Arithmetic and Logic
Instructions and Programs

Chapter -3-

STUDENTS-HUB.com Uploaded By: anonymous

Arithmetic Instructions

i 28 2726 25 24

21 20 19

16 15

12

11 0

Cond

00 l!ﬁ OpCode
1]

Rn

Rd

Operand 2

S=0, do not update flag (default).

Instruction (Flags unchanged)

S=1 update flags

Instruction (Flags updated)

ADD Add ADDS Add and set flags

ADC Add with carry ADCS Add with carry and set flags

SUB SUBS SUBS Subtract and set flags

SBC Subtract with carry SBCS Subtract with carry and set flags
MUL Multiply MULS Multiply and set flags

UMULL | Multiply long UMULLS | Multiply Long and set flags

RSB Reverse subtract RSBS Reverse subtract and set flags
RSC Reverse subtract with carry | RSCS gz\grsrse subtract with carry and set

for signed data and are discussed in Chapter 5.

Note: The above instruction affect all the Z, C, V and N flag bits of CPSR (current program status register) but the N and V flags are

STUDENTS-HUB.com

Uploaded By: anonymous

ADD Rd,Rn,0Op2 ;Rd = Rn + Op2

LDR R2,=0xFFFFFFF5 :R2=0xFFFFFFF5 (notice the = sign)
MOV R3,#0x0B
ADDS R1,R2,R3 ;R1=R2 + R3 and update the flags

C =1, since there is a carry out from D31
Z =1, the result of the action is zero (for the 32 bits)

No increment instruction in ARM

ADDS R4,R4,#1

ADC (add with carry)
ADC Rd,Rn,0Op2 ;Rd=Rn+ 0Op2 +C

This instruction is used for multiword (data larger than 32-bit) numbers.

Subtraction of unsigned numbers Example: |
SUB Rd,Rn,0p2 ;Rd =Rn - Op2 MOV R1,#0x4C ;R1=0x4C
MOV R2,#0x6E ;R2 = Ox6E

SUBS RO,R1,R2 ;RO =R1-R2

STUDENTS-HUB.com Uploaded By: anonymous

SBC (SU btract with bOI’I’OW) This instruction is used for subtraction of multiword (data larger than 32-bit)
SBC Rd,Rn,0p2 ;Rd=Rn-0p2-1+C numbers.

To invert the carry flag while running the subtract with borrow instruction it is implemented
as“Rd=Rn-0p2-1+C"

No decrement instruction in ARM
RSB (reverse subtract)
RSB Rd,Rn,0Op2 ;Rd = Op2 — Rn

MOV R1,#0x6E ;R1=0x6E
RSB RO,R1,#0 ;RO=0-R1

RSC (reverse subtract with carry)

RSC Rd,Rn,0p2 ;Rd=0p2-Rn-1+C

STUDENTS-HUB.com Uploaded By: anonymous

o : : ; Not all CPUs have instructions for multiplication and division. All the ARM
Multi pllcatlon of u nsig ned numbers in ARM processors have a multiplication instruction but not the division.
Instruction Source 1 Source 2 Destination
MUL Rn Op2 Rd (32 bits) Rd=RnxOp2
UMULL Rn Op2 RdLo,RdHi (64 bits) RdLo:RdHi=RnxOp2

Note 1: Using MUL for word x word multiplication provides only the lower 32-bit result in Rd and the rest are dropped if the result is
greater than 32-bit. If the result is greater than OxFFFFFFFF, then we must use UMULL (unsigned Multiply Long) instruction.

Note 2: in word-by-word multiplication using MUL instruction, if the result is greater than 32-bit only the lower 32-bit is saved by ARM
and the upper part is dropped without setting any flag. In some CPUs the C flag is used to indicate the result is greater than 32-bit but
this is not the case with ARM.

: The normal multiply instruction (MUL) is used when the result is less than
MUL (m ulti ply) 32-bit, while the long multiply (MULL) must be used when the result is greater than 32-
MUL Rd,Rn,0Op2 ;Rd = Rn x Op2 bit.

MOV R1,#0x25 ;R1=0x25
MOV R2,#0x65 R2=0x65
MUL R3,R1,R2 'R3 = R1 x R2 = 0x65 x 0x25

LDR R1,=100000 ;R1=100,000
LDR R2,=150000 ;R2=150,000
MUL R3,R2,R1 ‘R3 is not 15,000,000,000 because it cannot fit in 32 bits.

