem is to compare it with the diagram that
illustrates the sign convention for power as shown below in Fig. S1.1(b).

2A i(t)
“«— .
12V v(t)
_l’_ -
Fig. S1.1(a) Fig. S1.1(b)

We know that if we simply arrange our variables in the problem to match those in the
diagram on the right, then p(t) = i(t) v(t) and the resultant sign will indicate if the element
is absorbing (+ sign) or supplying (- sign) power.

If we reverse the direction of the current, we must change the sign and if we reverse the
direction of the voltage we must change the sign also. Therefore, if we make the diagram
in Fig. S1.1(a) to look like that in Fig. S1.1(b), the resulting diagram is shown in Fig.
S1.1(c).

2A

(-12V)

Fig. S1.1(c)
Now the power is calculated as
P=(2) (-12) =-24W
And the negative sign indicates that the element is supplying power.
1.2 Recall that the diagram for the passive sign convention for power is shown in Fig. S1.2(a)

and if p = vi is positive the element is absorbing power and if p is negative, power is
being supplied by the element.
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Fig. S1.2(a)

If we now isolate the element 2 and examine it, since it is absorbing power, the current
must enter the positive terminal of this element. Then

P=VI
24 = 6(I)
1=4A

The current entering the positive terminal of element 2 is the same as that leaving the
positive terminal of element 1. If we now isolate our discussion on element 1, we find
that the voltage across the element is 6V and the current of 4A emanates from the
positive terminal. If we reverse the current, and change its sign, so that the isolated
element looks like the one in Fig. S1.2(a), then

P=(6) (-4) =-24W
And element 1 is supplying 24W of power.

1.3 By employing the sign convention for power, we can determine whether each element in
the diagram is absorbing or supplying power. Then we can apply the principle of the
conservation of energy which means that the power supplied must be equal to the power
absorbed.

If we now isolate each element and compare it to that shown in Fig. S1.3(a) for the sign
convention for power, we can determine if the elements are absorbing or supplying
power.

Fig. S1.3(a)

For the 12V source and the current through it to be arranged as shown in Fig. S1.3(a), the
current must be reversed and its sign changed. Therefore

Piov = (12) (-6) = -72W
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Treating the remaining elements in a similar manner yields

P, = (4) (6) = 24W
P, =(2) (10) = 20W
Py = (8) (4) =32W
PVX = (Vx) (2) = 2VX

Applying the principle of the conservation of energy, we obtain
72424 +20+32+2Vx=0

And
Vx = -2V
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CHAPTER 2 PROBLEMS

2.1 Determine the voltages V; and V; in the network in Fig. 2.1 using voltage division.

2kQ +
4kQ)
+

_l’_
12v C-D 3k0 V1
%AQ SV,
Fig. 2.1
2.2 Find the currents I; and I in the circuit in Fig. 2.2 using current division.
2kQ
I1
6kQ
3kQ 12kQ
9mA + IO
Fig. 2.2
2.3 Find the resistance of the network in Fig. 2.3 at the terminals A-B.
8kQ 10kQ 2kQ
A
12kQ 3kQ
4 12k
18kQ 6kQ
B
6kQ 3kQ
Fig. 2.3

2.4 Find the resistance of the network shown in Fig. 2.4 at the terminals A-B.

A
4kQ )
18kQ
6kQ = 1510
12kQ
Q) 12kQ
B
Fig. 2.4
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2.5  Find all the currents and voltages in the network in Fig. 2.5.
2kQ A 10kQ B I

4kQ

Fig. 2.5

2.6 Inthe network in Fig. 2.6, the current in the 4kQ resistor is 3mA. Find the input voltage
Vs.

3kQ
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CHAPTER 2 SOLUTIONS

2.1 We recall that if the circuit is of the form

v ()

Fig. S2.1(a)

R
Vo = : Vl
R, +R,

That is the voltage V, divides between the two resistors in direct proportion to their
resistances. With this in mind, we can draw the original network in the form

Then using voltage division

Fig. $2.1(b)

The series combination of the 4kQ2 and 2kQ resistors and their parallel combination with
the 3kQ resistor yields the network in Fig. S2.1(c).

Fig. S2.1(c)

Now voltage division can be sequentially applied. From Fig. S2.1(c).

V, = 2k 12
2k + 2k

=6V

Then from the network in Fig. S2.1(b)
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2.2 If we combine the 6k and 12k ohm resistors, the network is reduced to that shown in Fig.
S2.2(a).
I, 2kQ

3kQ 4kQ
9mA

Fig. S2.2(a)

The current emanating from the source will split between the two parallel paths, one of
which is the 3kQ resistor and the other is the series combination of the 2k and 4kQ
resistors. Applying current division

_2

3k
Il
k (31( +(2k + 4k)j
=3mA

Using KCL or current division we can also show that the current in the 3kQ resistor is
6mA. The original circuit in Fig. S2.2 (b) indicates that I; will now be split between the
two parallel paths defined by the 6k and 12k-Q resistors.

I1 =3mA
6mA 2kQ
3kQ 6kQ 12kQ
9mA I
0
Fig. S2.2(b)

Applying current division again

o) 0k
¢ ek + 12k

3( 6k
I,=—| —

k\ 18k

=1mA

Likewise the current in the 6kQ resistor can be found by KCL or current division to be
2mA. Note that KCL is satisfied at every node.
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2.3 To provide some reference points, the circuit is labeled as shown in Fig. S2.3(a).

8k A' 10k A" 2k
Ao O

4k
18k 12k

B 3
6k B' 3k B"

Fig. $2.3(a)

Starting at the opposite end of the network from the terminals A-B, we begin looking for
resistors that can be combined, e.g. resistors that are in series or parallel. Note that none
of the resistors in the middle of the network can be combined in anyway. However, at
the right-hand edge of the network, we see that the 6k and 12k ohm resistors are in
parallel and their combination is in series with the 2kQ) resistor. This combination of
6k|| 12k + 2k is in parallel with the 3kQ resistor reducing the network to that shown in

Fig. $2.3(b).
8k A 10k A"
A ®
2k = 3k|| (6k | 12k + 2k)
B L J L J
B' 3k B"
Fig. $2.3(b)

Repeating this process, we see that the 2kC2 resistor is in series with the 10kQ resistor
and that combination is in parallel with the12kQ resistor. This equivalent 6kQ resistor
(2k + 10k) || 12k is in series with the 3kQ) resistor and that combination is in parallel with
the 18kQ resistor that (6k + 3k)|| 18k = 6kQ and thus the network is reduced to that
shown in Fig. S2.3(c).

8k A’
Ao

4k
6k

BV
Fig. $2.3(c)
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At this point we see that the two 6kQ resistors are in series and their combination in
parallel with the 4kQ) resistor. This combination (6k + 6k)|| 4k = 3kQ which is in series
with 8kQ resistors yielding A total resistance Rap = 3k + 8k = 11kQ.

2.4 An examination of the network indicates that there are no series or parallel combinations
of resistors in this network. However, if we redraw the network in the form shown in Fig.
S2.4(a), we find that the networks have two deltas back to back.

A

Fig. S2.4(a)

If we apply the A—>Y transformation to either delta, the network can be reduced to a
circuit in which the various resistors are either in series or parallel. Employing the A—>Y

transformation to the upper delta, we find the new elements using the following equations
as illustrated in Fig. S2.4(b)

6k 18k

12k
Fig. S2.4(b)

_ (6k)(18k)
"6k +12k +18k
_ (6x)(12k)
> 6k +12k +18k

3: (12k)(18k)  _ 0
6k +12k +18k

The network is now reduced to that shown in Fig. S2.4(c).
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4k
A
3k
2k 6k
2k 12k
B
Fig. S2.4(c)

Now the total resistance, Rap is equal to the parallel combination of (2k + 12k) and (6k +
12k) in series with the remaining resistors i.e.

Rap = 4k + 3k + (14k|| 18k) + 2k
= 16.875kQ

If we had applied the A—Y transformation to the lower delta, we would obtain the
network in Fig. S2.4(d).

4k
A 6k 18k
4K
2K 4K
B
Fig. $2.4(d)

In this case, the total resistance Rap is

Rap = 4k + (6k + 4k) || (18k + 4k) + 4k +2k
= 16.875kQ

which is, of course, the same as our earlier result.

2.5 Our approach to this problem will be to first find the total resistance seen by the source,
use it to find I; and then apply Ohm’s law, KCL, KVL, current division and voltage
division to determine the remaining unknown quantities. Starting at the opposite end of
the network from the source, the 2k and 4k ohm resistors are in series and that
combination is in parallel with the 3kQ resistor yielding the network in Fig. S2.5(a).
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Fig. S2.5(a)

Proceeding, the 2k and 10k ohm resistors are in series and their combination is in parallel
with both the 4k and 6k ohm resistors. The combination (10k + 2k)|| 6k || 4k = 2kQ.
Therefore, this further reduction of the network is as shown in Fig. S2.5(b).

Fig. S2.5(b)

Now I; and V| can be easily obtained.

= 8 12mA
2k + 2k
And by Ohm’s law
V] = 2kI]
=24V
or using voltage division
V, =48 2k
2k + 2k
=24V

once V| is known, I, and I3 can be obtained using Ohm’s law

VvV, 24

, =——=—=6mA
4k 4k

, :L:ﬁ:4mA
6k 6k

I4 can be obtained using KCL at node A. As shown on the circuit diagram.

L=L+L+14

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid



15

The voltage V, is then

V2:V1 - 10kI4
2
=24 —(10k)| —
( >[kj

=4V

or using voltage division

v ov |2k
: "l 10k + 2k

A

=4V

Knowing V3, Is can be derived using Ohm’s law

and also

zzmA
3

current division can also be used to find Is and I¢.

2k + 4k
15=I4 A1 A1 A1
2k + 4k + 3k
:imA
3

and
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I—I L
¢ 3k + 2k + 4k

=£mA
3

Finally V3 can be obtained using KVL or voltage division

V, =V, - 2K,
=4_zk(£j
3k
_8y
3

and

The network is labeled with all currents and voltages in Fig. S2.6.

2.6
+V,- LA +V,- LB

Given the 3mA current in the 4kQ2 resistor, the voltage
3
V = (Ej (4k)=12V

Now knowing Vi, I; and I, can be obtained using Ohm’s law as

V, —12—2mA

Lo 12 0a
ok +3k 12K

Applying KCL at node B
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L[ =—+1I +1,

= 6mA
Then using Ohm’s law

Vz = I3 (lk)
=6V

KVL can then be used to obtain V3 i.e.
V3=V, +V,
=6+12
=18V

Then
Y2k
=9mA
And

I =1, +1,

=15mA
using Ohm’s law

Vi = (2k) s
=30V

and finally

Vs=V4+V;
=48V

STUDENTS-HUB.com
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CHAPTER 3 PROBLEMS

3.1  Use nodal analysis to find V in the circuit in Fig. 3.1.
QZmA

Fig. 3.1

3.2 Use loop analysis to solve problem 3.1

33 Find Vj in the network in Fig. 3.3 using nodal analysis.
12V

34
1kQ 1kQ
q p ——————O
+
1L ]
Fig. 3.4
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CHAPTER 3 SOLUTIONS

3.1 Note that the network has 4 nodes. If we select the node on the bottom to be the
reference node and label the 3 remaining non-reference nodes, we obtain the network in

Fig. S3.1(a).
2
N
N
' Va Vo
- 1k 1k
12(7 Ik 2k
p——— —O
Fig. S3.1(a)

Remember the voltages Vi, V, and V are measured with respect to the reference node.

Since the 12V source is connected between node V; and the reference, V| = 12V
regardless of the voltages or currents in the remainder of the circuit. Therefore, one of
the 3 linearly independent equations required to solve the network (N — 1, where N is the
number of nodes) is

Vi=12

The 2 remaining linearly independent equations are obtained by applying KCL at the
nodes labeled V, and V,. Summing all the currents leaving node V; and setting them

equal to zero yields
vV, -V, + V_ V, -V,

2+
1k 1k 1k

=0

Similarly, for the node labeled V, we obtain

vV, -V, +L

1k 2k

-2
—+
k
The 3 linearly independent equations can be quickly reduced to

()2
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3.2
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or
3V,—V, =12
3
—V2 +EV0 :2
36

Solving these equations using any convenient method yields V, = g Vand V, = TV.

We can quickly check the accuracy of our calculations. Fig. S3.1(b) illustrates the circuit
and the quantities that are currently known.

LN

Fig. $3.1(b)

All unknown branch currents can be easily calculated as follows.

84 40
p o1 7 _ 34,
1k Tk
40
_7_40
1k 7k
40 36

(271 7 _ 4,

36
=118,
2k Tk

KCL is satisfied at every node and thus we are confident that our calculations are correct.

The network contains 3 “window panes” and therefore 3 linearly independent loop
equations will be required to determine the unknown currents and voltages. To begin we
arbitrarily assign the loop currents as shown in Fig. S3.2.
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The equations for the loop currents are obtained by employing KVL to the identified
loops. For the loops labeled I; and I, the KVL equations are

12+ 1K —T3) + 1K (I — L) = 0
and
1k(I, -I;) + 1k(I, — I5) + 2kI3; =0

In the case of the 3™ loop, the current Is goes directly through the current source and

therefore
2
I3 = E
Combining these equations yields
2kl — 1kI, = 14
-1kI; +4kl, =2

Solving these equations using any convenient method yields I; = %A and I, = %A.

Then Vj 1s simply

V() = 2kI3
3y
7

Once again, a quick check indicates that KCL is satisfied at every node. Furthermore,
KVL is satisfied around every closed path. For example, consider the path around the

two “window panes” in the bottom half of the circuit. KVL for this path is

-12 + 1k(I; = I3) + 1k(I, — I5) + 2kI; =0
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0

-12+1k o8 _14 + 1k 18 _14 + 2k 18
7k 7k 7k 7k 7k

0

0

33 The presence of the two voltage sources indicates that nodal analysis is indeed a viable
approach for solving this problem. If we select the bottom node as the reference node,
the remaining nodes are labeled as shown in Fig. S3.3(a).

1K1 V12 v

1k

Fig. S3.3(a)

The node at the upper right of the circuit is clearly Vy, the output voltage, and because the
12V source is tied directly between this node and the one in the center of the network,
KVL dictates that the center node must be V, —12 e.g. if V, = 14V, then the voltage at

the center node would be 2V. Finally, the node at the upper left is defined by the
dependent source as 1klx.

If we now treat the 12V source and its two connecting nodes as a supernode, the current
V, —12 — 1kl
2

leaving the supernode to the left is X the current down through the center

0~

leg of the network is and the current leaving the supernode on the right edge is

V, . .
i . Therefore, KCL applied to the supernode yields

V,-12-1k, V,-12 Y, _

RN
2k 2k Ik

Furthermore, the control variable Ix is defined as

[ - Vv, —-12
Y2k
combining these two equations yields
V, = EV
7
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The voltages at the remaining non-reference nodes are

Vo—lzzﬁ—lzzﬁ—ﬁz_—“gv
7 77 7
And
—48
TR Iy ST A
2k 2k 7

The network, labeled with the node voltages, is shown in Fig. S3.3(b)

=24 -48 36

I L
+
- 1k
:
Fig. $3.3(b)
Then
-24 (-48
[T 7)) 12
‘ 2k 7k
—48
7 24
IZ =
2k 7k
36
_7 _36
> 1k 7k

Note carefully that KCL is satisfied at every node.

3.4  Because of the presence of the two current sources, loop analysis is a viable solution
method. We will select our loop currents (we need 3 since there are 3 “window panes” in

the network) so that 2 of them go directly through the current sources as shown in Fig.
S3.4(a).
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Fig. $3.4(a)

Therefore, two of the three linearly independent equations needed are

I] = 2IX = 2(12 — 13)

Applying KVL to the third loop yields
1k(Is -L,) + 1k(I; — I;) + 2kI; = 0

combining equations yields

I;=2mA
And then

V, =4V
And

I, =4mA

Using these values, the branch currents are shown in Fig. S3.4(b)

4
w_&
2
k
[ D2
2 v
1 % “
4
k

Fig. S3.4(b)

Although one branch of the network are no current, KCL is satisfied at every node.
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CHAPTER 4 PROBLEMS

4.1 Derive the gain equation for the nonideal noninverting op-amp configuration and show
that it reduces to the ideal gain equation if R; and A are very large, i.e. greater than 10°.

