
Arithmetic and Logic
Instructions and Programs

Chapter -3-

Uploaded By: anonymousSTUDENTS-HUB.com

Arithmetic Instructions

Uploaded By: anonymousSTUDENTS-HUB.com

ADD Rd,Rn,Op2 ;Rd = Rn + Op2

LDR R2,=0xFFFFFFF5 ;R2=0xFFFFFFF5 (notice the = sign)

MOV R3,#0x0B

ADDS R1,R2,R3 ;R1=R2 + R3 and update the flags

C = 1, since there is a carry out from D31

Z = 1, the result of the action is zero (for the 32 bits)

No increment instruction in ARM

ADDS R4,R4,#1

ADC (add with carry)

ADC Rd,Rn,Op2 ;Rd = Rn + Op2 + C

Subtraction of unsigned numbers

SUB Rd,Rn,Op2 ;Rd = Rn - Op2

Example:

MOV R1,#0x4C ;R1 = 0x4C

MOV R2,#0x6E ;R2 = 0x6E

SUBS R0,R1,R2 ;R0 = R1 – R2

This instruction is used for multiword (data larger than 32-bit) numbers.

Uploaded By: anonymousSTUDENTS-HUB.com

SBC (subtract with borrow)

SBC Rd,Rn,Op2 ;Rd = Rn – Op2 – 1 + C

No decrement instruction in ARM

RSB (reverse subtract)

RSB Rd,Rn,Op2 ;Rd = Op2 – Rn

MOV R1,#0x6E ;R1=0x6E

RSB R0,R1,#0 ;R0= 0 – R1

RSC (reverse subtract with carry)

RSC Rd,Rn,Op2 ;Rd = Op2 – Rn – 1 + C

This instruction is used for subtraction of multiword (data larger than 32-bit)
numbers.

To invert the carry flag while running the subtract with borrow instruction it is implemented
as “Rd = Rn – Op2 – 1 + C”

Uploaded By: anonymousSTUDENTS-HUB.com

Multiplication of unsigned numbers in ARM

MUL (multiply)

MUL Rd,Rn,Op2 ;Rd = Rn × Op2

MOV R1,#0x25 ;R1=0x25

MOV R2,#0x65 ;R2=0x65

MUL R3,R1,R2 ;R3 = R1 × R2 = 0x65 × 0x25

LDR R1,=100000 ;R1=100,000

LDR R2,=150000 ;R2=150,000

MUL R3,R2,R1 ;R3 is not 15,000,000,000 because it cannot fit in 32 bits.

* For this reason we must use UMULL (unsigned multiply long) instruction if the

result is going to be greater than 0xFFFFFFFF.

Not all CPUs have instructions for multiplication and division. All the ARM
processors have a multiplication instruction but not the division.

The normal multiply instruction (MUL) is used when the result is less than
32-bit, while the long multiply (MULL) must be used when the result is greater than 32-
bit.

Uploaded By: anonymousSTUDENTS-HUB.com

UMULL (unsigned multiply long)

UMULL RdLo,RdHi,Rn,Op2 ;RdHi:RdLoRd = Rn × Op2

LDR R1,=0x54000000 ;R1 = 0x54000000

LDR R2,=0x10000002 ;R2 = 0x10000002

UMULL R3,R4,R2,R1 ;0x54000000 × 0x10000002

; = 0x054000000A8000000

;R3 = 0xA8000000, the lower 32 bits

;R4 = 0x05400000, the higher 32 bits

Multiply and Accumulate Instructions in ARM

MLA Rd,Rm,Rs,Rn ;Rd = Rm × Rs + Rn

MOV R1,#100 ;R1 = 100

MOV R2,#5 ;R2 = 5

MOV R3,#40 ;R3 = 40

MLA R4,R1,R2,R3 ;R4 = R1 × R2 + R3 = 100 × 5 + 40 = 540

UMLAL RdLo,RdHi,Rn,Op2 ;RdHi:RdLo = Rn × Op2 + RdHi:RdLo

Uploaded By: anonymousSTUDENTS-HUB.com

Logic Instructions

i.e. Rd = Rn AND NOT Op2

The BIC (bit clear) instruction is used to clear the selected bits of the Rn register.
The selected bits are held by Op2. The bits that are HIGH in Op2 will be cleared and bits
with LOW will be left unchanged.

