

Dr. Khalil Qatu

ENCE 331: Compressibility of soil

STUDENTS-HUB.com

Previously in Soil Mechanics

Why shear strength ??

- Soil is made from individual particles (sediments)
- The strength of the soil is contributed to the interaction between these particles
- This interaction takes two forms
 - Cohesion (adhesion between the particles) Depends on type of soil (Clay soils)
 - Friction

Depends on roughness of particles, particle size, and normal stress (Granular soils)

• The forces that break this interaction are shear forces

Mohr-Coulomb Failure criteria

- The components of shear stress are:
 - Cohesion
 - Friction
- Mohr (1900) presented a theory for rupture in materials that contended that a material fails because of a critical combination of normal stress and shearing stress

$$\tau_f = c' + \sigma' \tan \phi'$$
 OR $\tau_f = c + \sigma \tan \phi$

where c = cohesion

 ϕ = angle of internal friction

- σ = normal stress on the failure plane
- τ_f = shear strength

Effective normal stress, σ'

Table 12.1	Typical Values of Drained Angle of
Friction for	Sands and Silts

Soil type	φ ′ (deg)
Sand: Rounded grains	
Loose	27-30
Medium	30-35
Dense	35-38
Sand: Angular grains	
Loose	30-35
Medium	35-40
Dense	40-45
Gravel with some sand	34-48
Silts	26-35

Mohr's Circle and stress transformation

• Since we usually deal with vertical stress (Comp), we need to find the most critical surface (failure plane)

LAB tests to determine shear strength of soil

- There are many test that can be conducted either in the lab or in the field to determine the soil strength parameters (C,ϕ)
 - LAB tests
 - Direct Shear Test.
 - Triaxial Compression Test.
 - Unconfined Compression (UCC) Test.
 - Field tests
 - Vane Shear Test.
 - Bore Hole Shear Test.
- Lab tests are more accurate, but require more time and samples will be disturbed to some degree
- Field tests are usually faster, no need to take samples (Undisturbed soil), but it is less accurate.

- The test apparatus is shown
- First the Normal force is applied incrementally so that the sample can consolidate
- The normal stragg is

 σ = Normal stress = $\frac{\text{Normal force}}{\text{Cross-sectional area of the specimen}}$

- Then a Horizontal force is applied to the Top half and increased incrementally to failure, and the lateral displacement is measured
- The sheat $\tau = \text{Shear stress} = \frac{\text{Resisting shear force}}{\text{Cross-sectional area of the specimen}}$

51 mm \times 51 mm or 102 mm \times 102 mm 25 mm (1 in.) high.

- The test is repeated for different specimens of the same soil for different Normal stresses
- Each time the Normal stress and the shear stress at failure are recorded

- General Comments
 - The soil is not allowed to fail along the weakest plane but is forced to fail along the plane of split of the shear box
 - The shear stress distribution over the shear surface of the specimen is not uniform
 - Progressive failure
 - Despite its shortcomings The direct shear test is simple to perform
 - The test can be utilized to determine the interface properties

$$\tau_f = c'_a + \sigma' \tan \delta'$$

where c'_{u} = adhesion

 δ' = effective angle of friction between the soil and the foundation meterial

- The triaxial shear test is one of the most reliable methods available for determining shear strength parameters
- Soil specimen about 36 mm (1.4 in.) in diameter and 76 mm (3 in.) long
- The specimen is subjected to a confining pressure by compression of the fluid in the chamber
- The axial load applied by the loading ram and the corresponding axial deformation is measured by a ring or load cell attached to the ram

- The test is performed in two stages
 - Appling the confining pressure (σ_3)
 - If the drainage is open, then the excess pore water pressure is
 - Depending on the drainage, the test can be Consolidated or Unconsolidated test
 - Appling the deviatoric pressure $(\Delta \sigma_d)$
 - If the drainage is open, then the excess pore water pressure is
 - Depending on the drainage, the test can be Drained or Undrained test
- Depending on the drainage conditions at each stage the following three standard types of triaxial tests generally are conducted:
 - Consolidated-drained test or drained test (CD test)
 - Consolidated-undrained test (CU test)
 - Unconsolidated-undrained test or undrained test (UU test)