4.2 Determine the voltage gain of the op-amp circuit shown in Fig. 4.2.

AW
25kQ

25kQ

50kQ2

Fig. 4.2

4.3  Using the ideal op-amp model show that for the circuit shown in Fig. 4.3, the output
voltage is directly related to any small change AR.

R AR

Fig. 4.3

4.4  Given an op-amp and seven standard 12kQ resistors, design an op-amp circuit that will
produce an output of

1

V,=-2V,-—V
0 1 2
2
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CHAPTER 4 SOLUTIONS

4.1 The noninverting op-amp circuit is shown in Fig. S4.1(a).

Fig. S4.1(a)

The nonideal model is

VIN

or

Fig. S4.1(c)
The node equations for this circuit are

V1'V1N+V1 Vi -V
R. R, R,

1
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vV, -V, Vv, -Av, 0
RF Ro
Ve =Vin - Vi
or
L+L+L Vl_ L Vozvﬂ
Ri RI RF RF Ri
1A 11 Av,y
||V, | =t |v =

RF Ro RF Ro Ro

Following the development on page 141 of the text yields

LA
RF Ro

Vin

R.

1

|

v

R, R, R,

1 1 1 |Av,

R

1 1 1

-
Ri 1{I RF

1

feien)

assuming R; — oo, the equation reduces to

|

Ry

1

A\

o _

R, R;

1

} A

R, R

1
R

[}

|

1
R

J_

A

R

% w)

[}

1

1 1
7_’_7
R, R;

1

RF

Sl

|

RF

1
R

(o]

1 A
R, R,

Fa e )

Now dividing both numerator and denominator by A and using A — oo yields

1

|

1 1

|

- 74_7
Vo_Ro R, Ry
v (1)1

Ro RF
R
=1+—+

which is the ideal gain equation.
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4.2 The network in Fig. 4.2 can be reduced to that shown in Fig. S4.2(a) by combining
resistors.

Fig. S4.2(a)

v, 1s determined by the voltage divider at the input, i.e.

75k 3
V, =V, | ————|=—V,
25k +75k | 4

The op-amp is in a standard noninverting configuration and the gain is 1+ SO%k =26.
Therefore

v, = (26)(% VS)

and

Yo _195

v

S

4.3 The node equations for the circuit in Fig. 4.3 are

V,-V. V-V

S

Then
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4.4

R R
form v, =-—v,-—
1 R2

29

VS

V.=V, =—

2

1
Vi- YA Ve Vi -5V
SAS_;’_ As:

R R +AR

\% v %

2R R+AR 2(R+AR)

1

v

[}

:VS 1 -
R + AR

{2(11 +AR) 2R

|

. ~ AR
~ | (2R)(R+AR)
&
V. =V | —
o S 2R
v, -AR
v. 2R

S

A weighted-summer circuit shown in Fig. S4.4(a) can be used to produce an output of the

v,.

Note that

Therefore if
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R
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R =24kQ (two 12kQ resistors in series)
R; =12kQ
R, = 48kQ (four 12kQ resistors in series)

then the design conditions are satisfied.
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CHAPTER 5 PROBLEMS

5.1 Find V, in the circuit in Fig. 5.1 using the Principle of Superposition.

6kQ 8kQ
o o o
+
12V
4kQ v,
6mA -
O O O

Fig. 5.1

5.2 Solve problem 5.1 using source transformation.

5.3.  Find V, in the network in Fig. 5.3 using Thevenin’s Theorem.

m 4mA
Y
6kQ)
O O O
+
4kQ)
+
<.> 3kQ 2kQ) V"
) |
Fig. 5.3

54  Find I, in the circuit in Fig. 5.4 using Norton’s Theorem.

O O

3O
12V <+> %Q = 6k (L 2mA

I

0

O O

Fig. 5.4

5.5  For the network in Fig. 5.5, find Ry, for maximum power transfer and the maximum
power that can be transferred to this load.
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3kQ 6kQ

+
12V <> oV, R,

Fig. 5.5
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CHAPTER 5 SOLUTIONS

5.1 To apply superposition, we consider the contribution that each source independently
makes to the output voltage V,. In so doing, we consider each source operating alone
and we zero the other source(s). Recall, that in order to zero a voltage source, we replace
it with a short circuit since the voltage across a short circuit is zero. In addition, in order
to zero a current source, we replace the current source with an open circuit since there is
no current in an open circuit.

Consider now the voltage source acting alone. The network used to obtain this
contribution to the output V, is shown in Fig. S5.1(a).

o o o)
6kQ) 8kQ n

12V <> V,
+ 4kQ ’

6mA -

O O

Fig. $5.1(a)

Then V,’ (only a part of V) is the contribution due to the 12V source. Using voltage

division

VvV, =-12 L
4k + 6k + 8k

I

0

Fig. $5.1(b)

Using current division, we find that

p _6f o6k
k| 6k + 8k + 4k

=2mA
Then
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14

V, =4kl
=8V
Then superposition states that
V,=V, +V,
_8 510y
3 3

5.2 Recall that when employing source transformation, at a pair of terminals we can
exchange a voltage source Vs in series with a resistor Rs for a current source I, in parallel
with a resistor R, and vice versa, provided that the following relationships among the
parameters exist.

v

bR,
S

Rp:Rs

Now the original circuit is shown in Fig. S5.2(a).

6kQ 8kQ +

12V \A
4kQ

6mA -

O O O

Fig. S5.2(a)

Note that we have a 12V source in series with a 6k(2 resistor that can be exchanged for a
current source in parallel with the resistor. This appears to be a viable exchange since we
will then have two current sources in parallel which we can add algebraically.
Performing the exchange yields the network in Fig. S5.2(b).

o o o
8k +
2 6
s 6k 2 4k
k <i> K \Z
O

Fig. S5.2(b)
Note that the voltage source was positive at the bottom terminal and therefore the current

source points in that direction. Adding the two parallel current sources reduces the
network to that shown in Fig. S5.2(c).
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% CD 6k 4k v,

Fig. $5.2(c)

At this point we can apply current division to obtain a solution. For example, the current

in the 4kQ) resistor is

4 6k
I4k =T A o1 a1
k | 6k + 8k + 4k

=—mA
3
Then
V, = (L) (4k)
3

However, we could also transform the current source and the parallel 6kQ resistor into a
voltage source in series with the 6kQ resistor before completing the solution. If we make
this exchange, then the network becomes that shown in Fig. S5.2(d).

O O
6k 8k -
+
24V <> 4k Vo
O O
Fig. $5.2(d)

Then using voltage division

vV, =24 L
4k + 6k + 8k

Loy
3

Since the network contains no dependent source, we will simply determine the open

53
circuit voltage, V., and with the sources in the network made zero, we will look into the
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open circuit terminals and compute the resistance at these terminals, Rry. The open
circuit voltage is determined from the network in Fig. S5.3(a).

4

QO

p M

ok
12V<+_> A WV
IZ

(LK
Y
<

_|_

4k l
+

Fig. $5.3(a)

Note the currents and voltages labeled in the network. First of all, note that

Vie=V, +V,

Therefore, we need only to determine these voltages. Clearly, the voltage V; is

V=1, (4k) = 16V

However, to find V, we need I,. KVL around the loop I, yields

or

12+ 6k (I, — I}) + 3kI, = 0

—12 + 6k (I, —%)+3k12 =0

Now

I

2

Vie=V, +V,

= 4kI, + 3kI,
=28V

:i=4mA
k

The Thevenin equivalent resistance is found by zeroing all sources and looking into the
open circuit terminals to determine the resistance. The network used for this purpose is

shown in Fig. S5.3(b).
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6k 4k l

3k ¢ RTH

Fig. $5.3(b)

From the network we see that the 6k and 3k Ohm resistors are in parallel and that
combination is in series with the 4k resistor. Thus

Ry = 4k + 3k || 6k
= 6kQ

Therefore, the Thevenin equivalent circuit consists of the 28V source in series with the

6kQ resistor. If we connect the 2kQ resistor to this equivalent network we obtain the
circuit in Fig. S5.3(c¢).

6kQ) +
28V kQ

Fig. $5.3(c)

Then using voltage division

vV, =28 2k
2k + 6k

=7V

5.4 In this network, the 2kQ resistor represents the load. In applying Norton’s Theorem we
will replace the network without the load by a current source, the value of which is equal
to the short-circuit current computed from the network in Fig. S5.4(a), in parallel with the
Thevenin equivalent resistance determined from Fig. S5.4(b).

3k
12V I

= o

Ne

Fig. S5.4(a)
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3k I

R4‘> 6k

I

Fig. S5.4(b)

with reference to Fig. S5.4(a), all current emanating from the 12V source will go through

the short-circuit. Likewise, all the current in the 2mA current source will also go through
the short-circuit so that

12 2

== _Z_-2mA
3k k

If this statement is not obvious to the reader, then consider the circuit shown in Fig.
S5.4(c).

SC

Fig. S5.4(c)

Knowing that the resistance of the short-circuit is zero, we can apply current division to
find ISC

indicating that all the current in this situation will go through the short-circuit and none of

it will go through the resistor. From Fig. S5.4(b) we find that the 3k and 6k Ohm
resistors are in parallel and thus

RTH:3k||6k:2kQ

Now the Norton equivalent circuit consists of the short-circuit current in parallel with the
Thevenin equivalent resistance as shown in Fig. S5.4(d).

O

2mA 2kQ

Fig. S5.4(d)
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Remember, at the terminals of the 2kQ load, this network is equivalent to the original
network with the load removed. Therefore, if we now connect the load to the Norton

equivalent circuit as shown in Fig. S5.4(e), the load current I, can be calculated via

current division as
I - g 2k
* kl2k +2k

=1mA
2
— 2k
” 2k
I0
Fig. S5.4(e)

5.5 The solution of this problem involves finding the Thevenin equivalent circuit at the
terminals of the load resistor Ry and setting Ry equal to the Thevenin equivalent
resistance Rrp.

To determine the Thevenin equivalent circuit, we first find the open circuit voltage as
shown in Fig. S5.5(a).

+ Vi
’o)
T 3k 6k +
(’) 2V;( Voc
o
Fig. S5.5(a)

We employ the prime notation on the control variable V since the circuit in Fig. S5.5(a)
is different than the original network. Applying KVL to the left side of the network
yields

124V + 2V, =0
V=4V

Then the open circuit voltage is

VOC = 2VX
=8V

since there is no current in the 6k( resistor and therefore no voltage drop across it.
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Because of the presence of the dependent source we cannot simply look back into the
open circuit terminals, with all independent sources made zero, and determine the
Thevenin equivalent resistance. We must determine the short-circuit current, Isc and
determine Rry from the expression

Isc is found from the circuit in Fig. S5.5(b).
+ Vio-

3k 6k
12 2V{ I

X Ne
(0]

Fig. S5.5(b)
Once again, using KVL

124V, + 2V, =0
V=4

Then, since the dependent source 2V," = 8V is connected directly across the 6kQ resistor

2
I = Vi :gmA
6k 3
and
R, = Vac =i =12kQ
ISC i
3k

Hence, for maximum power transfer
RL = RTH = 12kQ)

And the remainder of the problem involves finding the power absorbed by the 12k load,
P.. From the network in Fig. S5.5(c) we find that
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P =I'R

L L L

8 2
= — (12k
(34 029
=133 mW
12kQ I

L

8V 12kQ =R,

Fig. S5.5(c)
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CHAPTER 6 PROBLEMS

6.1 If the voltage across a 10uF capacitor is shown in Fig. 6.1, derive the waveform for the
capacitor current.

Fig. 6.1

6.2 If the voltage across a 100mH inductor is shown in Fig. 6.2, find the waveform for the
inductor current.

4 v(t) (mV)

0.1 0.2

P t(s)

Fig. 6.2

6.3 Find the equivalent capacitance of the network in Fig. 6.3 at the terminals A-B. All
capacitors are 6uF.

o

Vi I Vi
A o—¢ N l 1

ch H’)

-

Fig. 6.3

6.4  Find the equivalent inductance of the network in Fig. 6.4 at the terminals A-B. All
inductors are 12mH.
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CHAPTER 6 SOLUTIONS

6.1 The equations for the waveforms in the 4 two millisecond time intervals are listed below.

v(t)=mt +b
__ 2% 0<t<2ms
2x107°
=2 2<t<4ms
=-2+ 273t 4 <t<6ms
2x10
4
=+16- t 6 <t<8ms
2x10°°
=0 t<0, t>8ms

Note that within each interval we have simply written the equation of a straight line using
the expression y = mx + b or equivalently v(t) = mt + b where m is the slope of the line
and b is the point at which the line intersects the v(t) axis.

The equation for the current in a capacitor is

i) =C=

Using this expression we can compute the current in each interval. For example, in the
interval from 0 <t < 2ms

L adf 2

i(t)=(10x10 )dt(leo_3 tJ 0<t<2ms
— 10mA

i(t)=(10x106)%(2) 2 < t<4ms
=0

o od (o 2

i(t)=(10x10 )dt 2+2X103t] 4<t<6ms
= 10mA

. 5 d 4

1(t)=(10x106)a 16-—— 5 tJ 6 <t <8ms

=-20mA

The waveform for the capacitor current is shown in Fig. S6.1.
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4 i(t) (mA)
4
2
0 2 4 ; $ P (ms)
b
4

Fig. $6.1

6.2  The general expression for the current in an inductor is
i(t)=i(t,)+ [ v(x)dx

In order to evaluate this function we need the equation of the voltage waveform in the
two time intervals 0 <t <0.1s and 0.1 <t <0.2s. In the first case, the voltage function is
a straight line and the function passes through the origin of the graph. The equation of a
straight line on this graph is

v(it)=mt+b

where m is the slope of the line and b is the point at which the line intersects the v(t) axis.
-3

Since the slope is , the equation of the line is

4x10°
Oy

t

where v(t) is measured in volts and time is measured in seconds i.e., the slope has units of
volts/sec. Therefore,

: . 1 ,.4x107
1(t):1(0)+fj0 01 x dx

since there is no initial current in the inductor i(t) = 0 and L =10

i(t)=10]4x107 x dx

or
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2
i(t)=0.4['xdx =0.4X7 '

=0.2t*> A =200t> mA

Since the initial current for the second time interval is determined by the value of the
current at the end of the first time interval we calculate

i(t)],_,, =200¢t’|,_,, mA

=2mA

t=0.1

Therefore, in the time interval 0.1 <t <0.2s
i(t):i(0.1)+% t (x)dx

Note that in this interval v(x) is a constant —2mV or —2 x 10~°V. Hence,

i(t)=2x107 +10] (-2 x107 ) dx
=2x107 =20x107 x|;,
= (4 - 20t)mA

If we now plot the two functions for the current within their respective time intervals we
obtain the plot in Fig. S6.2.

a

0 01 0.2 P ((s)

Fig. $6.2

6.3 To begin our analysis we first label all the capacitors and nodes in the network as shown
in Fig. S6.3(a).
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C ¢ G D C,
A o—f—p—¢ l €
J Rl B
HS
Be
Fig. S6.3(a)

First of all, the reader should note that all the nodes have been labeled, i.e., there are no
other nodes. As we examine the topology of the network we find that since C; and Cs are
both connected to node D the network can be redrawn as shown in Fig. S6.3(b).

Y
J
O

Fig. $6.3(b)

Clearly, Cs and Cg are in parallel and their combination we will call Csg = Cs || Ces.
Combining these two capacitors reduces the network to that shown in Fig. S6.3(c).

¢ ¢ G
Ao
C4
s——2D
Tc. =6
B [ O
Fig. S6.3(c)

At this point we find that C, and C, are in parallel and their combination, which we call
Cru=0C, || C4, reduces the network to that shown in Fig. S6.3(d).
C C24 D

e
TqéTc

Fig. $6.3(d)
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If we now use the given capacitor values, the network becomes that shown in Fig.
S6.3(e).