Examples Page 140
Uploaded By: anonymousSTUDENTS-HUB.com

generate one’s complement of an operand

“MVN R2,#0” will make R2=0xFFFFFFFF

LDR R2,=0xAAAAAAAA ;R2 = 0xAAAAAAAA

MVN R0,#0 ;R0 = 0xFFFFFFFF

EOR R2,R2,R0 ;R2 = R2 ExORed with 0xFFFFFFFF ; = 0x55555555

Vs. LDR Rd,=0xFFFFFFFF

MVN (move negative) instruction is used to generate one’s complement of an
operand.

We can also use Ex-OR instruction to generate one’s complement of an operand.

Uploaded By: anonymousSTUDENTS-HUB.com

Rotate and Barrel Shifter

Barrel Shifter

LSR

MOV R0,#0x9A ;R0 = 0x9A

MOVS R1,R0,LSR #3 ;shift R0 to right 3 times ;and then move (copy) the result to R1

MOV R0,#0x9A

MOV R2,#0x03

MOV R1,R0,LSR R2 ;shift R0 to right R2 times ;and move the result to R1

LSL

LDR R1,=0x0F000006

MOVS R2,R1,LSL #8

TIMES EQU 0x5

LDR R1,#0x7 ;R1=0x7

MOV R2,#TIMES ;R2=0x05

MOV R1,R1,LSL R2 ;shift R1 left R2 number of times ;and place the result in R1

There are two kinds of shifts: logical and arithmetic. The logical shift is for unsigned
operands and the arithmetic shift is for signed operands.

Uploaded By: anonymousSTUDENTS-HUB.com

Arithmetic shift right ASR

ROR (rotate right)

Rotate left
There is no rotate left option in ARM7 since one can use the rotate right (ROR) to

do the job. That means instead of rotating left n bits we can use rotate right 32–n bits to do the job of rotate left

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

BCD and ASCII Conversion

Unpacked BCD “0000 1001” and “0000 0101”

Packed BCD “0101 1001” is packed BCD for 59

ASCII numbers

two terms for BCD numbers: (1) unpacked BCD, and (2) packed BCD.

In unpacked BCD, the lower 4 bits of the number represent the BCD number and the
rest of the bits are 0.

In the case of packed BCD, a single byte has two BCD numbers in it, one in the
lower 4 bits and one in the upper 4 bits.

In ASCII keyboards, when key “0” is pressed, “011 0000” (0x30) is provided to the
computer.

Uploaded By: anonymousSTUDENTS-HUB.com

ASCII to packed BCD conversion

MOV R1,#0x37 ;R1 = 0x37

MOV R2,#0x32 ;R2 = 0x32

AND R1,R1,#0x0F ;mask 3 to get unpacked BCD

AND R2,R2,#0x0F ;mask 3 to get unpacked BCD

MOV R3,R2,LSL #4 ;shift R2 4 bits to left to get R3 = 0x20

ORR R4,R3,R1 ;OR them to get packed BCD, R4 = 0x27

Packed BCD to ASCII conversion

MOV R0,#0x29

AND R1,R0,#0x0F ;mask upper four bits

ORR R1,R1,#0x30 ;combine with 30 to get ASCII

MOV R2,R0,LSR #04 ;shift right 4 bits to get unpacked BCD

ORR R2,R2,#0x30 ;combine with 30 to get ASCII

Uploaded By: anonymousSTUDENTS-HUB.com

the ascii 3 and the number !

Chapter 4: Branch, Call, and Looping in ARM

Using instruction BNE for looping

The BNE (branch if not equal) instruction uses the zero flag in the status register

BACK ……… ;start of the loop

……… ;body of the loop

……… ;body of the loop

SUBS Rn,Rn,#1 ;Rn = Rn - 1, set the flag Z = 1 if Rn = 0

BNE BACK ;branch if Z = 0

;– this program adds value 9 to the R0 a 1000 times –

AREA EXAMPLE4_1, CODE, READONLY

ENTRY

LDR R2,=1000 ;R2 = 1000 (decimal) for counter

MOV R0,#0 ;R0 = 0 (sum)

