
 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

86

AVL Trees
• An AVL tree (Georgy Adelson-Velsky and Evgenii Landis' tree) is a BST with the additional balance

property that, for any node in the tree, the height of the left and right subtrees can differ by at most 1.
• Complete binary trees are balanced.

Single Rotation

Example: After inserting (a) 60; (b) 50; and (c) 20 into an initially empty BST, the tree is not balanced;
(d) a corresponding AVL tree rotates its nodes to restore balance

Example: (a) Adding 80 to the tree does not change the balance of the tree;

(b) a subsequent addition of 90 makes the tree unbalanced ;
(c) a left rotation restores its balance

Case 1: Single Right Rotation (left-left addition)

Before and after an addition to an AVL subtree that requires a right rotation to maintain its balance.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

87

Example: a) before and b) after a right rotation restores balance to an AVL tree

Case 2: Single Left Rotation (right-right addition)

Before and after an addition to an AVL subtree that requires a left rotation to maintain its balance

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

88

Double Rotations
A double rotation is accomplished by performing two single rotations:

1. A rotation about node N’s grandchild G (its child’s child)
2. A rotation about node N’s new child

Case 3: Right-Left Double Rotations (right-left addition)

Example: (a) Adding 70 destroys tree’s balance; to restore the balance, perform both

(b) a right rotation and (c) a left rotation

Before and after an addition to an AVL subtree that requires both

a right rotation and a left rotation to maintain its balance

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

89

Case 4: Left-Right Double Rotations (left-right addition)

Example:

(a) The AVL tree after additions that maintain its balance;

(b) after an addition that destroys the balance;
(c) after a left rotation;
(d) after a right rotation

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

90

Before and after an addition to an AVL subtree that requires both

a left rotation and a right rotation to maintain its balance

• Four rotations cover the only four possibilities for the cause of the imbalance at node N
• The addition occurred at:

 The left subtree of N’s left child (case 1: right rotation)
 The right subtree of N’s left child (case 4: left-right rotation)
 The left subtree of N’s right child (case 3: right-left rotation)
 The right subtree of N’s right child (case 2: left rotation)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

91

Rebalance Code Implementation
• Pseudo-code to rebalance the tree:

private TNode rebalance(TNode nodeN){
 int diff = getHeightDifference(nodeN);
 if (diff > 1) { // addition was in node's left subtree
 if(getHeightDifference(nodeN.left)>0)
 nodeN = rotateRight(nodeN);
 else
 nodeN = rotateLeftRight(nodeN);
 }
 else if (diff < -1){ // addition was in node's right subtree
 if(getHeightDifference(nodeN.right)<0)
 nodeN = rotateLeft(nodeN);
 else
 nodeN = rotateRightLeft(nodeN);
 }
 return nodeN;
}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

92

Insert Code Implementation:
public void insert(T data) {
 if(isEmpty()) root = new TNode<>(data);
 else {
 TNode rootNode = root;
 addEntry(data, rootNode);
 root = rebalance(rootNode);
 }
}

public void addEntry(T data, TNode rootNode){
 assert rootNode != null;
 if(data.compareTo((T)rootNode.data) < 0){ // right into left subtree
 if(rootNode.hasLeft()){
 TNode leftChild = rootNode.left;
 addEntry(data, leftChild);
 rootNode.left=rebalance(leftChild);
 }
 else rootNode.left = new TNode(data);
 }
 else { // right into right subtree
 if(rootNode.hasRight()){
 TNode rightChild = rootNode.right;
 addEntry(data, rightChild);
 rootNode.right=rebalance(rightChild);
 }
 else rootNode.right = new TNode(data);
 }
}

Delete Code Implementation:
public TNode delete(T data) {
 TNode temp = super.delete(data);
 if(temp!= null){
 TNode rootNode = root;
 root = rebalance(rootNode);
 }
 return temp;
}

An AVL Tree versus a BST:

Example: The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty (a) AVL tree; (b) BST

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