6uF IZ;JF
|/

l ‘ 6uF
12MFT 1\ H

Fig. S6.3(e)

Starting at the opposite end of the network from the terminals A-B and combining
elements we find that 6uF in series with 12uF is 4uF and this equivalent capacitance is in

parallel with 12pF yielding 16uF, which in turn is in series with 6uF producing a total
capacitance of

C,, = 6uF|16uF
= 4.36uF

6.4 To aid our analysis, we will first label all inductors and nodes as shown in Fig. S6.4(a).

Fig. S6.4(a)

Note carefully that all the nodes have been labeled. Once readers recognize that there are
no other nodes, they are well on their way to reducing the network since this node
recognition provides data indicating which elements are in series or parallel. For
example, since one end of L, is connected to node B, the network can be redrawn as
shown in Fig. S6.4(b).

Fig. S6.4(b)
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This diagram clearly indicates that L, and Ls are in parallel. In addition, L4 and L are in
parallel. Therefore, if we combine elements so that L,s = L, || Lsand L4 = L4 ] Ls, then
the circuit can be reduced to that in Fig. S6.4(c).

Fig. $6.4(c)

However, we note now if we did not see it earlier that L;s is in parallel with L so that
the network can be reduced to that shown in Fig. S6.4(d).

A

Fig. S6.4(d)

Where Losse = Los || L4s. Since all inductors are 12mH, L,45¢ = 3mH which is in series
with 12mH and that combination is in parallel with 12mH yielding

Lag = 12mH || 15mH = 6.66mH
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CHAPTER 7 PROBLEMS

7.1 Use the differential equation approach to find i, (t) for t > 0 in the circuit in Fig. 7.1 and
plot the response including the time interval just prior to opening the switch.
2kQ

3kQ 6kQ

Fig. 7.1

7.2 Use the differential equation approach to find i(t) for t > 0 in the circuit in Fig. 7.2 and
plot the response including the time interval just prior to opening the switch.

SkQ =0 2kQ

1kQ

7.3 Use the step-by-step technique to find v, (t) for t > 0 in the circuit in Fig. 7.3.

6kQ

6kQ

Fig. 7.3

7.4 Use the step-by-step method to find v, (t) for t > 0 in the network in Fig. 7.4.
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Fig. 7.4

7.5 Given the network in Fig. 7.5, find
(a) the differential equation that describes the current i(t)
(b) the characteristic equation for the network
(c) the network’s natural frequencies
(d) the type of damping exhibited by the circuit
(e) the general expression for i(t)

1(t) 'H
O 140
| ]\ 0.05F
Fig. 7.5

7.6  Find i, (t) for t > 0 in the circuit in Fig. 7.6 and plot the response including the time
interval just prior to closing the switch.

1

12V 24Q

Fig. 7.6
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CHAPTER 7 SOLUTIONS

7.1 We begin our solution by redrawing the network and labeling all the components as
shown in Fig. S7.1(a)

Fig. S7.1(a)

In order to determine the initial condition of the network prior to switch action, we must
determine the initial voltage across the capacitor. A circuit, which can be used for this
purpose, is shown in Fig. S7.1(b).

Fig. S7.1(b)

Where we have combined the resistors at the right end of the network so that

Re¢=R; + R4 Rs
=2k + 3k | 6k
= 4k

In the steady-state condition before the switch is thrown, the capacitor looks like an open-
circuit and therefore v¢(0-) is the voltage across the parallel combination of R, and R.
Using voltage division, the 12V source will produce the voltage

V. (o—)%&]

R, +R,[ R,

=12 3k =6V
3k + 3k

Now that the initial voltage across the capacitor is known, we can find the initial value of
the current i,(t). From Fig. S7.1(b) we see that
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Then, using current division as shown in Fig. S7.1(a),

Lo~ OIR,)

R, +R;

(;kj (6K)

=————=1mA
3k + 6k

The parameters for t < 0 are now known. For the time interval t > 0, the network is

reduced to that shown in Fig. S7.1(c).

+
R,=12kQ =

c(t)
- TISOMF

Fig. S7.1(c)

R, =4kQ

Applying KCL to this network yields

The solution of this differential equations of the form

—t

v.(t)=k, +k,e*

Since the differential equation has no constant forcing function, we know that k; = 0.

—t
Therefore, substituting v, (t) =k,e " into the equation yields

-t k,e® + kaeT =
T 9
and
9
T=—58€cC
20
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In addition, since

Vc(O) =6 =kye°

k2 =6
Thus
_20,
v.(t)=6e ° Vv
Recall that
R
i, (t)=i, () =—
’ R, +R,
and
L (9=
R()
Then

0= ()

20

zle?mA t>0
=ImA t<0

7.2 The network can be redrawn as shown in Fig. S7.2(a).
t=0

it)

5 5kQ
[.=—A IRI:H( R2:3k
k

S

F;g. S7.2(a)

In the steady-state time interval prior to switch action, the inductor looks like a short-
circuit. Therefore, in this time period t < 0, the initial inductor current is

iL(O-) = Is =5mA

At t = 0 the switch changes positions and hence for t > 0 the network reduces to that
shown in Fig. S7.2(b).
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i(t)

1= 1mH

Fig. $7.2(b)

IfweletR =R, || R, then the differential equation for the inductor current is

L%(tt)+Ri(t):0

The solution of this equation is of the form

—t

i(t)=k, +k,e*

The differential equation has no constant forcing function and hence k; = 0. Substituting

—t

i(t)=k,e " into the equation for the current yields

HEEREEE
k T 4

o . o 1
where we have used the circuit parameter values in the equation, i.e., L = EH and

R = %Q . This equation produces a t value of

4

T= 3 1L sec.

Furthermore, since
i(0-) = 1mA

and

i(0)=k,e”
we find that

k, = 5SmA

Therefore,
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i(t)=5mA, t<0

=5¢71" mA, t>0

7.3 The circuit is redrawn for convenience in Fig. S7.3(a).

Fig. S7.3(a)

Before we begin our analysis, we note that resistors R3 and R4 are in parallel and so we
first reduce the network to that shown in Fig. S7.3(b).

Fig. S7.3(b)

Now that the network has been simplified, we begin our analysis
O

Fig. $7.3(c)
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Fig. $7.3(d)

!

6k= R 6k

3k
Fig. $7.3(¢)

Step-1 v, (t):kl +k,e®
Step-2  In steady-state prior to switch action, the capacitor looks like an open-circuit
and the 12-V source is directly across the resistor R = 3kQ. As shown in Fig. S7.3(c) the

voltage v, across R; is equal and opposite to vc. Since the voltage of the 12-V source is
divided between R; and R, we can use voltage division to find v; as

‘mzlz——BL—-=6V
R, +R,

hence
Ve (0—):—V1 =—6V =v_ (O+)

Step-3  The new circuit, valid only for t =0+ is shown in Fig. S7.3(d). Once again,
using voltage division,

V0(0+)=_VC(0+)( R, ]

R, +R
=—-4V

Step-4  For the period t > 57, the capacitor looks like an open-circuit and the source is
disconnected. With no source of energy present in the network

v, (oo):O
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Step-5 The Thevenin equivalent resistance obtained by looking into the network from
the terminals of the capacitor with all sources made zero is derived from the circuit in
Fig. S7.3(e)

Ry = (6k) | | (6k + 3k)
=3.6kQ

Then the time constant of the network is

T= RTHC
= (.18 sec.

Step-6  Evaluating the constants in the solution, we find that
k, =v, (OO) =0
kz =V, (0+)_V0 (oo)=—4
Therefore,

t

v, (t)=—4e "V
7.4  We begin our analysis of the network with

Step-1  The output voltage will be of the form

—t

v,(t)=k, +k,e*

Step-2  In the steady-state prior to the time the switch is thrown, the inductor acts like a
short-circuit and shorts out the 4Q) resistor. The network for this situation is as shown in
Fig. S7.4(a).

v(®)

Fig. $7.4(a)

Under these conditions, i, (0—) is the current from the 12-V source at the left side of the
network, through the short-circuit, with a return path through the 2Q resistor at the
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output. What is the contribution of the 12V source in the center of the network? No
contribution! Why? If we applied superposition and treated each source independently,
we would quickly find that when the left-most source was replaced with a short-circuit,
all the current from the other 12-V source would be diverted through this short-circuit.
Therefore,

iL(O—):%:6A:iL(O+)

Step-3  The new network, valid only for t =0+, is shown in Fig. S7.4(b).

2Q

12V

Fig. S7.4(b)

If we employ superposition, we find that

v, (oﬂ:-u(ﬁj n 6{ﬁj (2)

=3V

where in this equation we have used first voltage division in conjunction with current
division to obtain the voltage. The two networks employed are shown in Figs. S7.4(c)
and (d).

2Q)

12V

Fig. S7.4(c) Fig. S7.4(d)

Step-4 For t > 51, the inductor again looks like a short-circuit and the network is of the
form shown in Fig. S7.4(e).
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2Q

12V

Fig. S7.4(e)

A simple voltage divider indicates that the output voltage is

2+2

Vo(oo):—12£ 2 J:—6V

Step-5 The Thevenin equivalent resistance obtained by looking into the circuit from the
terminals of the inductor with all sources made zero is derived from the network in Fig.

S7.4(f).
® LRTH e

Fig. S7.4(%)
Clearly
Ru=4[@2+2)=20

Then the time constant is

1
T= L _3_ —sec.
R 2 6
Step-6  The solution constants are then
kl =V, (OO) =-6
kz =V, (O +) — VY (OO)
=3-(-6)=9V

Hence,

v,(t)==6+9eV
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7.5 (a) Applying KVL to the closed path yields
v (6) = Ri(0)+ L1 i(x) dx + .90
) c™ dt

differentiating both sides of the equation we obtain

dv, (t) R di(t) . i(t) L d’i(t)

dt dt C dt’

By rearranging the terms, the equation can be expressed in the form

L d?i(t) 'R di(t) .\ i(t) _ dvy(t)
dt’ dt C dt

or

di(t)+5 di(t)+ 1 ()= 1 dvg(t)
dt? L d RC L dt

Using the circuit component values yields

2 .
d 12(t) i di(t) 10 i(t)zl dv, (t)
dt dt 2 dt

(b) The characteristic equation for the network is
s> +7s+10=0
(c) The network’s natural frequencies are the roots of the characteristic equation. The
quadratic formula could be used to obtain those roots or we can simply recognize that the
equation can be expressed in the form
s?+7s+10=(s +2)(s +5)=0

Therefore, the networks natural frequencies are

s=2

s=35
(d) Since the roots of the characteristic equation are real and unequal, the network

response is overdamped.

(e) Based upon the above analysis, the general expression for the current is
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i(t)=k, +ke™ +k,e™ A

where k is the steady-state value and the constants k; and k, are determined from initial

conditions.

7.6 The network is re-labeled as shown in Fig. S7.6(a).
+ ., -ve()

12V

Fig. $7.6(a)

where all R =240, L=2.4H and C = %F . Consider now the conditions of the

network at three critical points in time.

At t =0—, i.e., the steady-state condition prior to switch action, the capacitor acts like an
open-circuit, the inductor acts like a short-circuit and hence v (0-)=0, i, (0-)=0,
i,(0-)=0and v,(0-)=0.

At t =0+, i.e., the instant the switch is thrown, the conditions on the storage elements (L
and C) cannot change instantaneously and therefore v, (0+)=0, 1, (0+)=0,

i0(0+):11{—2:%A and v, (0+)=12V.

3

At t= oo, i.e., the steady-state condition after the switch is thrown, the capacitor acts like
an open-circuit, the inductor acts like a short-circuit and hence v, (00) =12V,

iL(w)=;i=%A, i (0)=0 and v, (x0)=0.

2

Now applying KCL to the network in the time interval t > 0, we obtain

12—V0(t)+cd(12—vo(t))=ljtv (X)dx+v0_(t)
R dt L’

2 3
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where 1 (t)= expressing v, (t) in terms of 1, (t) and using the component values
0 p gV, 0 g p

v, (1)
R3
reduces the equation to

1. 1 di, (t) g )
E_10(t)_gT—lojolo(x)dx—10(t)_0

Combining terms and differentiating this expression yields

dl—fg(t)+1odl°—(t)+50i0(t)=o
dt dt

Therefore, the characteristic equation for the network is
$+10s +50=0
Factoring this equation using the quadratic formula or any other convenient means yields
s, 2=-5tj5=0ctjo

Since the roots of the characteristic equation are complex conjugates, the network is
underdamped and the general form of the current i, (t) is

i, (t)=k +e " (A cos ot + Bsin ot)
=k +e™ (A cos 5t + B sin 5t)

where k is the steady-state term resulting from the presence of the voltage source in the
time interval t — oo,

We can now evaluate the constants k, A and B using the known conditions for the
network. For example,

i0(0+):%:k+A

and

Therefore, k =0 and A = %
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We need another equation in order to evaluate the constant B. If we return to our original
equation and evaluate it at time t = 0+, we have

12-12 1(—dv0(t)j‘ 12
t=0+

+
R 120 dt

2

where v, (0 +) =12V, the integration interval is zero and the derivative function is our
unknown. Therefore,

dVo (t) ‘ ——60
dt t=0+
or
dt t=0+ *

The general form of the solution is

. 1 :
i,(t)=e™ [E cos 5t + B sin StJ

Then
di (t —
Lo ( ) =—5¢" 1 cos 5t |+e™ - sin 5t |—5¢ Bsin 5t +e" 5B cos 5t
dt 2 2
and
di (t —
i (1) n=24sB
dt 2
Therefore,
_25-"2458
2
or
B=0

The general solution is then
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i,(t)=0 t<0

=—e 'cosS5t t>0
2

A plot of this function is shown in Fig. S7.6(b).
0.6

04

L, ® (A)

0.2 :

o[

o2 b0

Fig. S7.6(b)
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CHAPTER 8 PROBLEMS

8.1 Find the frequency domain impedance Z, shown in Fig. 8.1.

1Q
1Q -11Q
7
10 1Q
o
Fig. 8.1

8.2  If the impedance of the network in Fig. 8.2 is real at f = 60Hz, what is the value of the
inductor L?

1Q
7z 20 7~ 10mF
O
Fig. 8.2
8.3  Use nodal analysis to find V, in the network in Fig. 8.3.
-
~ 12400V
O
10 10 +
j2Q 20 ’I-j4Q Vi
Fig. 8.3

8.4  Find V, in the network in Fig. 8.4 using (a) loop analysis (b) superposition and (c)
Thevenin’s Theorem.

_/\/\/\/_—{
20 -1
12200V (¥)
40
Fig. 8.4
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CHAPTER 8 SOLUTIONS

8.1.  To begin our analysis, we note that the circuit can be labeled as shown in Fig. S8.1.

oO— Z1 T

z 4’ Zz Z3
o |
Fig. S8.1

In this case, Z; consists of a 1Q resistor, Z, is the series combination of a 1Q resistor and
a j1Q inductor and Z, consists of a -1 Q) capacitor in series with a 1Q resistor.

Therefore,
Z] =1Q
Z,=1+j1Q
Z3=1-j1Q

Starting at the opposite end of the network from the terminals at which Z is calculated we
note that Z, and Zs are in parallel and their combination is in series with Z;. Hence

72=7,+27,|Z,
1+j+1-3
2
=2Q

8.2 The general expression for the impedance of this network is

(joaL +— ! J
joC

. . 1 .
In order for Z to be purely resistive, the term [ joL + —Cj must be real, i.e.
jo

Z=1+2

Zic=Ric +J0

However, since Z; ¢ can be written as

. 1
ZLC = _]((DL — E}
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it is clearly an imaginary term and Ry c = 0. Therefore, in order for Z to be resistive

OJL—L=0
oC

or

(377) (102)
=703.6 uH
8.3 The presence of the voltage source indicates that nodal analysis is a viable approach to

this problem. The voltage source and its two connecting nodes form a supernode as
shown in Fig. S8.3.