* For this reason we must use UMULL (unsigned multiply long) instruction if the

result is_lgoirllﬂJto be greater than OXFFFFFFFF.
STUDENTS-HUB.com Uploaded By: anonymous

UMULL (unsigned multiply long)
UMULL RdLo,RdHi,Rn,0p2 ;RdHi:RdLoRd = Rn x Op2

LDR R1,=0x54000000 ;R1 = 0x54000000
LDR R2,=0x10000002 ;R2 = 0x10000002
UMULL R3,R4,R2,R1 ;0x54000000 x 0x10000002

: = 0x054000000A8000000
‘R3 = OxA8000000, the lower 32 bits
;R4 = 0x05400000, the higher 32 bits

Multiply and Accumulate Instructions in ARM
MLA Rd,Rm,Rs,Rn ;Rd=Rm x Rs + Rn

MOV R1,#100 ;R1 =100
MOV R2,#5 R2=5
MOV R3,#40 ;R3 =40

MLAR4,R1,R2,R3 ;R4=R1xR2+R3=100x5+40=2540

UMLAL RdLo,RdHi,Rn,0Op2 ;RAHI:RdLo = Rn x Op2 + RdHIi:RdLo

STUDENTS-HUB.com Uploaded By: anonymous

Logic Instructions

Instruction Instruction
Action Hexadecimal

(Flags Unchanged) (Flags Changed)
AND ANDing ANDS Anding and set flags
ORR ORRing ORS Oring and set flags
EOR Exclusive-ORing | EORS Exclusive Oring and set flags
BIC Bit Clearing BICS Bit clearing and set flags
31 28 2726 25 24 21 20 19 16 15 12 11 0

Cond s| Rn Rd Operand 2

S=0, do not update flag (default). S=1 update flags
AND Rd, Rn, Op2 ;Rd = Rn ANDed Op2
ORR Rd, Rn, Op2 ;Rd = Rn ORed Op2

EOR Rd,Rn,Op2 ;Rd = Rn Ex-ORed with Op2

BIC (bit clear)
The BIC (bit clear) instruction is used to clear the selected bits of the Rn register.

BIC Rd,Rn,Op2 ;clear certain bits of Rn specified by The selected bits are held by Op2. The bits that are HIGH in Op2 will be cleared and bits
with LOW will be left unchanged.

;the Op2 and place the result in Rd
Examples Page 140

STUDERTSRAANR NG Op2 Uploaded By: anonymous

MVN (move negative)

MVN Rd, Rn ;move negative of Rn to Rd generate one’s complement of an operand
“‘“MVN R2,#0” will make R2=0xFFFFFFFF Vs. LDR Rd,=OxFFFFFFFF

LDR R2,=0xAAAAAAAA ;R2 = OXAAAAAAAA
MVN RO,#0 ;RO = OXFFFFFFFF
EOR R2,R2,R0 ;R2 = R2 ExORed with OXFFFFFFFF ; = 0x55555555

MVN (move negative) instruction is used to generate one’s complement of an
operand.

We can also use Ex-OR instruction to generate one’s complement of an operand.

STUDENTS-HUB.com Uploaded By: anonymous

Rotate and Barrel Shifter

There are two kinds of shifts: logical and arithmetic. The logical shift is for unsigned
Barrel Shifter operands and the arithmetic shift is for signed operands.

SR 0 —»|MSB——»LSB |—»|C

MOV RO,#0x9A ;RO = Ox9A
MOVS R1,R0O,LSR #3 ;shift RO to right 3 times ;and then move (copy) the result to R1

MOV RO,#0x9A
MOV R2,#0x03
MOV R1,RO,LSR R2 ;shift RO to right R2 times ;and move the result to R1

S |C|e«—MSBe——LSB |«—0

LDR R1,=0x0F000006
MOVS R2,R1,LSL #8

TIMES EQU 0x5

LDR R1,#0x7 ;R1=0x7
MOV R2 #TIMES ;R2=0x05
MOV R1,R1,LSL R2 ;shift R1 left R2 number of times ;and place the result in R1

STUDENTS-HUB.com Uploaded By: anonymous

Operation Destination Source Number of shifts
LSR (Shift Right) Rd Rn Immediate value
LSR (Shift Right) Rd Rn register Rm
LSL (Shift Left) Rd Rn Immediate value
LSL (Shift Left) Rd Rn register Rm

Note: Number of shift cannot be more than 32.