AGAIN ADD R0,R0,#9 ;R0 = R0 + 9 (add 09 to R1, R1 = sum)

SUBS R2,R2,#1 ;R2 = R2 - 1 and set the flags. Decrement counter

BNE AGAIN ;repeat until COUNT = 0 (when Z = 1)

MOV R4,R0 ;store the sum in R4

HERE B HERE ;stay here
END

Uploaded By: anonymousSTUDENTS-HUB.com

Example:

Write a program to place value 0x55 into 100 bytes of RAM locations

AREA EXAMPLE4_2, CODE, READONLY

ENTRY

RAM_ADDR EQU 0x40000000 ;change the address for your ARM

MOV R2,#25 ;counter (25 times 4 = 100 byte block size)

LDR R1,=RAM_ADDR ;R1 = RAM Address

LDR R0,=0x55555555 ;R0 = 0x55555555

OVER STR R0,[R1] ;send it to RAM

ADD R1,R1,#4 ;R1 = R1 + 4 to increment pointer

SUBS R2,R2,#1 ;R2 = R2 – 1 for dec. counter

BNE OVER ;keep doing it

HERE B HERE

END

Uploaded By: anonymousSTUDENTS-HUB.com

MOV R1,#0 ;clear high word (R1 = 0)

MOV R0,#0 ;clear low word (R0 = 0)

LDR R2,=0x99999999 ;R2 = 0x99999999

ADDS R0,R0,R2 ;R0 = R0 + R2 and set the flags

BCC L1 ;if C = 0, jump to L1 and add next number

ADDS R1,R1,#1 ;ELSE, increment (R1 = R1 + 1)

L1 ADDS R0,R0,R2 ;R0 = R0 + R2 and set the flags

BCC L2 ;if C = 0, add next number

ADDS R1,R1,#1 ;if C = 1, increment

L2 ADDS R0,R2 ;R0 = R0 + R2 and set the flags

BCC L3 ;if C = 0, add next number

ADDS R1,R1,#1 ;C = 1, increment

L3 ADDS R0,R2 ;R0 = R0 + R2 and set the flags

BCC L4 ;if C = 0, add next number

ADDS R1,R1,#1 ;if C = 1, and set the flags

L4

Uploaded By: anonymousSTUDENTS-HUB.com

Comparison of unsigned numbers

CMP Rn,Op2 ;compare Rn with Op2 and set the flags

LDR R1,=0x35F ;R1 = 0x35F

LDR R2,=0xCCC ;R2 = 0xCCC

CMP R1,R2 ;compare 0x35F with 0xCCC

BCC OVER ;branch if C = 0

MOV R1,#0 ;if C = 1, then clear R1

OVER ADD R2,R2,#1 ;R2 = R2 + 1 = 0xCCC + 1 = 0xCCD

Division by repeated subtraction

AREA PROG_4_2, CODE, READONLY ;Division by subtractions

ENTRY

LDR R0,=2012 ;R0 = 2012 (numerator) ;it will contain remainder

MOV R1,#10 ;R1 = 10 (denominator)

MOV R2,#0 ;R2 = 0 (quotient)

L1 CMP R0,R1 ;Compare R0 with R1 to see if less than 10

BLO FINISH ;if R0 < R1 jump to finish

SUB R0,R0,R1 ;R0 = R0 - R1 (division by subtraction)

ADD R2,R2,#1 ;R2 = R2 + 1 (quotient is incremented)

B L1 ;goto L1 (B is discussed in the next section)

FINISH B FINISH

Uploaded By: anonymousSTUDENTS-HUB.com

TST Rn,Op2 ;Rn AND with Op2 and flag bits are updated

The TST instruction is used to test the contents of register to see if any bit is set to HIGH.

MOV R0,#0x04 ;R0=00000100 in binary

LDR R1,=myport ;port address

OVER LDRB R2,[R1] ;load R2 from myport

TST R2,R0 ;is bit 2 HIGH?

BEQ OVER ;keep checking

LDR R1,=myport ;port address

OVER LDRB R2,[R1] ;load R2 from myport

TST R2,#0x04 ;is bit 2 HIGH?