V, =V, -12.£0°

20

Fig. S8.3
Note that there are three non-reference nodes, i.e., Vi, Vo and V,. Because the voltage

source 1s tied directly between nodes Vy and V,, V, =V, —12£0°. This constraint

condition is one of our three equations required to solve the network. The two remaining
equations are obtained by applying KCL at the supernode and the node labeled V,. For
the supernode, KCL yields

¥+VI_V2 +V0—V2+ V.0 0
]2 1 1 -4

At the node labeled V,, KCL yields

Vz _Vl +L+V2 _Vo —
1 2 1

0

Therefore, the three equations that will provide the node voltages are
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V, =V, -12
—j%V1+V1—V2+VO—V2+j%VO:O

V, -V, +%V2 +V, -V, =0

Substituting the first equation in for the two remaining equations and combining terms
yields

Vo[Z—j%j—2V2=12—j6

—2V0+§V2:—12

Solving for V, in this last equation and substituting it into the one above it, we obtain
V, (0.4 -j0.25)=2.4-j6
and hence

V,=13.57 £-36.2°V

8.4 (a) Since the network has two loops, or in this case two meshes, we will need two
equations to determine all the currents. Consider the network as labeled in Fig. S8.4(a).

_/\/\/\/__{
20 H1Q

v (@ [ 2
L 40

Fig. S8.4(a)

Note that since I, goes directly through the current source, I, must be 220°A. Hence,
one of our two equations is

12 =2,/0°
If we now apply KVL to the loop on the left of the network, we obtain

—12+1,(2-j1)+ (1, -1,)(4+j2)=0
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These two equations will yield the currents. Substituting the first equation into the
second yields

—12+L,(2-jl+4+j2)-2(4+j2)=0

and then
20+ j4
=207 H 33518504
6+ ]l
Finally,
V, = 4(11 - 12)
4 20 + :]4 s
6+l
=5.42./457°V

(b) In applying superposition to this problem, we consider each source acting alone. If
we zero the current source, i.e., replace it with an open circuit, the circuit we obtain is
shown in Fig. S8.4(b).

_/\/\/\/_—{
20 10
20
12200V (%) o
40 V!
5
Fig. $8.4(b)

Using voltage division

V, =12 ;
4+312+2-]1

48
6+ jl

Now, if we zero the voltage source, i.e., replace it with a short circuit, we obtain the
circuit in Fig. S8.4(c).
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10

2Q

Fig. S8.4(c)

Employing current division, the current Ix is

IX:—2ZOO L
2-3+4+32

:_4+_J2A
6+ jl

Then,

-16+ 8

Ve=the= T

And finally,

V, =V, +V/
_ 48 -6+ 8
6+ jl 6+ jl
32+ 8
6+l
=542./4.57°V

(¢) In applying Thevenin’s Theorem, we first break the network at the load and determine
the open-circuit voltage as shown in Fig. S8.4(d).

20 H1Q
— A~

12200v(%) (D200

Fig. $8.4(d)
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Note that there exists only one closed path and the current in it must be 2.20° A. Note
also that there is no current in the inductor and therefore no voltage across it. Hence V.

is also the voltage across the current source. Hence,

Voc :12_2(2_j)
=8+j2V

The Thevenin equivalent impedance found by zeroing the independent sources and
looking into the network at the terminals of the load can be determined from the circuit in
Fig. S8.4(e).

20 410
_M/\/__{

20

— ZTH

Fig. S8.4(e)
This network indicates that

ZTHZZ—jl +J2
—2+510

If we now form the Thevenin equivalent circuit and re-connect the load, we obtain the
network in Fig. S8.4(f).

ZTH
20 j1Q
VOC +
8+j2V 4Q v,
o—o0
Fig. S8.4(f)
Applying voltage division yields
V, =8+ 2)| —
o= J)(4+2+ﬂ]
_32+38
6+jl
=542./457°V
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CHAPTER 9 PROBLEMS
9.1 Determine the average power supplied by each source in the circuit in Fig. 9.1.

10 1@
10£0°V 0 (D)2430°A

Fig. 9.1

9.2  Given the circuit in Fig. 9.2, determine the impedance Z;, for maximum average power
transfer and the value of the maximum average power transferred to this load.
} -11Q

12.20°v (%)

Fig. 9.2

9.3 Calculate the rms value of the waveform shown in Fig. 9.3.
v(t) (V) ¢

|4
1 2 3 4 5 6 71 s)
Fig. 9.3

9.4  Determine the source voltage in the network shown in Fig. 9.4.
0.1  j0.5Q

60 kW * 40 kW
V 0.85 pf|240 £0° V rms | 0-78 pf
lagging ) lagging
i |
Fig. 9.4

9.5 A plant consumes 75 kW at a power factor of 0.70 lagging from a 240-V rms 60 Hz line.
Determine the value of the capacitor that when placed in parallel with the load will
change the load power factor to 0.9 lagging.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid



74

CHAPTER 9 SOLUTIONS

9.1  Because the series impedance of the inductor and capacitor are equal in magnitude and
opposite in sign, from the standpoint of calculating average power the network can be
reduced to that shown in Fig. S9.1.

I

(&

1020°V (F) 2./30° A

Fig. $9.1

The general expression for average power is
1
P :EVIcos (6, -9,)

In the case of the current source Vi =10V, Ics = 2A, 6y = 0° and 6; = 30°. Therefore, the
average power delivered by the current source is

P - G) (10) (2) cos (- 30°)

=8.66 W

In order to calculate the average power delivered by the voltage source, we need the
current Iys. Using KCL

I, +2230° =¥= 10 £0°

or
Iys =8.33/2-6.9° A
Now

P, = % (10)(8.33) cos (0° — (= 6.9°))

=4134 W

Therefore, the total power generated in the network is

Pr=Pcs + Pvys
=50W
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Let us now calculate the average power absorbed by the resistor. We know that the
average power absorbed by the resistor must be

2
p LV
2 R

_1(10°
2\ 1

=50 W

In addition, the average power absorbed by the resistor can also be determined by

However, we do not know the current in the resistor. Using KCL.
Ig =Ivs + Ics
=8.66£-6.9°+2/30°
=10£0° A

Now

P = (10) ()

=50 W

Thus, we find that the total average power generated is equal to the average power
absorbed.

9.2  We will first determine the Thevenin equivalent circuit for the network without the load

attached. The open-circuit voltage, Voc, can be determined from the network in Fig.
S9.2(a).

12£0°V

Fig. S9.2(a)

This open-circuit voltage can be calculated in a number of ways. For example, we can
compute the current I as
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12(0° - (-6£0°)) 18

I= : = - A
1= 1=
Then using KVL,
V,. =11-6£0°
12+ 6j
_12+6i,
I=]

or, we could use voltage division to determine the voltage across the 1-Ohm resistor on
the right, i.e.,

V, =12 £0° - (- 6 £0°)] (%)
=]
_18
1-]j

Then, once again

V,. =V, - 6£0°
12 + 6]

1-]
=9.49/71.56° V

\Y%

The Thevenin equivalent impedance is obtained by looking into the open-circuit
terminals with all sources made zero. In this case, we replace the voltage sources with
short circuits. This network is shown in Fig. S9.2(b).

10
10 10
“« Z,
O
Fig. $9.2(b)

Note that the 1-Ohm resistor on the left is shorted and thus the Zty is

2 WED_-ig
1-j 1-j
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Hence, for maximum average power transfer

=7

TH

V4

L
or

1 .1
Z =—+]=Q
2 Jz

Therefore, the network is reduced to that shown in Fig. S9.2(c).

1 1
2 Ty
I
1
9.49.271.56° V(1) 2
1
+_
3
Fig. $9.2(c)
Then
[ 949/71.56°
_l_'l+l+'l
T,

=949 /271.56° A

and the maximum average power transferred to the load is
1 2 (1
P =—(949) | —
=049 (]
=90 W

9.3 In order to calculate the rms value of the waveform, we need the equations for the
waveform within each of the distinctive intervals.

In the interval 0 <t < 2s, the waveform is a straight line that passes through the origin of
the graph. The equation for a straight line in this graph is

v(t)=mt +b

Where m is the slope of the line and b is the v(t) intercept. Since the line goes through
the origin, b= 0. The slope m is
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m=—=3
2s

Therefore, in the interval 0 <t < 2s,
v(t) =3t
The waveform has constant values in the intervals 2 <t <3sand 3 <t <4s, i.c.,

v(t) =6 2<t<3s
v({t) =0 3<t<4s

Since the waveform repeats after 4s, the period of the waveform is
T=4s
Now that the data for the waveform is known,

V. =HI Vz(t)dt} E

Therefore, in this case

<
Il

S

|

g

() dt+] (6) dt+] (0) dtﬂ :
[36° |2 + 36t \;]} :

(24 + 36)} :

Il
—— 1

e N e

I
—
—
(9]
~—

|

I
W

.87 V rms

9.4  We begin our analysis by labeling the various currents and voltages in the circuit as
shown in Fig. S9.4.

IS
O
0.1Q j0.5Q L I L +
Y <+ 60 kW 40 kW
i 0.85 pf 0.78 pf| V. =240£0°V rms

lag lag

. l 5
Fig. S9.4
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Our approach to determining Vs is straight forward: We will compute the currents I; and
I,; add them using KCL to find Is; determine the voltage across the line impedance and
finally use KVL to add the line voltage and load voltage to determine the source voltage.

The magnitude of the current I; is

L]

— Pl

V] (pt)
60,000

(240)(0.85)

=294.12 A rms.

And the phase angle is

0, =—cos™ (0.85)
=-31.79°

The negative sign is a result of the fact that the power factor is lagging.

Thus

[, =294.12/-31.79° A rms.

The magnitude of the current I, is

L

— PZ

V.| (pf))
40,000

(240)(0.78)

=213.68 A rms.

And the phase angle is

0, =—cos™ (0.78)
=-38.74°

Thus

I, =213.68£-38.74° A rms.

Using KCL
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I, =1 +1,
=294.12£-31.79° + 213.68 £ —38.74°
=504.1£-34.25° A rms.

Then

V, =1, (0.1+ j0.5) + 240.20°
=(504.1£ -34.25°)(0.51.£78.7°) + 240 £0°
= 257.04 £44.44° 4 240 £0°
= 460.17 £23.02° V rms.

9.5 Since the original power factor is 0.7 lagging the power factor angle is

Oorp = cos’! (0.7)

=45.57°
Then
Qorp = Porp tan Borp
= 75,000 tan 45.57°
=76.52 kvar
Hence

SOLD = 75,000 +j76,515
=107.14£45.57° kVA

The new power factor angle we wish to achieve is

ONEw = cos™! (new power factor)
=cos™ (0.9)
=25.84°

Then

Qnew = Porp tan Oxew
= 75,000 tan 25.84°
= 36,324 kvar

Now the difference between Qnew and Qorp is achieved by the capacitor, i.e.,

Qcar = Qnew - Qorp
=36,324 - 76,515
=-40,191 kvar
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And since
Qcap = -0 CV*
Then

40,191
(377) (240)°
=1850.8 uF
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CHAPTER 10 PROBLEMS
10.1  Find V, in the network in Fig. 10.1.

2Q

102°A(%) 10 20

Fig. 10.1

10.2  Determine the impedance seen by the source in the circuit in Fig. 10.2.

0 410 1@
— e X

* 20
120 £0°V () j4Q % % 20 -

20

3Q

Fig. 10.2

10.3  Determine I}, I, V; and V; in the circuit in Fig. 10.3.

1£0°V

Ideal
Fig. 10.3

10.4  Given the circuit in Fig. 10.3, determine the two networks obtained by replacing (a) the
primary and the ideal transformer with an equivalent circuit and (b) the ideal transformer
and the secondary with an equivalent circuit.
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CHAPTER 10 SOLUTIONS

10.1  Our first step in the solution of this problem is to apply source transformation to the left-
end of the network and transform the 10.£0° A source in parallel with the 1Q resistor into
a 10£0° V source in series with the 1€ resistor as shown in Fig. S10.1(a).

j1Q i1Q
1Q 20 S ]

< 7

10 £0°V j20
[ ]

Fig. S10.1(a)

Let us redraw the network as shown in Fig. S10.1(b).

30 R O o

- o+ -

10£0°V D /D\/ V, v, I? 10 \
1

Y - -

O

Fig. S10.1(b)
The equations for this network are

-10+3L,+V =0
-Vo+L(1+31)=0
We now write the equations for the mutually coupled coils. In order to force the
variables in this circuit into our standard form for mutually coupled inductors, we must
reverse the signs on Vi, I} and I,. Therefore, the equations that relate V; and V; to I; and

I, in this case, are

-Vi=]2(-I) +j1(-Io)
V2 =]2(-I2) +j1(-I)

Combining the equations yields

B+ +jlL=10
AL+(+i3)L=0

Solving for I, in the second equation and substituting it into the first equation yields
[(B+j2)(-3+j1)+j1]LL=10

or
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=190
~11-12
=-0.894.10.3° A

And finally

V, =11

0 2

=-0.894210.3°V

10.2  Let us first determine the total impedance on the right side of the circuit as shown in Fig.
S10.2(a).

2Q

20

1Q

Fig. S10.2(a)
As the figure indicates

Z, =2+(1+2)|(-j2)
1+)2-32
=6—-j2Q
The original network can now be redrawn in the following form shown in Fig. S10.2(b).
j1Q
X

e + +

60
o + . 1
12020°v (¥) ) o %V, v, g ngp |
1 - -1 e 2 \'J2Q
30

Fig. $10.2(b)

10 -J1Q

|
AN

The two KVL equations for the network in Fig. S10.2(b) are

120=(4—j1) T, +V,
Vo=(6-j2)
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In order to force the variables in this circuit into our standard form for mutually coupled
inductors, we must reverse the sign on V,. Therefore, the equations that relate V; and V;
to [, and I, in this particular case, are

Vi=j4L+j11L
Vo=12L+jl1 ]

Combining all of these equations results in the following two equations.

4+i3) 1 +il L =120
Jl L+61L,=0

Solving the second equation for I, and substituting this value into the first equation yields
S|
(4+]3+gj11 =120

Then, the impedance seen by the source is

_120

S

z = 4.167 + 3Q

1
10.3 The KVL equations for this network are

1£0°=-1,(1)+ V,
V, =31, +2/0°

If we now force the variables in this circuit into our standard form for the ideal
transformer, we must reverse the signs on V| and I,. Therefore, the equations that relate
Vi to V; and I; to I, in this particular case, are

Solving the later equations for V, and I, and substituting these values into the first
equations yields

l=-1 +V,
-2V, =§I1 +2
2

Solving these equations produces
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[ =1.1422180° A
V,=0.142£180° V

Then, the transformer relationships yield

1
12 = 511
vV, =-2V,
Therefore,

[L=0.571£180° A
V,=0.284£0°V

10.4  As shown in the previous problem, the ideal transformer equations are

— Vl

—v_1
v, 2
11, +2(1,)=0

These two equations and the equation for reflecting impedance from the primary of the
transformer to the secondary i.e.,

are the necessary equations for developing the equivalent circuits.
(a) If we reflect the primary to the secondary, we note that
V,=-2V,
And
Zs=4Z,
Therefore, the voltage source in the primary becomes

V) = -2(1£0°)
=2/180°V
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And

Zs=4(1)
— 40

Therefore, the equivalent circuit in this case is shown in Fig. S10.4(a).

Fig. $10.4(a)

(b) Once again, using the ideal transformer equation to reflect the secondary to the
primary we obtain the network in Fig. S10.4(b).

Fig. S10.4(b)
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CHAPTER 11 PROBLEMS

11.1 In athree-phase balanced wye-wye system, the source is an abc-sequence set of voltages
with Vg, = 120£40° V rms. The per phase impedance of the load is 10 +j8Q. If the line
impedance per phase is 0.6 + j0.4€), find the line currents and load voltages.

11.2  An abc-sequence set of voltages feeds a balanced three-phase wye-wye system. If Vy, =
440240° V rms, Van =410£39° V rms and the line impedance is 1.5 +j1.0Q, find the
load impedance.

11.3  Inabalanced three-phase wye-delta system, the source has an abc-phase sequence and
Van =120£30° V rms. The line and load impedance are 0.6 +j0.4Q and 24 + j12Q),
respectively. Find the delta currents in the load.

11.4 A balanced three-phase source serves two loads:
Load 1: 32 kVA at 0.85 pf lagging.
Load 2: 20 kVA at 0.6 pf lagging.
The line voltage at the load is 208 V rms at 60Hz. Determine the line current and the
combined power factor at the load.