Arithmetic shift right ASR

ROR (rotate right)

Rotate left

There is no rotate left option in ARM7 since one can use the rotate right (ROR) to

— | MSB ——» | SB

do the job. That means instead of rotating left n bits we can use rotate right 32—n bits to do the job of rotate left

RRX rotate right through carry

MSB ———LSB (—»

STUDENTS-HUB.com

l

Uploaded By: anonymous

Operation Destination Number of Rotates

ROR (Rotate Right) Rd Rn Immediate value

ROR (Rotate Right) Rd Rn register Rm

RRX (Rotate Right Through

Carry) Rd Rn 1 bit

1) Instructions with Immediate operand
Syntax: Instruction Rd, Rn, Immediate, rotate

31 28127 26 25 24 21 20 19 16 15 12 11 8 7 0
Cond |00 Opcode |S Rn Rd Rotate Immediate

2) Instructions with Register operand
A) a register represents the shift amount
Syntax: Instruction Rd, Rn, Rm, ShiftType Rs

31 28 25 24 2120 19 16 15 12 11 876543 0
Cond 00 J0] Opcode |S Rn Rd Rs 0 fType|l Rm
o Y
00: LSL
' 01: LSR
B) shifted fixed amount 10: ASR
Syntax: Instruction Rd, Rn, Rm, ShiftType shiftAmount 11: ROR
31 28 2524 2012019 1615 12 11 87 68543 0
Cond |00 0] Opcode |S Rn Rd Shift amount | Type | 0 Rm

Figure 3- 5: Data Process Instructions

STUDENTS-HUB.com Uploaded By: anonymous

BCD and ASCII Conversion

Un paCked BCD “0000 1001” and “0000 0101” two terms for BCD numbers: (1) unpacked BCD, and (2) packed BCD.
Packed BCD “0101 10017 is paCked BCD for 59 In unpacked BCD, the lower 4 bits of the number represent the BCD number and the
rest of the bits are 0.

ASCII numbers Ilcr)]v:[g? jf:absites%fn%agﬁgc?nBt(ﬁg),uera)psérg%flebitgj[e has two BCD numbers in it, one in the

Key ASCII Binary(hex) BCD (unpacked) In ASCII keyboards, when key “0” is pressed, “011 0000” (0x30) is provided to the

0 30 011 0000 0000 0000 compuer

1 31 011 0001 0000 0001

2 32 011 0010 0000 0010

3 33 011 0011 0000 0011

4 34 011 0100 0000 0100

5 45 011 0101 0000 0101

6 36 011 0110 0000 0110

7 37 0110111 0000 0111

8 38 011 1000 0000 1000

9 39 011 1001 0000 1001

STUDENTS-HUB.com Uploaded By: anonymous

ASCII to packed BCD conversion

MOV R1,#0x37 ;R1 = 0x37

MOV R2,#0x32 ;R2 =0x32

AND R1,R1,#0x0F ;mask 3 to get unpacked BCD

AND R2,R2,#0x0F ;mask 3 to get unpacked BCD

MOV R3,R2,LSL #4 ;shift R2 4 bits to left to get R3 = 0x20
ORR R4,R3,R1 ;OR them to get packed BCD, R4 = 0x27

Packed BCD to ASCII conversion

MOV RO0,#0x29

AND R1,RO,#0x0F ;mask upper four bits

ORR R1,R1,#0x30 ;combine with 30 to get ASCII

MOV R2,R0,LSR #04 ;shift right 4 bits to get unpacked BCD
ORR R2,R2,#0x30 ;combine with 30 to get ASCII

STUDENTS-HUB.com

the ascii 3 and the number !

Uploaded By: anonymous

the ascii 3 and the number !