BEQ OVER ;keep checking

TEQ (test equal)

TEQ Rn,Op2 ;Rn EX-ORed with Op2 and flag bits are set

The TEQ instruction is used to test to see if the contents of two registers are equal

TEMP EQU 100

MOV R0,#TEMP ;R0 = Temp

LDR R1,=myport ;port address

OVER LDRB R2,[R1] ;load R2 from myport

TEQ R2,R0 ;is it 100?
BNE OVER ;keep checking Uploaded By: anonymousSTUDENTS-HUB.com

B (Branch)

B (branch) is an unconditional jump that can go to any memory location

Uploaded By: anonymousSTUDENTS-HUB.com

In cases where there is no operating system or monitor program, we use the Branch

to itself in order to keep the microcontroller busy. A simple way of doing that is shown

below:

HERE B HERE ;stay here

Another syntax for the B instruction is BAL (branch always) as shown below:

HERE BAL HERE ;stay here

Uploaded By: anonymousSTUDENTS-HUB.com

BL (Branch and Link) instruction and calling subroutine

When a subroutine is called using BL instruction, first the processor saves the

address of the instruction just below the BL instruction on the R14 register (LR, linker

register), and then control is transferred to that subroutine

Uploaded By: anonymousSTUDENTS-HUB.com

AREA EXAMPLE4_8, CODE, READONLY

ENTRY

RAM_ADDR EQU 0x40000000 ;change the address for

your ARM

LDR R1,=RAM_ADDR ;R1 = RAM address

AGAIN MOV R0,#0x55 ;R0 = 0x55

STRB R0,[R1] ;send it to RAM

BL DELAY ;call delay (R14 = PC of next instruction)

MOV R0,#0xAA ;R0 = 0xAA

STRB R0,[R1] ;send it to RAM

BL DELAY ;call delay

B AGAIN ;keep doing it

;––––––—DELAY SUBROUTINE
DELAY LDR R3,=5 ;R3 =5, modify this value for different size
delay
L1 SUBS R3,R3,#1 ;R3 = R3 - 1
BNE L1
BX LR ;return to caller
;––––––—end of DELAY subroutine
END ;notice the place for END directive

Uploaded By: anonymousSTUDENTS-HUB.com

;MAIN program calling subroutines

AREA PogramName, CODE, READONLY

ENTRY

MAIN BL SUBR_1 ;Call Subroutine 1

BL SUBR_2 ;Call Subroutine 1

BL SUBR_3 ;Call Subroutine 1

HERE BAL HERE ;stay here. BAL is the same as B

;––-end of MAIN

;––––––—SUBROUTINE 1

SUBR_1 ….

….

BX LR ;return to main

;–– end of subroutine 1

;––––––—SUBROUTINE 2
SUBR_2 ….
….
BX LR ;return to main
;–– end of subroutine 2
;––––––—SUBROUTINE 3
SUBR_3 ….
….
BX LR ;return to main
;–– end of subroutine 3
END ;notice the END of file

Uploaded By: anonymousSTUDENTS-HUB.com

Signed Multiplication

LDR R1,=-3500 ;R1 = -3500 (0xFFFFF254)

LDR R0,=-100 ;R0 = -100 (0xFFFFFF9C)

SMULL R2,R3,R0,R1

LDR R1,=-3500 ;R1 = -3500 (0xFFFFF254)

MOV R0,#-100 ;R0 = -100 (0xFFFFFF9C)

UMULL R2,R3,R0,R1

Signed number comparison

CMP Rn, Op2

Op2 > Rn V = N

Op2 = Rn Z = 1

Op2 < Rn N ≠ V

Uploaded By: anonymousSTUDENTS-HUB.com

Arithmetic shift

ASR (arithmetic shift right)

MOV Rn,Op2, ASR count

MOV R0,#-10 ;R0 = -10 = 0xFFFFFFF6

MOV R3,R0,ASR #1 ;R0 is arithmetic shifted right once

;R3 = 0xFFFFFFFB = -5

Uploaded By: anonymousSTUDENTS-HUB.com

All ARM instructions can be conditional instructions. Examples:
ADDEQ R0,R1, #23 ; R0 = R1 – 23 only if ZF==1
SUBGT R2,R3, R4 ; R2=R3-R4 only if VF=NF && ZF=0

And so on

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