11.5 In a three-phase balanced system an abc-sequence wye-connected source with V,, =
220£0° V rms supplies power to a wye-connected load that consumes 36 kW of power in
each phase at a pf of 0.75 lagging. Three capacitors, each with an impedance of —j2.0Q2,
are connected in parallel with the original load in a wye configuration. Determine the
power factor of the combined load as seen by the source.
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CHAPTER 11 SOLUTIONS
11.1  First of all, we note that since this is a balanced system, we need only consider one phase
of the system. All currents in the two remaining phases have the same magnitude but are

shifted in phase by 120° and 240°.

Consider now the circuit for the a-phase shown in Fig. S11.1.

. 06Q j0.4Q A
V. =120 £40°V rms Load
80
n N
Fig. S11.1

In this circuit, lower case letters represent the source end of the network and capital
letters represent the load end of the network. The line current for this a-phase is

Van
IaA -
Z + ZLoad
_ 120 .£40°
10.6 + j8.4

=8.87/1.6° A rms.

Line

Then the load voltage for this phase is

v

AN

=1, 7
= (8.87 £1.6°) (10 + j8)
=113.59 £/40.26° V rms.

Load

The results for the two remaining phases are

Iy = 8.87£-118.4° A rms Ven = 113.59£-79.74° V tms
Iec = 8.87£-238.4° A rms Ven=113.592£-199.74° V rms.

11.2  The a-phase equivalent circuit for this system is shown in Fig. S10.2.
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AN

Fig. S11.2

We can approach this problem in a couple of ways. For example, note that by employing
voltage division, we can write

Z
VAN = Van o
ZLoad + ZLine

If we solve this equation for Z; .4, We obtain

where the quantities on the right side of the equation are all given.

We can also calculate the line current I,4 and use it with Van to determine Z; o.4. In this

later case
_ Van - VAN
R B |
=17.15/19.6° A rms
Then
Vv
ZLoad = I;:N
_ 410£39°
17.15/19.6°

=23.91/19.4°Q

11.3  To begin we convert the delta load to an equivalent wye. In this balanced case
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Y

, L
3

=8+ j4Q

Now the a-phase wye-wye circuit is shown in Fig. S11.3.

a 0.6Q  j0.4Q A
L. 8Q
V,, =120 £30°Vrms
74Q
n N
Fig. S11.3
Now the line current for this network is
~120430°
8.6+ j4.4

=12.4222.9° A rms

This is the current in the a-phase of an equivalent wye load. We can now convert this
current to the AB phase of the delta.

IaA o
I, =220, +30

V3

Therefore
Iag=7.174£32.9° A rms
The currents in the remaining phases of the delta are
Igc=7.17£-87.1° A rms and Icp = 7.17£-207.1° A rms.

11.4  The total complex power at the load is

S, =32Zcos™ (0.85)+20Zcos” (0.6) kVA
=32/31.79° + 20 £53.13° kVA

=51.15439.97° kVA

L3¢

Now, we know that
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SL3¢ :\/ng IL
And hence
[ = 51.15k
" 43(208)
=141.98 A rms

And the power factor at the load is

Pfioad = c0s(39.97°)
=0.766 lagging

11.5 The original situation, prior to adding the capacitors is

POLD = 36 kW

QoLp = PoLp tan OoLp
=36,000 tan 41.41°
= 31,749 var
where 41.41° = 0o1p = cos’! (0.75). Therefore,
SoLp =36 +j31.749 kVA
is the complex power for each phase.
If we now add the capacitor, the real power is unaffected by this and thus
Pnew = Porp =36 kW
However,

Qnew = Qorp + Qc

Where Q¢ is the reactive power supplied by the capacitor.

Q. =-joCV’ rms
_ —V’rms

Z|

or
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=-242 kvar

Therefore,

Qnew =31.79 - 24.2
=7.59 kvar

And hence

SNEW = PNEW + JQNEW
=36+ j7.59
=36.79 /11.9° kVA

And
PfNew = cos Onew

=cos 11.9°
=0.98 lagging
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CHAPTER 12 PROBLEMS
12.1  Sketch the bode plot for the following network function

36 (0.5jw +1)
jo) (0.02jo +1)

H(jo) -

12.2  Sketch the bode plot for the following network function

H(jo) 250jo (jo + 10)

“= o+ 1) (jo+ 50) (joo + 100)

12.3  Given the magnitude characteristic for the network function shown in Fig. 12.3, find the
expression for H(jo)

|H| -~
dB -20dB/decade
20dB -20dB/decade
-40dB/decade
i » Logo (rad/s)
1 20 100
Fig. 12.3

12.4  Given the series circuit shown in Fig. 12.4, determine the following parameters: ®,, Q

and the BW. If the resistance is changed to 0.1, what is the impact on these parameters.

1Q
v, G—L) 50uF
200pH

Fig. 12.4

Sketch the frequency characteristic for the two values of R. What conclusion can be
drawn from these two characteristics.

12.5 The network in Fig. 12.5 operates as a band pass filter. (a) Determine the transfer

function for the network, (b) find the upper and lower cut off frequencies and the band
width and (c) sketch the magnitude characteristic for this transfer function.
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CHAPTER 12 SOLUTIONS

First of all, we note that all the poles and zeros are in the standard form, e.g, the simple
pole and zero are each in the form (jot + 1). At low frequencies the controlling term is
the double pole at the origin. This term provides an initial slope for the magnitude

characteristic of -40dB/decade. Furthermore, this initial slope will intersect the 0dB line

at ® =+/36 =6 rad/s. However, before this initial slope intersects the 0dB line, we

encounter the break frequency of the zero at ® = 1. 2 rad/s. This term adds a
T

slope of +20dB/decade to the magnitude characteristic and thus the composite
characteristic changes from —40dB/decade to —20dB/decade. This characteristic
maintains this slope until another break frequency is encountered. The remaining pole

has a break frequency at o = 1 = OL =50rad/s. This term adds a slope of —

T
20dB/decade to the magnitude characteristic, and since there are no more poles or zeros
in the network function, the final slope of the magnitude characteristic is -40dB/decade.
The composite magnitude characteristic is shown in Fig. S12.1(a).

|H| 40dB/decad
dB - ecade
-20dB/decade

0dB f-------- ﬁ:~-.~,=
. -40dB/decade

»

» Logo (rad/s)

26 50
Fig. S12.1(a)

The composite phase characteristic for this network function is shown in Fig. S12.1(b).

Phase
in
degrees

OO
—90°
~180° y—/—\\——
2 50
Fig. S12.1(b)

» Log o (rad/s)

Once again, the initial phase, at low frequencies, is controlled by the double pole at the
origin that has a constant phase of -180°. The phase for the zero is an arc tangent curve
that provides 45° of phase at the break frequency, ® =2 rad/s. As the frequency
increases beyond the break frequency this term provides 90° of phase so the composite
curve approaches -90° of phase. As the frequency increases further, we encounter the
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simple pole which provides -45° of phase at its break frequency and finally -90° of phase
at higher frequencies. Thus the composite phase starts at -180°, moves toward -90°
because of the presence of the zero and finally ends up back at -180° because of the last
pole.

12.2  We begin the analysis by putting all the terms of the network function in standard form.
The function then becomes

H (jo) = 0.5j0 (0.1jo +1)
" (jo+1)(0.02jo +1)(0.01jo +1)

At low frequencies the magnitude characteristic is controlled by the zero at the origin.
This term provides an initial slope of +20dB/decade and it will intersect the 0dB line at

0= % =2rad/s. Prior to reaching this frequency we encounter the break frequency of

the pole (jo + 1) which occurs at ® = 1 = ! =1rad/s. This term adds a slope of —
T

20dB/decade to the magnitude characteristic and therefore the composite characteristic
has a net slope of —20 + 20 = 0dB/decade, i.e., the composite characteristic is flat until it
encounters another break frequency. The next break frequency is due to the simple zero

with break frequency at o = ﬁ =10rad/s. At this point, the composite curve changes
slope to +20dB/decade. The remaining two terms in the network function are poles with
break frequencies at ® = Olﬁ =50rad/s and o = ﬁ =100rad/s. Since each adds a

slope of —20dB/decade, the composite characteristic shifts from +20db/decade to
O0dB/decade and then to —20dB/decade. The total composite characteristic is shown in
Fig. S12.2(a).

|H| A
dB +20
1)) 30 TO— - -20dB/decade
+20dB/
decade
p Log o (rad/s
1 2 10 50 100 P Log (rad’s)

Fig. $12.2(a)

The composite phase characteristic for the network function is shown in Fig. S12.2(b).
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_~
Phase
in
degrees

+90°
OO
-90°

» Logo (rad/s)

1 10 50 100
Fig. S12.2(b)

At low frequencies, the initial phase is +90° due to the zero at the origin. The first break
frequency encountered is due to the pole term (jo + 1) with break frequency at ® =1
rad/s. Thus the phase shifts toward 0° on an arc tangent curve that provides -45° of phase
at ® = 1 rad/s. The phase proceeds toward 0° until it encounters the zero with a break

frequency of ® = ﬁ =10rad/s. This term shifts the phase toward +90° going through

+45° at the break frequency. The two remaining poles shift the composite phase back to
0° and finally to -90° as the characteristic indicates.

Examining the magnitude characteristic we note that at low frequencies the
characteristics has an initial slope of —20dB/decade indicating a single pole at the origin.
Furthermore, this initial slope passes through the 20dBs at @ = 1 rad/s. Since the slope is
—20dB/decade, this initial slope will cross the 0dB line at ® = 10 rad/s. Therefore, the
constant term, i.e., gain, in the network function is 10. Since the slope changes at ® = 1
rad/s from —20dB/decade to 0dB/decade, there is a simple zero at this break frequency.
At o = 20 rad/s, the slope changes again. This time the slope shifts from 0dB/decade to —
20dB/decade indicating the presence of a simple pole with break frequency @ = 20 rad/s.
Finally, there is another simple pole with break frequency o = 100 rad/s. Therefore, the
composite network function is

10 (joo +1)
(jo) (;(g + 1] (1J(;1()) + lj

For this network, the resonant frequency is

H (o) -

J(200x10°)(50x10°)
=10,000 rad/s
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The quality factor is
_o,L
Q=R
~(10*)(200x10™°)
1
=2
And the bandwidth is
BW =
Q
_10°
2
=5000rad/s

If the resistance, R, is now changed from 1Q to 0.1€2 the resonant frequency is
unaffected. However, the Q changes to

o,L
R
(10*)(200 x10°°)
0.1

Q=

=20

And the bandwidth is

BW =2

Q

_10°
20

=500rad/s

A sketch of the two frequency characteristics is shown in Fig. S12.4.
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R=0.1Q
10,000 rad/s
Fig. S12.4

» Logw

Note that the higher value of Q, i.e., lower value of R, produces a more selective circuit
with a much smaller bandwidth.

12.5 (a) Using voltage division, we can express the output as

V, = R I V
R + joL + —
joC
or
& 3 R
Vs R + j((DL - J
)
And therefore
& B RCw
- 1
Vsl [Reo) + (0 Le-1) ]2

(b) The upper and lower cut off frequencies are the roots of the characteristic equation,
1.e., the denominator of the transfer function.

At the lower cut off frequency
»’LC — 1=-RCo

or

O +—o-—-0,=0

==
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1 . . )
where, of course, ®, = c With the component values, this function becomes

o>+ 20000 — 10°=0

Solving for w; o, we obtain

~2000 +/(2000)" + 4 x 10°
Lo =
2
=48.8rad/s

Q)

At the upper cut off frequency
®’LC - 1=+RCo

or

and oy 1S

2000 +/(2000)" + 4 x 10°

O)Hl
2
=2048.8rad/s
Therefore, the bandwidth is
R
BW:(’OHI — O, :f
=2048.8 —48.8 = @
=2000rad/s

(c) Since the resonant frequency is

®, =

1
+JLC
B 1
A2x5%x10°°

=316.23rad/s
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The magnitude characteristic for the function is shown in Fig. S12.5.

dB 4

+20

-20dB/decade

»

STUDENTS-HUB.com

48.8

®,=31633 20488
Fig. S12.5

» Logo (rad/s)
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CHAPTER 13 PROBLEMS

13.1  Iff(t) = ™ sin bt, find F(s) using (a) the definition of the Laplace Transform and (b) the
fact that L[e™ f(t)] = F(s + a).

13.2  Find f(t) if F(s) is given by the expression

24s
B 6 64610

13.3  Find f(t) if F(s) is given by the expression

4s +4)
Fls)= s(s2 +8s + 20)

13.4  Find f(t) if F(s) is given by the expression

12(s +2)
Fls)= (s> +2s+1)(s +3)

13.5 Given the function

24(s +10)
F(S): s(s + 2) (s +4)

Find the initial and final values of the function by evaluating it in both the s-domain and
time domain.
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CHAPTER 13 SOLUTIONS

(a) By definition

And since f(t) = ¢™ sin bt

Using Euler’s identity

Evaluating the integral

1 1 1
_2_jL+a—jb_s+a+jb}
3 b

~(s+a)>+b’

(b) In this case f(t) = sin bt. Then
F(s)= Te‘“ sin bt dt

Again, using the Euler identity

Evaluating the integral

104
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s’ +b’
Then using the fact that L[e™ f(t)] = F(s + a) where in this case f(t) = sin bt and

b
F(s)=
(S) s’ +b’

we find that

F(s+a)=L [e’a‘ f(t)]
=L [e‘al sin bt]

5

(s+a)”+b’

13.2  The expression

24s
F(S): (s + 2)(5 +4)(s + 6)

can be written in a partial fraction expansion of the form

24s _ kK, N k, N k,
(s+2)(s+4)(s+6) s+2 s+4 s+6

Multiplying the entire equation by the term s + 2 yields

24s +k2(s+2)+k3(s+2)

(s+4)(s+6)_ 1 s+4 s+6

If we now evaluate each term at s = -2, we find that the last two terms on the right side of
the equation vanish and we have

24s
(s+4)(s+6) ‘

s = -2

-6=k

1

Repeating this procedure for the two remaining terms in the denominator, i.e., (s + 4) and
(s + 6) yields
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=k
(s+2)(s+6)‘s_4 :
24 =k,
And
sy
(s+2)(s+4) -
-18 =k,

Now the function F(s) can be written in the form

F(s) -6 24 18

= + -
s+2 s+4 s+6

The reader can check the validity of this expansion by recombining the terms to produce
the original expression.

Once F(s) is in this latter form, we can use the transform pair

1
s+a

L [e’at ] =

And hence
f(t)=[-6e + 24 —18¢* u(t)

13.3  We begin by writing the function in a partial fraction expansion. Therefore, we need to
know the roots of the quadratic term. We can either employ the quadratic formula or
recognize that

$+8s+20=5"+8s+16+4
=(s+4) +4
=(s+4-j2)(s+4+j2)

Hence, the function F(s) can be written as

-0 1

= + +
s(s+4-2)s+4+j2) s s+4-12 s+4+j2

F(s)= 4(s+4) k, k, k

Multiplying the entire equation by s and evaluating it at s = 0 yields
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4s +4) ~
s +8+20| , "

4
57

Using the same procedure for k;, we obtain

4s +4)
s(s+4+j2)

s=—-4+j2
1 —
—2+j_
__l.zk1
2-]
_(2+j)=k
5

1

1

L 20656°=k,

V5

Then, we know that
l *
— £-206.56° =k,

V5

Now using the fact that

L k|26 |k|z£-6
+
s+a—jb s+a+jb
The function f(t) is

4

107

} =2k, e cos (bt + 6)

f(t) = {— + 2 e cos (2t + 206.56")} u(t)

5 5

13.4  In order to perform a partial fraction expansion on the function F(s), we need to factor the
quadratic term. We can use the quadratic formula or simply note that (s + 1) (s + 1) =s*

+ 2s + 1. Therefore, F(s) can be expressed as

12(s + 2)

)= 643
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or in the form

12(s + 2) k, k, .k

(s+1) (s+3)=s+1+(s+1)2 s+3

F(s)=

If we now multiply the entire equation by (s + 1)?, we obtain

12(s +2)
s+3

N k, (s+1)2

=k, (s+1)+k i3

12

Now evaluating this equation at s = -1 yields

12(s +2)
s+3

In order to evaluate k;; we differentiate each term of the equation with respect to s and
evaluate all terms at s = -1. Note that the derivative of k;, with respect to s is zero, the
derivative of the last term in the equation with respect to s will still have an (s + 1) term
in the numerator that will vanish when evaluated at s = -1, and the derivative of the first
term on the right side of the equation with respect to s simply yields k;;. Therefore,

d{u@+2f
o5 | 5 =k11
ds| s+3 | |
(s+3)(12)-12(s + 2)(1)
2 :kll
(s+3) .
3=k,
Finally,
u@+3) k.
(s+1) .
-3=k,

And therefore, F(s) can be expressed in the form

3 6 3
F(s)= _
(S) s+1+(s+1)2 S+ 2
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Using the transform pairs, we find that
f(t)=[3e™ +6te™ -3¢ Jult)
13.5 First, let us use the Theorems to evaluate the function in the s-domain.