Chapter 4: Branch, Call, and Looping in ARM

Using instruction BNE for looping
The BNE (branch if not equal) instruction uses the zero flag in the status register

BACK ;start of the loop

......... ;body of the loop

......... ;body of the loop

SUBS Rn,Rn,#1 'Rn=Rn-1,settheflagZ=1ifRn=0
BNE BACK ;branch if Z=0

;— this program adds value 9 to the RO a 1000 times —
AREA EXAMPLE4 1, CODE, READONLY

ENTRY

LDR R2,=1000 ;R2 = 1000 (decimal) for counter

MOV RO,#0 ;RO =0 (sum)

AGAIN ADD RO,R0,#9 ;R0 =RO0 + 9 (add 09 to R1, R1 = sum)

SUBS R2,R2,#1 ;R2 = R2 - 1 and set the flags. Decrement counter
BNE AGAIN ;repeat until COUNT =0 (when Z =1)

MOV R4,R0 ;store the sum in R4

HERE B HERE ;stay here

END

STUDENTS-HUB.com Uploaded By: anonymous

INSTRUCTIONS

| Loaocounter | LDR R2. =1000

| CLEAR RO | MOV RO, #0
[Aobvalie | AGAIN ADD RO,RO,#9
IDECREMENT COUNTER l SUBS R2,R2 #1

= BNE AGAIN

YES

I PLACE THE RESULT IN R4 | MOV R4. RO

STUDENTS-HUB.com

Example:
Write a program to place value 0x55 into 100 bytes of RAM locations

AREA EXAMPLE4 2, CODE, READONLY

ENTRY

RAM_ADDR EQU 0x40000000 ;change the address for your ARM
MOV R2,#25 ;counter (25 times 4 = 100 byte block size)
LDR R1,=RAM_ADDR ;R1 = RAM Address

LDR R0,=0x55555555 ;RO = 0x55555555

OVER STR RO,[R1] ;send it to RAM

ADD R1,R1,#4 ;R1 = R1 + 4 to increment pointer
SUBS R2,R2,#1 ;R2 = R2 — 1 for dec. counter
BNE OVER ;keep doing it

HERE B HERE

END

Uploaded By: anonymous

Instruction Action

ADDS R1,R1,#1 :C =1, increment

BCS/BHS branch if carry set/branch if higher or same Branchif C=1 L3 ADDS RO,RZ ,RO — RO + RZ and Set the flagS
BCC/BLO branch if carry clear/branch lower Branchif C=0 BCC L4 ,|f C — O, add next number

BEQ branch if equal Branch if Z. = 1 ADDS R1,R1,#1 ;if C =1, and set the flags
BNE branch if not equal Branchif Z=0 L4

BLS branch if less or same Branchif Z=10orC=0

BHI branch if higher Branchif Z=0and C=1

MOV R1,#0 ;clear high word (R1 = 0)

MOV RO,#0 ;clear low word (RO = 0)

LDR R2,=0x99999999 ;R2 = 0x99999999

ADDS R0,R0,R2 ;RO = RO + R2 and set the flags

BCC L1 ;if C =0, jump to L1 and add next number

ADDS R1,R1,#1 ELSE, increment (R1=R1 + 1)

L1 ADDS RO,RO,R2 ;RO = RO + R2 and set the flags

BCC L2 ;if C = 0, add next number

ADDS R1,R1,#1 J1f C =1, increment

L2 ADDS RO,R2 ;RO = RO + R2 and set the flags

BCC L3 ;if C = 0, add next number

STUDENTS-HUB.com Uploaded By: anonymous

Comparison of unsigned numbers

CMP Rn,0Op2 ;compare Rn with Op2 and set the flags

Instruction C Z

Rn > Op2 1 0

Rn = Op2 ! 1 Division by repeated subtraction

Rn < Op2 0 0 AREA PROG_4_2, CODE, READONLY ;Division by subtractions

LDR R1,=0x35F ;R1 = Ox35F

LDR R2,=0xCCC ;R2 = 0xCCC

CMP R1,R2 ;compare 0x35F with OXxCCC
BCC OVER ;branchif C=0

MOV R1,#0 ;if C =1, then clear R1

ENTRY

LDR R0,=2012 ;R0 = 2012 (numerator) ;it will contain remainder
MOV R1,#10 ;R1 = 10 (denominator)

MOV R2,#0 ;R2 = 0 (quotient)

L1 CMP RO,R1 ;Compare RO with R1 to see if less than 10

BLO FINISH ;if RO < R1 jump to finish

SUB RO,RO0O,R1 ;R0 = RO - R1 (division by subtraction)

ADD R2,R2,#1 ;R2 = R2 + 1 (quotient is incremented)

B L1 ;goto L1 (B is discussed in the next section)

FINISH B FINISH

OVER ADD R2,R2,#1 ;R2=R2 +1 =0xCCC + 1 =0xCCD

STUDENTS-HUB.com

Uploaded By: anonymous

TST Rn,Op2 ;Rn AND with Op2 and flag bits are updated
The TST instruction is used to test the contents of register to see if any bit is set to HIGH.