- Consolidated-drained test or drained test (CD test)
 - the saturated specimen first is subjected to an all-around confining pressure, σ_3 , by compression of the chamber fluid
 - The sample is allowed to consolidate until the pore pressure is completely dissipated
 - Then the deviatoric axial stress is applied incrementally to failure
 - The stress state for any element shown is called
 - Total and effective confining stress = $\sigma_3 = \sigma'_3$
 - Total and effective axial stress at failure $\sigma_1 = \sigma'_1 = \Delta \sigma_d + \sigma_3$
 - The test is repeated at least two times at different confining pressures
 - The confining pressure and the deviatoric stress at failure are recorded

• Consolidated-drained test or drained test (CD test)

• Consolidated-drained test or drained test (CD test)

• Consolidated-drained test or drained test (CD test) Example:

> The results of two drained triaxial tests on a saturated clay follow: Specimen I:

 $\sigma_3 = 70 \text{ kN/m2}$ $\Delta \sigma_{d,f} = 130 \text{ kN/m2}$

Specimen II:

 $\sigma_3 = 160 \text{ kN/m2}$ $\Delta \sigma_{d,f} = 223.5 \text{ kN/m2}$

Determine the shear strength parameters.

- Consolidated-Undrained test (CU test)
 - This test is the most common type of triaxial test
 - We can measure the effective soil strength parameters (C', ϕ') and the total stress parameters (C, ϕ)
 - Consolidated-drained tests on clay soils take considerable time.
 - Saturated soil specimen is first consolidated by an all-around chamber fluid pressure σ_3
 - Then the drainage is closed and the deviatoric axial stress is applied to failure $\Delta \sigma_{d,f}$
 - This will result in an increase in the pore water pressure $\Delta u_{d,f}$
 - Major principal stress at failure (total): $\sigma_1 = \sigma_3 + \Delta \sigma_{d.f}$
 - Major principal stress at failure (effective): $\sigma'_1 = \sigma_1 \Delta u_{d.f}$
 - Minor principal stress at failure (total): σ_3
 - Minor principal stress at failure (effective): $\sigma'_3 = \sigma_3 \Delta u_{d.f}$

$$\phi = \sin^{-1} \left(\frac{\sigma_1 - \sigma_3}{\sigma_1 + \sigma_3} \right) \qquad \phi' = \sin^{-1} \left[\frac{\sigma_1 - \sigma_3}{\sigma_1 + \sigma_3 - 2(\Delta u_d)_f} \right]$$
Effective stress failure envelope $\tau_f = \sigma' \tan \phi'$
Total stress failure envelope $\tau_f = \sigma \tan \phi$

$$\int \phi'$$

$$\int$$

Shear stress

• Consolidated-Undrained test or drained test (CU test)

• Example:

A specimen of saturated sand was consolidated under an all-around pressure of 105 kN/m2. The axial stress was then increased, and drainage was prevented.

The specimen failed when the axial deviator stress reached 70 kN/m2. The pore water pressure at failure was 50 kN/m2. Determine

- a. Consolidated-undrained angle of shearing resistance, ϕ
- b. Drained friction angle, ϕ'

- Unconsolidated-Undrained Triaxial Test (UU)
 - This test usually is conducted on clay specimens
 - We can measure the effective soil strength parameters (C', ϕ') and the total stress parameters (C, ϕ)
 - Because drainage is not allowed at any stage, the test can be performed quickly
 - Saturated soil specimen is subjected to an all-around chamber fluid pressure σ_3 with drainage closed
 - The pore water pressure in the soil specimen will increase by u_c
 - Then the deviatoric axial stress is applied to failure $\Delta \sigma_{d,f}$
 - This will result in an increase in the pore water pressure $\Delta u_{d,f}$
 - The total pore water pressure u in the specimen at any stage of deviator stress application $u = u_c + \Delta u_d$
 - The added axial stress at failure $\Delta \sigma_{d,f}$ is practically the same regardless of the chamber confining pressure

• Unconsolidated-Undrained Triaxial Test (UU)

- Unconfined Compression Test on Saturated Clay
 - This test is a special type of unconsolidated-undrained test that is commonly used for clay specimens
 - Since the undrained shear strength of clay doesn't depend on the confining pressure σ_3
 - The test is performed without any confining pressure $\sigma_3 = 0$
 - Theoretically, for similar saturated clay specimens, the unconfined compression tests and the unconsolidated-undrained triaxial tests should yield the same values of c_u
 - In practice, however, unconfined compression tests on saturated clays yield slightly lower values $q_1 q_2 = \frac{\sigma_1}{2}$