The initial value can be derived from the Theorem

lim f(t) = lim sF(s)
t—>0 S — ®©

Therefore,

limsE(s)= " {(24(5—“0)}

s—>o|(s+2)(s+4)

lim [ 24s + 240
S —> o _sz+6s+8

24 240

_ lim : S’
s—>® 1+§+§2
S S

=0
The final value is derived from the expression

lim f(t) = lim sF(s)
t>o s—>0

Hence,

limsF(s) lim [ 24(s+10)
s—0 _s—>0{(s+2)(s+4)}
240
T8
=30

The time function can be derived from a partial fraction expansion as

F(s)= 24(s+10)  k, k, k,

_s(s+2)(s+4)_?+s+2+s+4

where
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24(s +10) K, =30
(s+2)(s+4)s=0
A6+10) g
s(s+4) L
24(s +10) k=18
s(s+2) .
Hence,
F(s):ﬂ— 48 N 18
s s+2 s+4
and then

f(t)=[30 — 48¢ > +18¢ ™ u(t)

Given this expression, we find that

fim f(t)=[30—48+18]=0
t—>0

and
fim f(t)=[30—0+0]=30
t—> o
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CHAPTER 14 PROBLEMS

14.1 Find v, (t), t > 0 in the circuit in Fig. 14.1 using (a) nodal analysis, (b) source
transformation and (c) Norton’s Theorem.

2H 20
2u(t) vV
2u(t) A

Fig. 14.1

142 Find i, (t), t > 0 in the circuit in Fig. 14.2 using (a) loop equations and (b) Thevenin’s
Theorem.

N 2u(t) A
@

Fig. 14.2

14.3  Find i, (t), t> 0 in the circuit in Fig. 14.3.

t=0 t=0
1Q
12 u(t) V 2Q IF 12 u(t) V
TN
Fig. 14.3
. A . . V, (s)
14.4  Given the network in Fig. 14.4, determine (a) the voltage transfer function G(s) = v ( ) ,
S

(b) the undamped natural frequency, (c) the damping ratio and (d) the general form of the
response of the network to a unit step function.

vm(;;ﬁ?% @ w0

Fig. 14.4

14.5  Find the steady-state response v, (t) for the network in Fig. 14.5.
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v, (t) =6 cos 2t u(t) \%

10 v, (t)

Fig. 14.5
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CHAPTER 14 SOLUTIONS

14.1 (a) Consider the transformed network in Fig. S14.1(a).
V,(s)

2s

w | N

113

Fig. S14.1(a)

A brute force approach to this problem would be to write two nodal equations for the
nodes labeled V,(s) and V,(s). Using KCL and summing the currents leaving each node

yields the two linearly independent equations

2

VO 2, vie-ve)

and

2+~

0

Solving these equations for V, (s) and then performing the inverse Laplace transform

would yield v,(t).

Another approach that might be simpler would be to write a node equation for V, (s),

ignoring V, (s), and then use voltage division to derive V,(s) once V,(s) is known.

Applying KCL at V, (s) yields

Rearranging terms we obtain

Vl(s){l +

2
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or

2s° +4s+1| 2s+1
V)| |-

25 (4s +1) s?

Solving for V,(s) yields

2(2s +1)(4s +1)
s(2s2 +4s + 1)

Vi(s)=

Now applying voltage division

V, (S): \4 (S) N
4+§

_ 4(s+1)
28 +ds+1

This function can be written in partial fraction expansion form as

ds+2 A N B
sz+23+l s+0.29 s+1.71
2
where
A dst2 ~0.59
s+ 171
and
B 4s + 2 1341
s+029
Therefore,

v,(t)=[0.59¢*" + 341" [u(t) v

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid



115

(b) Using source transformation we can convert the voltage source in series with the
inductor to a current source in parallel with the inductor yielding the network in Fig.
S14.1(b).

——\\\—

Fig. S14.1(b)
Adding the current sources that are in parallel produces an equivalent source of

IEQ(S) 1 z=25+1

s s s’

The network is then reduced to that shown in Fig. S14.1(c).

1,(s)

2s+1 25

Fig. S14.1(c)
We could, at this point, transform the current source and inductor back to a voltage

source in series with the inductor. However, we can simply apply current division at this
point with Ohm’s Law and derive the answer immediately.

IO(S)=28+1 2s

2
S 25+2+1+2

s
B 4s + 2
2s* +4s +1

And

4s + 2
VO(S):QIO(S)ZS—I
S2 + 2S +E

which is identical to the expression obtained earlier.
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(c) To apply Norton’s Theorem we will break the network to the right of the current
source and form a Norton equivalent circuit for the elements to the left of the break as
shown in Fig. S14.1(d).

2s

*®  1.6)

w | N
4

Fig. S14.1(d)

The short-circuit current is

2
2
1 =S5 4=
SC(S) 2S S
_2s+1

And the Thevenin equivalent impedance is derived from the network in Fig. S14.1(¢e) as

ZTH(S) =72s
2s
I < ZTH (S)

Fig. S14.1(e)
Therefore, attaching the Norton equivalent circuit to the remainder of the network yields

the circuit in Fig. S14.1(f) which is the same as that in Fig. S14.1(c).

2s +1 s

Fig. S14.1(f)

14.2  (a) the transformed network is shown in Fig. S14.2(a).
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Fig. S14.2(a)

Since there are three “window panes” we will need three linearly independent
simultaneous equations to calculate the loop currents. Two of the currents go directly
through the current sources and therefore two of the three equations are

L(s)==

7]

The remaining equation is obtained by using KVL around the loop defined by the current
I(s). That equations is

11()+ - [L6)- 16+ 1[L6)- L) =0

Substituting the first two equations into the last equation yields

Iz(s){1+l+l}=%— 1

S S s+1

or

I(S): —s> +2s+2
0 s(s+1)(2s + 1)

Then
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L(s)=1,(s)-L,(s)

-8 +25+2 1
_s@+0@s+0+s+1
8T +3s+2
_s(s+1)(2s+1)
s+ 2
_s(25+1)

;(s+2)

Expressing this function in partial fraction expansion form we obtain

—(s+2) A B
Io(s): =—+
( lj S 1
S| s+ — + -
2
where
Lis+2)
A=2 1 =2
S+ —
2 s=0
—(s+2)
B __3
S 2
s= L
2
Therefore,

14g=[2_§e5}u0)A

(b) In order to apply Thevenin’s Theorem, we first break the circuit between the points
where the current I (s) is located as shown in Fig. S14.2(b).
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Fig. $14.2(b)

Applying KVL to the closed path in the lower left-hand corner of the network yields

1L (s)+ L [1,(s) = 1,(s)]+ V. (s) = 0

where
2
Il (S) =
]
-1
L(s)=——
2( ) s+1
Combining these equations we obtain
1 1 2
V,.(s)= + +—

s+1 s(s+1) s

_s+2

SZ

The Thevenin equivalent impedance obtained by looking into the open circuit terminals
with all sources made zero (current sources open-circuited) is derived from the network
in Fig. S14.2(c).

»n

« Z,(5)

[ ]

Fig. S14.2(c)

Clearly,
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If the resistor containing the I,(s) is now attached to the Thevenin equivalent circuit we
obtain the network in Fig. S14.2(d).

s+1
Z.,8)=—
TH() S IO(S)
+2 1
Vel0)="= O
Fig. S14.2(d)
Then
s+2
2
L) =57
—+1
s
. os+2
s(2s+1)

which is identical to the result obtained earlier.

14.3  To begin, we first determine the initial conditions in the network prior to switch action.
In the steady-state period prior to switch action, the capacitor looks like an open-circuit
and the inductor acts like a short-circuit. Therefore, in this time interval the circuit
appears as that shown in Fig. S14.3(a).

/ i (0) 20
o) (D) 1zuwv

2Q

Fig. S14.3(a)
This network indicates that in the steady-state condition for t <0

12
i (0)= =3A
i.(0) 242

and
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vc(0)=12( 2 J: 6V

2+2

These conditions cannot change instantaneously and hence the network for t > 0 is shown
in Fig. S14.3(b).

1Q 2H

i (0)=3A1 +

v (0)=6V
0 IFI _

Fig. S14.3(b)

12u(t) V

The corresponding transformed network is shown in Fig. S14.3(c).
1 6 2s

W
% ) @ 2 " L) é

Fig. S14.3(c)

©n = | =

Since the current I (s) is located in the center leg of the circuit, we will employ loop
equations and specify them such that one of the loops is the same as I (s) The two
equations for the loop currents specified in the network are

“210,6)+ L6+ 21,6)=0

“210,6)+ L6+ 6+ 251.6)+ 2 1,6)+ =0

Solving the second equation for 1, (s) yields

11-6s —s1 (s
IZ(S)z 2s’ +s+11()

Substituting this value into the first equation we obtain

é(30s2 +5+12)

, 1 1
S| s” 4+ s+~
)

L (S) =1, (S) =
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The roots of the quadratic term in the denominator, obtained using the quadratic formula,
are

1+Jﬁ

s ST
The expression for the desired current can now be written in partial fraction expansion
form as
L3057 45+12)
6 _é+ B N B’
1, A7) s 117 117
s|s+—%x]—— S——+]— Ss+—+]—
6 6 6 6 6 6
where
1 >
— (305 +s+12)
6 —A
, 1 1
ST+ —s+—
3 2 s =0
4=A
and
é(30$2+s+12)
=B
S s+l+j—\/ﬁ
6 6 )| | w

6 6

The evaluation of this last term involves a lot of tedious, but straight forward, complex
algebra. The result is

1.09 £62.74° =B

Therefore, knowing the values for A and B we can write the final expression for the
current in the time domain as

i,(t)= {4 +2(1.09) e cos(gt + 62.74°H u(t) A

14.4  (a) The transformed network is shown in Fig. S14.4.
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Lo e

Fig. S14.4

Using voltage division, the voltage transfer function can be expressed as

{0

T 48’ +2s+2

[\S] =] =

1
s+ —s+—
2

(b) The denominator, or characteristic equation, is of the form

s’ +20m,s + ©)

Therefore the undamped natural frequency is

and

1

0, =——==0.707r/s

V2

(c) The damping ratio is derived from the expression

1
2@0)0 = 5

and using the value for o, we obtain
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¢ =0.354

(d) If the input to the network is a unit step function then

R | = [N —

2

V,(s)=
s(sz + s+ lj

By employing the quadratic formula, we can write this expression in the form

1
vile)= 12 V7
s(s + " * _]4]

and therefore the general form of the response is

v ()= {A iBe co{% R eﬂ u()v

14.5  The transformed circuit is shown in Fig. S14.5.
V. (s)
s V(s
Q 1 ( )
/

1
1 S QI

Fig. S14.5

Although the network contains three non-reference nodes, we will try to simplify the
analysis by first using a supernode to find V,(s) and then employing voltage division to
determine V,(s).

KCL for the supernode containing the voltage source is

VOV VOV V) V)
1 S 1 2

Solving this equation for V(s) yields
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1+1
so that
;(S+l)
V,(s)= V,(s)
s+ s+1
Therefore,
1
—(s+1)
()= 2
s+ “s+1
2

Since v(t) = 6 cos 2t u(t) V, then Vy,y =6 and o, =2 . Hence,

1
(241
2(J+)

H(j2)=—=—
(12" + 5 (12) +1

- ;(2.236 £63.43°)

4.24 £ —-45°
=0.264 £-71.57°

and

|H(j2)|=0.264
0(j2)=-71.57°

Therefore,

125
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Voo (£)= Vy, [H(j2)] cos (2t + (2))
=1.58 cos (2t — 71.57°) V
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CHAPTER 15 PROBLEMS

15.1  Find the exponential Fourier series for the waveform in Fig. 15.1.

Ay

3 2 -1 0 1 2 3 4 5 t(s)
Fig. 15.1

15.2  Determine the trigonometric Fourier series for the function shown in Fig. 15.2.

v(t)

1A A

Fig. 15.2

15.3  Find the trigonometric Fourier series for the waveform shown in Fig. 15.3.
v(t)
A

-7 0 T 271

Fig. 15.3

15.4  Find the steady-state voltage v, (t) in the circuit in Fig. 15.4 if the input voltage is the
waveform shown in Fig. 15.3 with A =1V.
1Q

IH
Lo
v.(t)

2Q)

o|o<_|_
—
—
N

Fig. 15.4
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15.5  Given the network in Fig. 15.4 with the input source v_(t)=10e™ u(t) V, use the

transform technique to find v, (t).
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CHAPTER 15 SOLUTIONS
15.1  An examination of the waveform indicates that the period T=3 and ©, =—=—.

The Fourier coefficients are determined from the expression

c, =%iv(t) e ™ dt

or in this case

1 X 2 i
c, = l[ﬂ e dt+[le™ dt}
3l |

3jno, 0 !
e B A
3jno,
- ‘_1 [e’j“% + e —2]
3jnw,
—1 [ -2m  cidm
=- e’ +e’ -2
J2mn | }
:.1 2—[e3+e3D
J2mn
B Jnm —jnm
3 3
:‘1 29 e e’ +e
J2mn 2

In addition

Therefore,
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< 1 —jnn nm jno,t
v(t)=1+ > —|1-e ™ cos| — ||e"™
ns” Jnm 3

15.2  Since the waveform does not exhibit any symmetry, we will have to determine the
coefficients a,,a, and b . The a, coefficient is

0% “n

a, :%Lv(t)dt

. . 2m
where, of course, v(t) =t in the interval 0 <t < r and zero elsewhere and ©, = T =1.

1 =
a, =—/|tdt
0 2n£

_ (e
om| 2|, 4

Recall that a, is simply the average value of the waveform and therefore can be

2
calculated by dividing the area under the curve ( Area = % bh = %(n) (n) = %) by the

interval (27) which yields %.
The a, coefficient is

X
a, =—|tcosntdt
210

Using a table of integrals, we find that

1[1 I
a, =—|—cosnt+—tsmnt
TLn n

0

The second term is zero at t = 7t and 0 and the first term can be written as

a, =—[-1y -1

mn’

since the cosine term will be +1 or —1 depending upon the value of n. Thus
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In addition,

b, == Jtsin t dt
27‘Co

Once again, using a set of integral tables we find that

Iy 1 . 1 ’
b, =—|— sinnt ——t cos nt

Tln n 0

The first term will be zero at each limit, but the second term is nonzero at the upper limit
and thus

Therefore, the Fourier series expansion is

i’ n

v(t)= % + i{m} cos nt — TV i n

15.3  To begin our analysis we first note that the waveform is an even function and therefore
b =0 forall n. Thus, we need to find only the a, and a, coefficients.

: T :
For this waveform, we note that T =2n and o, = T 1. a, isnow

=— t)dt
= vl

However, recall that a is simply the average value and we can easily compute this

number without resorting to solving the above integral. This average value can be
obtained by dividing the area by the base, i.e.