MOV RO,#0x04 ;R0=00000100 in binary
LDR R1,=myport ;port address

OVER LDRB R2,[R1] ;load R2 from myport
TST R2,R0 ;is bit 2 HIGH?

BEQ OVER ;keep checking

LDR R1,=myport ;port address

OVER LDRB R2,[R1] ;load R2 from myport
TST R2,#0x04 ;is bit 2 HIGH?

BEQ OVER ;keep checking

TEQ (test equal)
TEQ Rn,0Op2 ;Rn EX-ORed with Op2 and flag bits are set

The TEQ instruction is used to test to see if the contents of two registers are equal

TEMP EQU 100

MOV RO,#TEMP ;R0 = Temp

LDR R1,=myport ;port address

OVER LDRB R2,[R1] ;load R2 from myport
TEQ R2,R0 ;is it 1007

SR SDERITSASEEEHM Uploaded By: anonymous

B (Branch)

B (branch) is an unconditional jump that can go to any memory location

//in C
if(R1 <R2)
CMP R1,R2 3 - {
BHS L1 R3 =2:
MOV R3#2 el
B OVER RI=2 }
Ll MOV R3#5 =L else
OVER | {
R3=15;
}
MOV R1#1 /lin C
MOV R2,#0 unsigned long R1 = 1;

L1 CMP RIL#5
BHI L2

unsigned long R2 = 0;

while (R1 <=5)
ADD R2,R2RI

ADD RILRL#1 {
B L1 R2 =R2 +R1;
L2 MOV R3#5 R1=R1+1;
1

STUDENTS-HUB.com Uploaded By: anonymous

In cases where there is no operating system or monitor program, we use the Branch
to itself in order to keep the microcontroller busy. A simple way of doing that is shown

below:

HERE B HERE ;stay here

Another syntax for the B instruction is BAL (branch always) as shown below:

HERE BAL HERE ;stay here

0x00000003

(00000002

OxO000D000 |

24 bits

Instruction: Offset I

[] Offset [0]o]

Ox00000007

Ox00000006

000000005

Ox00000004

0x00000008

Ox0000000A

OxD0000008

(xD000000F

0x00000000

0x0000000C

(0000013

(00000012

00000011

Cx00000010

Sign or direction bit

OxFFFFEFED

OXFFFFEFF2

OxFFFFFFF1

OxFFFFFFFQ

OxFFFFFFFT

OXFFFFFFFG

OxFFFFFFFS

OxFFFFFFF4

OXEFFEFFFB

xFFFFFFFA

OxFFFFFFF9

OxFFFFFFEB

:

OxFFFFFFFF

OxFFFFFFFE

OxFFFFFFFD

OxFFFFFFFC

Program memory (Addresses are word-aligned)

STUDENTS-HUB.com

Uploaded By: anonymous

BL (Branch and Link) instruction and calling subroutine

wyﬂm differonce betws wcrmm.x; Y e
TR ey

aé.
f%@:r;‘; _g-:?ﬁ W Mwﬁy‘{imﬁ
s,

h.v_:a{muﬁ.i.

24 bits

BL Instruction: | Opcode [L| | Offset |
¥,

0 ot oo

Sign or direction bit @

| Address of next instruction to be fetched |

v

l PC |

)

Step 1 Step 2

When a subroutine is called using BL instruction, first the processor saves the
address of the instruction just below the BL instruction on the R14 register (LR, linker
register), and then control is transferred to that subroutine

