E Data Structure: Lectures Note 2020/2021

AVL Trees

An AVL tree (Georgy Adelson-Velsky and Evgenii Landis' tree) is a BST with the additional balance

property that, for any node in the tree, the height of the left and right subtrees can differ by at most 1
* Complete binary trees are balanced.

Prepared by: Dr. Mamoun Nawahdah

Single Rotation

(a) (b) (c) (d)
o\ 2) (60) (50)
® \/f’ﬁ_fl/ /'6_“/ ,-E‘”)\
) © @'m//\ &)
) - S -’ N
(20
-/

Unbalanced Balanced

Example: After inserting (a) 60; (b) 50; and (c) 20 into an initially empty BST, the tree is not balanced;

(d) a corresponding AVL tree rotates its nodes to restore balance

(a) (b)

(c)

Balanced Unbalanced Balanced

Example: (a) Adding 80 to the tree does not change the balance of the tree;

(b) a subsequent addition of 90 makes the tree unbalanced ;
(c) a left rotation restores its balance

Case 1: Single Right Rotation (left-left addition)

(a) Before addition (b) After addition (c) After right rotation

Before and after an addition to an AVL subtree that requires a right rotation to maintain its balance.

STUDENTS-HUB.com

86

Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

Example: a) before and b) after a right rotation restores balance to an AVL tree
(b) C

Unbalanced Balanced

Algorithm rotateRight(nodeN)

nodeC = left child of nodeN

Set nodeN s left child to nodeC s right child
Set nodeC’s right child to nodeN

return nodeC

Case 2: Single Left Rotation (right-right addition)

{a) Before addition {b) After addition {c) After left rotation
e N e C T
C N a ;
J h
! h+1
¥ T ‘ l
T, 1 T, T
T;

Before and after an addition to an AVL subtree that requires a left rotation to maintain its balance

Algorithm rotateLeft(nodeN)

nodeC = right child of nodeN

Set nodeN 5 right child to nodeC’s left child
Set nodeC’s left child to nodeN

return nodeC

87
7

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Double Rotations

A double rotation is accomplished by performing two single rotations:
1. A rotation about node N’s grandchild G (its child’s child)
2. A rotation about node N’s new child

Case 3: Right-Left Double Rotations (right-left addition)

(a) After adding 70 (b) After right rotation (c) After left rotation

Example: (a) Adding 70 destroys tree’s balance; to restore the balance, perform both
(b) a right rotation and (c) a left rotation

(a) Before addition (b) After addition
N ki N
C
G h
h+1
T L])
, ., T, LM 7, i

r; T, ;
Before and after an addition to an AVL subtree that requires both
a right rotation and a left rotation to maintain its balance

88

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Algorithm rotateRightLeft(nodeN)

nodeC = right child of nodeN
Set nodeN s right child to the node returned by rotateRight(nodeC)
return rotatelLeft(nodeN)

Case 4: Left-Right Double Rotations (left-right addition)
Example:
(a) After adding 55, 10, and 40 (b) After adding 35

Imbalance at
this node

(d) After right rotation about 40

@

@ W
o YCIRC
©® G

(a) The AVL tree after additions that maintain its balance;
(b) after an addition that destroys the balance;
(c) after a left rotation;
(d) after a right rotation

89

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
(a) Before addition (b) After addition

h+1

Iy T
Before and after an addition to an AVL subtree that requires both
a left rotation and a right rotation to maintain its balance

Algorithm rotatelLeftRight(nodeN)

nodeC = left child of nodeN
Set nodeN s left child to the node returned by rotatelLeft(nodeC)
return rotateRight(nodeN)

* Four rotations cover the only four possibilities for the cause of the imbalance at node N
* The addition occurred at:

= The left subtree of N’s left child (case 1: right rotation)

= The right subtree of N’s left child (case 4: left-right rotation)

= The left subtree of N’s right child (case 3: right-left rotation)

= The right subtree of N’s right child (case 2: left rotation)

90

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Rebalance Code Implementation
* Pseudo-code to rebalance the tree:

Algorithm rebalance (nodeN)
if (nodeN’s left Sh‘bﬂ'&’&’ is taller rhmr its right subtree by more than 1)

{
if (riw left ch:M ofnodeN Fms a .-’(‘f.r subm’e .fﬁm.’ is me fﬁmn its ugir.f subn ee)
rotateRight(nodeN) lditic _
else
rotatelLeftRight(nodeN)
}
else if (nodeN’s J'J'airr subrree’ is mz’:’m' than its left subtree by more than 1)
{
if (the wh.' child af nodeN ﬁms a right subn ee that is taller than its feﬁ Snrbn E’f’)
rotateLeft(nodeN) {ddi - -
else
rotateRightlLeft(nodeN)
}

private TNode rebalance(TNode nodeN){
int diff = getHeightDifference(nodeN);
if (diff > 1) { // addition was in node's left subtree
if(getHeightDifference(nodeN.left)>0)
nodeN = rotateRight(nodeN);
else
nodeN = rotatelLeftRight(nodeN);
}
else if (diff < -1){ // addition was in node's right subtree
if(getHeightDifference(nodeN.right)<0)
nodeN = rotatelLeft(nodeN);
else
nodeN = rotateRightLeft(nodeN);
}

return nodeN;

91

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

Insert Code Implementation:
public void insert(T data) {
if(isEmpty()) root = new TNode<>(data);
else {
TNode rootNode = root;
addEntry(data, rootNode);
root = rebalance(rootNode);

}

}

public void addEntry(T data, TNode rootNode){
assert rootNode != null;
if(data.compareTo((T)rootNode.data) < 0){ // right into left subtree
if(rootNode.hasLeft()){
TNode leftChild = rootNode.left;
addEntry(data, leftChild);
rootNode.left=rebalance(leftChild);
}
else rootNode.left = new TNode(data);
}
else { // right into right subtree
if(rootNode.hasRight()){
TNode rightChild = rootNode.right;
addEntry(data, rightChild);
rootNode.right=rebalance(rightChild);
}

else rootNode.right = new TNode(data);

}

}
Delete Code Implementation:

public TNode delete(T data) {
TNode temp = super.delete(data);
if(temp!= null){
TNode rootNode = root;
root = rebalance(rootNode);
}

return temp;

}

An AVL Tree versus a BST:

Example: The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty (a) AVL tree; (b) BST

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

92