Area = 26 bhj = 2(%(nA)) =A
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The base is 27 and therefore

nA A
aO
271; 2
Because the function is even,
a, = —j—t cos nt dt
2To T

where the equation of the straight line function in the interval 0 <t <7 is —t. So,
T

2A %
a, =—[tcosntdt
T o

Using a table of integrals, we find that

2A [ 1 1. i
a =— —zcosnt+—ts1nnt

n 2

n* | n n .
_2A {iz (cos n7 - 1)}
m* | n
= % (cos nm —1)
= (_ni‘; for n odd
=0 for n even
Therefore,

15.4  The input voltage for the circuit in Fig. 14.4 is given by the expression

+ Y
"5 ()

where o, =1. The output voltage for the network can be derived using voltage division
as
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and since o, =1

Since V, (dc) = %

Furthermore,

v, (0,)= ;—f {%gﬂ = 0.318 £168.69°

V, (3o, )= 9‘4 [22(1:993)} =3.09x10 £174.09°
m j

Vi (50,) = ad {22(1 +'1j55 )} ~1.09x 107 £176.28°
T + ]

V, (T, )= 4;42 {22(1 fgﬂ =5.54x10" £177.31°
T + ]

Hence,

v,(t)= % +0.318 cos(t +168.69°) + 3.09 x 10~* cos(3t + 174.09°)

+1.09x 107 cos (5t +176.28°) + 5.54 x 10 cos (7t +177.31°) + ...

15.5 The input function to the network can be expressed in the form
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10
jo+2

v, (jo)=

The transfer function for the network obtained in the previous problem is

: 2(1+ jo
Gljo)= 2(+ 3}03)

Then using the time convolution property of the Fourier transform we can express the
output of the circuit in the form

V, (j0)=G(jo) V, (jo)
1+J0) 10
24+3jo || 2+ jo

) 3(](0+1)

(joo + 2)(j(n+§j

which can be written as a partial fraction expansion of the form

20 .
?(Jw+1) _ A B
(j(o+2)(j(o+2) jo+2 jco+g
3 3
Evaluating the constants yields
2o +1)
oy =A=5
o)
3) -0
20 (JO)+ 1)
3 7 _p_>
(jo+2) 3

Therefore,
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And
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CHAPTER 16 PROBLEMS

16.1 Find the Y parameters for the network shown in Fig. 16.1 and then find the output
voltage of the two-port when a 4mA current source is connected to the input port and a
4kQ load is connected to the output port.

4kQ

4kQ 4kQ

Fig. 16.1

16.2  Find the Z parameters for the circuit shown in Fig. 16.2, and then find the current in a —
j4€Q) capacitor connected to the output port when a 6 £0° V source is connected to the

input port.
q1o 20
o—
2Q
O O
Fig. 16.2

16.3  Find the hybrid parameters for the circuit shown in Fig. 16.3. What conclusion can be
drawn from this result.

Fig. 16.3

16.4 Find the transmission parameters of the network in Fig. 16.1 by treating the circuit as a
cascade interconnection of elements.

16.5 Check the validity of the answers obtained in problems 16.1 and 16.4 by using the

parameter conversion formulas to convert the Y parameters in problem 16.1 to the
transmission parameters in problem 16.4.
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CHAPTER 16 SOLUTIONS
16.1 The equations for a two-port in terms of the Y parameters are

L=yuVitynVz
L=y VitynV;

I
Since y,, = 71 with V, =0, the network in Fig. S16.1(a) is used to find y;.

1

1 4kQ

1

V. =

2

Fig. $16.1(a)

Since V; is made zero with the short-circuit, the 4k resistor on the right is shorted and

V, =1, (4K 4k)
or
Ly -, -1
v, VZ_O_y“_sz

The parameter y;; is found from the expression

Yo =

2

V=0

The circuit in Fig. S16.1(b) is used to determine this parameter
I 4kQ I

1 2

+
V, =0 4kQ 4kQ 'V,

Fig. S16.1(b)
Note in this case, the 4kQ resistor on the left is shorted and
-1, (4k) =V,

or
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I, 1
R = = —S
v Yiz T

21lv, =0

We could continue this procedure and determine y; and y», in the exact same manner,

. . -1
however, since the network looks the same from either port, we know that y,, = e S

1 : . .
and y,, =—S. Therefore, the two-port equations for this network in terms of the Y
22 2k

parameters are

I1 :ivl _ivz
2k 4k
-1 1

[[=—V +—V
>4k ' 2k ?

If we now connect a 4mA current to the input and 4kQ load to the output, the terminal
conditions are

The two-port equations now become

1, 1

4
T 1 T Vz
k 2k 4k

-V, 1 1

=——V, +—V,
4k 4k 2k
or
4 1 1
T A 1__V2
k 2k 4k
Oz—LV1 —i—iV2
4k 4k
Simplifying
16 =8V, -V,
0=-V, +3V,
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or

16=8(3V,)-V,
16

V,=—V
23

The network with the terminal conditions attached is shown in Fig. S16.1(c¢).

\A v,
O
4kQ +
4mA 4kQ 4kQ 40 Vs
o

Fig. $16.1(c)

The nodal equations for this network are

vl )y (L) 4
4k 4k 4k ) k
-V, €1 +V, L+L+L =0
4k 4k 4k 4k
Note that these equations are identical to those obtained earlier.

16.2  The equations for a two-port in terms of the Z parameters are

Vi=znhi+zip b
Vo=z1 i +zn Dh

Since z,, =— with I, =0, the network in Fig. S16.2(a) is used to derive z;;.
10 32Q
20 I,=0
O

Fig. $16.2(a)

Note that with the output terminals open-circuited, I, =0. Then

2 = 2o

1 I,=0
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Likewise, the parameter z;5 is found from the expression

2 =0

The circuit used to derive this parameter is shown in Fig. S16.2(b).
510 j2Q
_l’_
Vl

O

Fig. S16.2(b)

With the input terminals open-circuited, I, =0. Since I, =0, there is no current in the
capacitor and therefore no voltage across it. Then V| is the voltage across the 2Q resistor

and
V] = 212
and hence
z, = Al =2Q
I2 I =0

In a similar manner, we find that

771 = 20

Zon =2+ _]2Q

Therefore, the two-port equations in terms of the Z parameters are

vV, =(2-j)1, +21,
V, =21 +(2+j2)1,

If we now apply the terminal conditions, the network is shown in Fig. S16.2(c).

410 20

2

40 I V

6.£0°V 0

Fig. S16.2(c)
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The terminal conditions are

V, =6 /0°V
V2 == (_ j4)12

And the two-port equations are

6 £0°=(2—jl)I, +21,
0=21+(2-j2)I,

Solving the second equation for I; and substituting this value into the first equation yields
6=(-1+)2-)+2hL

or

=3814£-232°A

16.3  The network is redrawn as shown in Fig. S16.3.
[ aQ [

1

Fig. S16.3
The two-port equations in terms of the hybrid parameters are

Vi=h; L1 +h,V,
L=hy I +hy Vs

and thus
\Y Vv
hH:I—l hlZ:v_l
Llv,=0 20 =0
I 1
h2]=1_2 h22=_2
Tlv,=0 20, =0

Let us now apply these definitions to the network. Note that
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v
h, =— =aQ)
Il V,=0
and
v
h, :71 =b
20, =0
In a similar manner
I
h21 = =C
Il vV, =0
and
| 1
hzz =2 =—S
V, Lo d

142

Note carefully the match between the network in Fig. S16.3 and the hybrid parameters.

This network is actually the hybrid model for the basic transistor and given the hybrid
parameters for a transistor, the model can be constructed immediately.

The network in Fig. 16.1 can be redrawn in the following manner as shown in Fig.
S16.4(a).

4kQ

(e, O O

Fig. S16.4(a)

In this form we see that the original network can be drawn as a cascade connection of
three networks. The general form of the transmission parameters is

V]:sz—BIZ
11:CV2—D12

Consider the network in Fig. S16.4(b).
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Fig. S16.4(b)

For this network

A=t
v

2

=0

_Vl

_IZ V,=0

Next consider the network in Fig. S16.4(c).

Fig. S16.4(c)

In this case

=1

L=0

A=

Vi
VZ
Vl

B=—1 =4k
1

2

V,= 0
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Since the transmission parameters for the resistor on the right are the same as those for
the resistor on the left, we have all the parameters for the individual networks. Now the

transmission parameters for the entire network are

BN M b

16.5
parameters are as follows.

— Yy

YZI

L4k L
| 0e+0(] oo
Ao o(5) (5 )@+
_:g 4k
L 2]

The conversion formulas necessary to convert the Y parameters to the transmission

-1

A B y
— 21
C D -Ay -y,

YZI

YZI

where Ay =y, y,, =¥, ¥, - From the results of problem 16.1

1
|:y11 Y12j|: 2k
Yu Yol |_L

4k

11 3
4k 16k 16k’

and Ay = . Hence,
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4k
1

2k
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A— YZZ 2k_2
yn L
4k
go—Ll_—1_ 4
y, 1
4k
-3
_A 2
co-AY _16k® _ 3
y, —l 4k
4k
-1
D— YII_A_Q’
y, 1
4k

These results check with those obtained in problem 16.4.
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APPENDIX: Techniques for Solving Linearly Independent Simultaneous Equations

In the solution of various circuit problems we encounter a system of simultaneous
equations of the form

a, X, +a,x, +---+a, x, =b,

a,x, +a,x, +--+a,x =b,

(A.1)

a x,+a,x,+--+a _x =b,
where the x’s and b’s are typically voltages and currents or currents and voltages,
respectively.

As the title implies, we assume that the equations are linearly independent. As a brief reminder
of the meaning of linear independence, consider the following KCL equations written for each
node of a three-node network:

3 1
EVI —EVZ -4=0 (A.2)
1 5

—EVI +gV2 +5=0 (A3)
-V, —%Vz -1=0 (A4)

where V; and V; are two node voltages that are measured with respect to the third (reference)
node. Linear independence implies that we cannot find constants a;, a,, and a3 such that

al(%Vl _%Vz —4)4—32(—%\/1 +%V2 +5j+a3(_vl _%VQ —1j=0 (AS)

However, in this case if we select a; = a, = a; = 1, we obtain

+%V1 —%VZ —4—%\/1 +%V2 +5-V, —%Vz ~1=0

0=0
Said another way, this means, for example, that Egs. (A.2) and (A.3) can be used to obtain Eq.
(A.4), and therefore, Eq. (A.4) is linearly dependent on Egs. (A.2) and (A.3). Furthermore, any

two of the equations could be used to obtain the third equation. Therefore, only two of the three
equations are linearly independent.
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We will now describe three techniques for solving linearly independent simultaneous equations--
Guassian elimination, determinants and matrices. Our presentation will be very brief and deal
only with the elements of these techniques that are needed in this student problem companion.

A.l Gaussian Elimination

The following example will serve to demonstrate the steps involved in applying this
technique.

Example A.1

Let us find the solution to the following set of equations:

7X, —4X, - X, =4 (A.6)
—4X, +7X, -2X, =0 (A.7)
~X, -2X, +3X, =-1 (A.8)

Solution The algorithm (i.e., step-by-step procedure) for applying the Gaussian
elimination method proceeds in the following systematic way. First, we solve Eq. (A.6)
for the variable X in terms of the other variables in X, and X3.

4 4. 1
)(1 :7+7X2 +7X3 (A9)

We then substitute this result into Egs. (A.7) and (A.8) to obtain
—X,-—X == (A.10)

+ X, =2 (A.11)

Continuing the reduction we now solve Eq. (A.10) for X; in terms of Xj:

16 18
2 =55 T4
33 33
Substituting this expression for X2 into Eq. (A.11) yields

(A.12)

336, 189
231 231

or

X3 = 0.563 (A.13)
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Now backtracking through the equations, we can determine X, from Eq. (A.12) as
X,=0.792

and X, from Eq. (A.9) as
X;=1.104

In this simple example we have not addressed such issues as zero coefficients or the
impact of round-off errors. We have, however, illustrated the basic procedure.

A2 Determinants

A determinant of order n is a square array of elements a;j arranged as follows:

all 12 aln
O (A.14)
a a a

The cofactor c;; of the element aj; is given by the expression
ci = (-1)A; (A.15)
where Aj; is the determinant that remains after the i row and j column are deleted.
Example A.2

Given the determinant

a, a4, a;
A= a, ay ay
a a a

32 33

find the cofactor of the element a,;.

Solution The cofactor of ¢»; for the element ,,; is

c., :(_1)2+1 a, a;

a a

32 33

The numerical value of the determinant is equal to the sum of products of the elements in
any row or column and their cofactors.
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Example A.3
Let us determine the value of the determinant in Example A.2 using the first row.
Solution

A = allcll + a12012 + a'13013

1+1 1+2 1+3
= an(_ 1) A11 +a, (_ 1) A12 +a, (_ 1) A13
. ay, Ay a, ay a, ay
=a, —dn t+a,
n Ay s Ay n Ay

Although the 2-by-2 determinants can be evaluated in the same manner, as illustrated
above, the result is simply

a b
d‘ =ad —cb (A.16)

c
Therefore, A is

A=a, (a,a, —a,a,)—a,(a,a, —a,a,)+a, (a21a32 - a31a22)
We could evaluate the determinant using any row or column.
The method of solving the set of simultaneous equations of the form shown in Eq. (A.1)
using determinants is known as Cramer’s rule. Cramer’s rule states that if A # 0 (that is,

the equations are linearly independent), the value of the variable x; in Eq. (A.1) is given
by the expression

bl a12 a'ln
b2 a22 a2n
: : (A.17)
Xl =£= bn a2n ann
A A

Where A is the determinant A in which the first column is replaced with the column of
coefficients. In the general case, X; is given by an expression similar to Eq. (A.17) with
the ith column replaced by the column of coefficients.

Example A4

Let us solve the following equations using determinants.
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211 — 412 =8
41 + 6l =4

Solution In this case, A defined by Eq. (A.16) is

a=?, =20 (4)-9=-4
Then using Eq. (A.17)
g8 —4
11=‘4_46 =(8)(6)—_(;4)(—4)= .
and
‘24 84‘
L=t =(2)(—4)_—4(—4)(8)__6

A3 Matrices

A matrix is defined to be a rectangular array of numbers arranged in rows and columns
and written in the form

11 a12 In
a21 a‘22 aZn
a'ml am2 a'mn

This array is called an m by n (m x n) matrix because is has m rows and n columns. A
matrix is a convenient way of representing arrays of numbers; however, one must
remember that the matrix itself has no numerical value. In the preceding array the
numbers or functions ajj are called the elements of the matrix. Any matrix that has the
same number of rows as columns is called a square matrix.

Example A.5

Are the following matrices?
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a
b1 374 3 2 1
, , 12 3]
cl’l2 4'ls 6 7 8
d

Solution Yes.
The identity matrix is a diagonal matrix in which all diagonal elements are equal to one.
Example A.6

Are the following identity matrices?

S O =
S = O

Solution Yes.

Consider now the multiplication of two matrices. If we are given an m x n matrix A and
an n x r matrix B, the product AB is defined to be an m x r matrix C whose elements are
given by the expression

C, :kgaikbkj, i=1L...m j=1,..,r (A.18)

1

Note that the product AB is defined only when the number of columns of A is equal to
the number of rows of B.

Multiplication is a “row-by-column” operation. In other words, each element in a row of
the first matrix is multiplied by the corresponding element in a column of the second
matrix and then the products are summed. This operation is diagrammed as follows:

C C a, a, b11 bij blp

¢ | = [=|la, o : : (A.19)
c. - c a_ - b, - |b |- b
m mp m mn n nj np

The following examples will illustrate the computational technique.
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Example A.7
If
1
A {2
1 2
C:& 4} and D:[ }
Find AB and CD.
Solution
AN+ @) @)+ (4)5)
[0+ @)2)]
P00+ (4)(2)} } Ll

|

The matrix of order n x m obtained by interchanging the rows and columns of an m x n
matrix A is called the franspose of A and is denoted by A”.

Example A.8
If
1 4
B=|2 5
3 6
Find B".
Solution

BT—123
14 5 6

As defined for determinants, the cofactor Aj; of the element a;; of any square matrix A is
equal to the product (-1)"” and the determinant of the submatrix obtained from A by

deleting row 1 and column j.
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Example A.9
Given the matrix
a1I a12 a13
A = a’21 a’22 a’23
a}l a32 a33

Find the cofactors Ay, Az, and Aj,.

Solution The cofactors Ay, Ajy, and A, are

a a
2|42 23
A11 _(_ 1) =a,a; —a5,a,,
a; ay
a a
3 (421 23
A12 - (_ 1) = —(321333 a31a23)
a; agy
a a
4|4 13
Azz _(_1) =a;a; —a;a,
as 33

The adjoint of the matrix A (adj A) is the transpose of the matrix obtained from A by
replacing each element aj; by its cofactors Aj;. In others words, if

a, a, - a,
A a, ay
a a
nl nn
then
A11 A21 Anl

adj A: AIZ AZZ

A, o o A

If A is a square matrix and if there exists a square matrix A™' such that

ATA=AAT=1 (A.20)
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Then A™ is called the inverse of A. It can be shown that the inverse of the matrix A is
equal to the adjoint divided by the determinant (written here as |A|); that is

Given

Find B..

Solution

and

Therefore,

A

2 3‘ ‘31
-1

18

o adj A
A

(A.21)

Example A.10

Il
W == N
— N W
N W=

1 2

=2-5+21=18

adiB=| 7 1 -5

1

We now have the tools necessary to solve Egs. (A.1) using matrices. The following

example illustrates the approach.

Example A.11

The node equations for a network are
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V1 +2V2+3V3=6
3V, +V, +2V3 =28

Let us solve this set of equations using matrix analysis.

Solution Note that this set of simultaneous equations can be written as a single matrix

equation in the form

or

2 3 11[v.] [9

12 3(|V,|=|6

31 2(|v,| |8
AV=1

Multiplying both sides of the preceding equation through A™ yields

or

ATAV = AT

V=A'l

A" was calculated in Example A.10. Employing that inverse here, we obtain

or

and hence,
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V, :?’—S,V2 :g,andV3 _2
18 18 18
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EQUATIONS

CHAPTER 1
Electric current-charge relationship Power
dq(t !
- —qd(t) o q(t) = /Ooi(x) dx ‘ZJ
Voltage-energy relationship Energy

R
dq
CHAPTER 2
Ohm’s law
1
v(t) = R X i(t) ori(t) = Gv(t) where G = X i(t) =
Power _
. 5 (1)
p(1) = v(0)i(r) = Rix(1) = —
’URZ =
Kirchhoff’s Current Law (KCL)
N
>i(t) =0
=1
Kirchhoff’s Voltage Law (KVL)
N
20(1) =0
j=1
Multiple series resistors & voltage divider
Ry=R, + R, + -+ Ry
. (1)
i(t) = R VR VR VR
S + 1 + 2 + 3
VW VW
R R, R, R, +
Vg, = R*SU(I) i(0) RiZvg,
o(t)
+
RsSvg,
Ry -

STUDENTS-HUB.com

eu——)
R, + R,

ea——)
R, + R,

7:]7:/01

1 1
Aw = / pdt = / vi dt
1 t

Two series resistors & voltage divider

(1)

R +R,

R,

(1)

R,

(1)

i(t)

(1)

i)

v(1) Rg=R;+ R+ R3+ - + Ry
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Two parallel resistors & current divider

RiR,
R,=——
R+ R,
RiR \
o(1) = Ryil1) = 2= i) \\
. m)D R, R, (1)
. _ 2 . . 3
i(t) = R+ R i(1) iy(1) i(1)
PN
(1) = oy g i)

Multiple parallel resistors & current divider

1 X -

g—;g' N (0 (0 ix(0) .
o(t) (1) R R, Ry i,(0) “ (SR,

ij(t) = —i,(t) - )

Delta-to-wye resistance conversion

R — R\R,
“ R +R +R

RyRy

"R +R,+ R,

R/R;
R =—""—
R +R, + R,

Delta-to-wye resistance conversion Wye-to-delta resistance conversion
(Special case: Identical resistors) (Special case: Identical resistors)
Ry = 3R, Ry = 3Ry

Wye-to-delta resistance conversion

_ R,R, + R,R. + R,R,
- 2

1

R,R, + R,R. + R,R,
2 = R

c

R,R, + R,R. + R,R,
3= R

a
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CHAPTER 3

Ohm'’s law expressed in node voltages

Ohm’s law expressed in loop currents

» Vso
A 4 Vo BN C
AAA + -
Ry + N +
Vg b Ry vy iy R4§ vy
F -, t E - vs + D

CHAPTER 5

Equivalent circuit forms

STUDENTS-HUB.com

CHAPTER 4

Ideal op amp

ii=i =0
V= v

- R, +R,
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Equivalent circuit forms (continued)

I 1 I 2
o
+
% Sk -y
o
Thévenin & Norton equivalent circuits
Voe = RThisc
UO
. L= lYC -
Uy = Voo — Ryl Ry,
Maximum power transfer theorem
(Thévenin v and R fixed, load R, variable)
R, =R ;R
»?
Bowa = ¢ v R,

v & R fixed, R, variable

CHAPTER 6

Parallel-plate capacitor-Capacitance Charge stored on a capacitor

g,A =Cv
C = q
d
’ _dq Current-voltage relationship of a capacitor
— 1 i 3
T d — dv
A + =0
(1) gy== C dr
Dielectric B - 1 .
' v(t) = = i(x)dx
0 =% [ i

(a) (b)
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Energy stored in a capacitor

Current-voltage relationship of an inductor

o) = L d’g)
i(t) = % [tv(x)dx

Energy stored in an inductor

wy (1) = 5 Li¥(1)]

CHAPTER 7

First-order circuits

The unit step function

0 tr<0
u(t) = 1 t>0

General form of the step response
of a first-order circuit excited at r = 7,

x(t) = x(00) + [x(tg) — x(c0)]e V7, 1 = 4,

where x(1,) is the initial value and x (c0) is
the final value.

Time constant of a first-order capacitive circuit

T = RThC

Time constant of a first-order inductive circuit

L

T =—
RTh
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Capacitors connected in series

1

CS i

M=

b
C

1

Il
-

Capacitors connected in parallel

C. =

P

C.

l

M-

i=1

Inductors connected in series

N

Ly= > L

i=1
Inductors connected in parallel
o1t
L, L;

i=1 i

Second-order circuits
Characteristic equation of a second-order circuit
2 2 _
s7 + 2lwys + w5 =0

Roots of the characteristic equation

s; = —lwg + oy \/Cz—l
5, = —{wy — o ch_l

Overdamped response (i.e., { > 1)

x(t) — Kle—(gwo—mﬂ\/f—l)z + Kze—(gm0+mu\/gz—1)z
Critically damped response (i.e., { = 1)
x(t) = Bje *' + Byte ™

Underdamped response (i.e., { < 1)
x(t) = e (A coswyt + Aysinwyt),

where ¢ = {0, and v, = 0w, V1 — {2
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CHAPTER 8

General form of a sinusoidal waveform
. 21T
x(t) = X sin(wt + 0) where ® = T 27 f

Conversion between sine and cosine functions

. Ly
sin| ot + —
2

™

cos| wt — —
2

V VM& VM
7 =—= - "
I I,/6, Iy

coswt =

sinwt =

Impedance

{ev_elzz&

Impedances connected in series

Impedances connected in parallel
1oL
z =~ Z

P 1

Impedances of R, L, and C

Passive element

N
|

CHAPTER 9

Average (real) power absorbed by an impedance
(watts)

P =3V, cos(ﬂv - 9,—)

Maximum average power transfer theorem
(When V. and Z, fixed, load Z; variable)

7, =R, + jX, =

Ry, — jXm = 2,
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Admittance
1 I
Y = — = —
7Z V

1
Y, =—=G
R
1 1
L= ——=——/90°
JjoL oL
Y. = joC = oC/90°

Admittances connected in series

L S 1
Yo =Y
Admittances connected in parallel

4=:2z

N
i=1

Impedance

R

= joL = jX; = oL /90°, X, = oL

1

1 1
—— = jXe == /90°, X, = ———
joC J2e ooCL ¢ wC

Average power absorbed by a resistor

2
Vims

P=1I>.R=
R

Power factor (pf)
pf = cos(ev — 6;) = cosfy,
Complex power (volt-amperes)
P+ jO = VrmS&Irmsﬂ
= VinsIoms /00 — 6,

S

= 7

rms
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V.. & Z, fixed, Z; variable

Maximum average power transfer theorem
(Special case: X; = 0)

R, = VR%h + X%h

RMS value of a sinusoidal waveform

Iy
Irms =
V2

Average power absorbed in terms of rms values

P = Vo lscos(0, — 6,)

CHAPTER 10

Magnetic flux, voltage and current relationships
N = Noé = Li webers

d\ di
v=—=]—
dt dt

Phasor voltage-current relationships
for mutually coupled coils

V, = joLI;, + joMI,
V, = joL,I, + joMI,;

Energy stored in magnetically coupled inductors
w(t) = L) + 3 L[i(0)] + Mir(0)i(0)
The coefficient of coupling

k =

where 0 =k =1

M
VL L,

Ideal transformer equations in phasor form

Vi_L_M
V2 Il NZ
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E-7
Average (real) power (watts)

P = Re(S) = Viylmscos(0, — 6,) = 1%, Re(Z)

Reactive power (vars)

0= Im(s) = Vs Lrms Sin(ev - ez) = I?mslm(z)

Power triangle relationship

tan(ﬁv - 6,-) = tanf, = %

Voltage-current relationships for
mutually coupled coils

di() n Mdiz(’)

t) =L
v (1) " d
di\(1) dix(1)
- M +L
vy(1) d 2

Ideal transformer equations

v i N
Uy ih N
al
A
) —0 !
WO 4 .
) 0, (0 N, N,
oe—r

The turns ratio of a transformer

N
N

n
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CHAPTER 11

Three-phase terminology

Quantity Wye Delta
Line current (I L)

.1, 1

Phase current (I p)

Line-to-neutral voltage (V,,)

Van’ Vbn’ Vcn

Phase voltage (V,,)

Line-to-line, phase-to-phase, line voltage (VL)

Vi Vier Veu Phase voltage (V,,)
L,.IL.I, Phase current (Ip)

Voltage, current, and impedance relationhips of Y and A configurations

Y A

Line voltage V3V, /b + 30° v, /b + 30°

(Vab or VAB) =V, /b + 30°

Line current I, I./8 1. /8

Phase voltage V,[d (Vo 0r Vay) V3V, /d + 30°
I

Phase current 1,/0 — /6 + 30°
V3

Load impedance Zy/d — 0 3Zyv/d — 0
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CHAPTER 12
Resonant frequency of a series or parallel RLC circuit

Wy =

SI-
a

Quality factor of a series RLC circuit

R oCR R\NC

Bandwidth of a series RLC circuit

W

BW:‘DHI_‘DLOZE

where

1 1)
o= ~36 +(ag) 1

1 1)\?
")HI:"JOE"_ ? + 1

and
2 _
Wy = WLoWH

Quality factor of a parallel RLC circuit

0= _pfC
BW L
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Bandwidth of a parallel RLC circuit

1

BW:‘”HI_(’)LO:E
where
1 1 1
@0 = “ore "N 2rer ' Ic
and

1 I 1
= —— 4\t
@H= oRC (2RC)? ' LC

Half-power (break) frequency of a
first-order RC filter

Bandwidth of a series RLC bandpass filter

BW:O‘)HT_“OLO:Z

=
A==
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CHAPTER 13
Laplace transform of a function f(r) Laplace transforms of some special functions
S - f(t) F(s)
LIf(t)] = F(s) = / f(t)e™ dt
0 3(1) 1
The unit impulse function 0 1
" L
N
Mt —1,) =0 t#1 » 1
¢ s+ a
and 1
+ t s
tote
/ 3t —tp)dt=1 &>0 ” I
fh—e n! gt
wr 1
Sampling property of the unit impulse function te (s + a)?
6 f (to) Hh<ty<t e ™ _
1)d(t — tp) dt = n! (s + a)"!
/lf()( o) {O to < 1y, 1y > 1 ,
sin bt EpE
The initial-value theorem
N
. . cos bt 3 5
th_r)r(l)f(t) = SILIEIOSF(S) s>+ b
e sinbt b2 >
The final-value theorem (s +a)y+b
. T Car s+ a
tlggf(t) - L%ILT(I)SF(S) ¢ eosht (s +a)Y+ b
Some properties of Laplace transform
Property Number f(t) F(s)
1. Af (1) AF(s)
2. [(t) £ f(1) Fi(s)  Fy(s)
3. Flar) 1F<5>,a =0
a a
4. it = to)ult — 1,),20=0 e F(s)
5. F)ult — 1) e LI f(t + 1,)]
6. e f(t) F(s + a)
d"f(t) " n—1 n—=2r1 0 pn—1
7' dl‘" s F(‘Y) - f(o) - s f (0) s f (0)
dF(s)
8 1f(t) R
9 @ / “FOOa
10. rf(x)dx %F(s)
o !
11. A SN fo(t = N)dn F,(s)Fy(s)
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CHAPTER 14

The voltage-current relationship of a
resistor in the s-domain

V(s) = RI(s)

The voltage-current relationship of a
capacitor in the s-domain

CHAPTER 15

Trigonometric Fourier series of
a periodic function f ()

f(t) =ay + iD,, cos(nwyt + 6,)

n=1

(oo}
a, + E a,cosnwyt + b, sinnwyt

n=1

where
2 H+T,
ay =7 / f(2) cosnwyt dt
0 Jy
2 n+T,
b, = T/ f(t) sinnwt dt
o Ji,
and

Dn& =4a, — ]bn

Exponential Fourier series of
a periodic function f(7)

0
f1) = 3 eem
n=-00

where

1 H+T,

¢, =— f(t)e ™ dt
TO i1

Relationships between various Fourier series
coefficients

Dn& = ch =a, — an
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The voltage-current relationship of a
inductor in the s-domain

V(s) = sLI(s) — Li(0)

V(s) | i(0)

I(s) = — +
()=, T

Transfer or network function
Y, (s)
Xi(s)

= H(s)

Fourier transform pair
F(w) = F[f(1)] = / f(t)e 7 dr

() = FF(o)] = L /mF(w)ej“”dm

2w ) o

Fourier transform of some special functions

f(t) F(w)

3(t — a) e v

A 2mAd (w)

et 273w — o)

cos wyt (0w — wy) + (0 + )
sin wof Jmd(0 + @) — jmd(w — w))

1
a+ jo

e “u(t),a >0

2a
a + o

e g >0

ot ()a>0 jo + a

e coswytu(t), a —

0 (jo + a)* + w}
Wy

e “sinwgtu(t),a >0 —
oru(1) (jm+a)2+w%
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Some properties of Fourier transform

f(t) F(o) Property
Af(r) AF(w) Linearity
Sit) £ f(1) F(0) £ Fy(w)
1 o) . .
f(at) *F(*), a>0 Time-scaling
a \a
e = 1) e 7F (o) Time-shifting
e f (1) Flo — o) Modulation
d"f(1) .
d"F(w) : .
t"f (1) ) - Differentiation
dw

[ TRWAG - Dds Fy(w)Fs(w)

Convolution
1 o0
AOA0) = [ R — 2 a
Convolution property of the Fourier transform
Vi(0) = H(w)V/(o)
CHAPTER 16
Two-port network admittance equations Two-port network impedance equations

|:11:| _ |:Y11 Y12:||:V1:| |:V1:| _ |:111 z12:||:11:|
L Ya Y v, v, Z 1Ip L

Impedance parameters

: \4 Vi
Linear 2, = — Zp, =
network I L=0 L L,=0

LV 2
21 — 22 —
I, L=0 L 1,=0

Admittance parameters
Two-port network hybrid equations

I I
Yu = Yo =
Vilv,=0 Valv,=o
Yy = & Yoy = k L hy  hy, v,
! Vilv,=0 2 Valv,=o
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Hybrid parameters Transmission parameters
hy = o hy = A=
" I V,=0 . v, I,=0 V2 L=0
L L A\
h, = — h,, = B=—
. L |v,=0 . Vali=o ~Lv,-o0
Two-port network transmission equations c I,
v, L=0
Vi|{_ |A B Vv,
I] C D _12 D = L
_12 V,=0

Two-port network parameter conversions

Y2 Yo A A Ay by
[zn z12:| Ay Ay CcC C hy  hy
2 Ip “Ya o Yu 1 D hy, 1
Ay Ay C C h,, hy
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