STUDENTS-HUB.com Uploaded By: anonymous

AREA EXAMPLE4 8, CODE, READONLY

ENTRY

RAM_ADDR EQU 0x40000000 ;change the address for
your ARM

LDR R1,=RAM_ADDR ;R1 = RAM address

AGAIN MOV RO,#0x55 ;R0 = 0x55

STRB RO,[R1] ;send it to RAM

BL DELAY ;call delay (R14 = PC of next instruction)
MOV RO,#0xAA ;R0 = OxAA

STRB RO,[R1] ;send it to RAM

BL DELAY ;call delay

B AGAIN ;keep doing it

; DELAY SUBROUTINE

DELAY LDR R3,=5 ;R3 =5, modify this value for different size
delay

L1 SUBS R3,R3,#1 ;R3=R3-1

BNE L1

BX LR ;return to caller

; —end of DELAY subroutine

END ;notice the place for END directive

STUDENTS-HUB.com Uploaded By: anonymous

;MAIN program calling subroutines

AREA PogramName, CODE, READONLY

ENTRY

MAIN BL SUBR_1 ;Call Subroutine 1

BL SUBR_2 ;Call Subroutine 1

BL SUBR_3 ;Call Subroutine 1

HERE BAL HERE ;stay here. BAL is the same as B
—-end of MAIN

,—SUBROUTINE 1

SUBR 1

BX LR :return to main
'— end of subroutine 1

; —SUBROUTINE 2
SUBR_ 2

BX LR ;return to main

;— end of subroutine 2

; —SUBROUTINE 3
SUBR 3 ...

BX LR ;return to main
;— end of subroutine 3
END ;notice the END of file

STUDENTS-HUB.com

Uploaded By: anonymous

Signed Multiplication

LDR R1,=-3500 ;R1 =-3500 (OxFFFFF254)
LDR R0,=-100 ;R0 = -100 (OXFFFFFF9C)
SMULL R2,R3,R0,R1

VOV ROA-L00 RO = 100 (OXEFFEEFOC)
MOV RO,#-100 ;R0 = -100 (OXFFFFFF9C)

BE branch equal Branchif Z =1
UMULL R2,R3,R0,R1 ! ‘
BNE Branch not equal Branchif Z=0
. . BMI Branch minus (branch negative) Branchif N=1
Signed number comparison
BPL Branch plus (branch positive) Branchif N =0
CMP R n, OPZ BVS Branch if V set (branch overflow) Branchif V=1
BVC Branch if V clear (branch if no overflow) Branchif V=0
> =
Op2 RnV N BGE Branch greater than or equal Branch if N =V
Op2=RnZ=1 — -
BLT Branch less than Branchif N # V
Op2<RnN#V
BGT Branch greater than Branchif Z=0and N=V
BLE Branch less than or equal Branchif Z=1orNZV

Table 5- 3: ARM Conditional Branch (Jump) Instructions for Signed Data

STUDENTS-HUB.com Uploaded By: anonymous

Arithmetic shift
ASR (arithmetic shift right)
MOV Rn,Op2, ASR count > LSB || C

MOV R0,#-10 ;R0 = -10 = OXFFFFFFF6
MOV R3,R0,ASR #1 ;RO is arithmetic shifted right once
;R3 = OXFFFFFFFB = -5

STUDENTS-HUB.com Uploaded By: anonymous

CONDITION
0000 EQ
0001 NE
@010 HS/CS
@011 LO/CC
0100 MI
@101 PL
0110 VS
0111 \C
1000 HI
1001 LS
1010 GE
1011 LT
1100 GT
1101 LE
1110 AL
1111 NE

Flags

&Z
| Z

%)
1

— 20

Z2zZ2nNn0nNn<<<=22Z200N0NN
o T I O T T TR T T (I TR [
< < OFROFROFROFROK

Z==0&&N==V
Z==1||NI=V
always
never

Note

Equal
Not Equal
>=) / C=1
< 19 J C=1
minus(neg)
plus(pos)
V set(ovfl)
V ¢lr
> (U)
<= (U)

(U) = unsigned

All ARM instructions can be conditional instructions. Examples:

ADDEQ RO,R1, #23 ; RO = R1 — 23 only if ZF==1
SUBGT R2,R3, R4

And so on

STUDENTS-HUB.com

; R2=R3-R4 only if VF=NF && ZF=0

Uploaded By: anonymous

Summary of ARM's Indexed Addessing Modes

Addressing Mode Assembly Mnemonic Effective address FinalValue in

Pre-indexed, base
unchanged

Pre-indexed, base [R1, #d]!

Post-indexed, base IDR RO, [R1], #d

STUDENTS-HUB.com Uploaded By: anonymous

