

Faculty of Engineering and Tecnology

Computer Science Department

Database Design

Chapter 2

STUDIAN BORNA ABBISINAINA

COMP333 | DB Design ER Modelonymous

Entity-Relationship Model

STUDIAN BAR Abbisnaina

COMP333 | DB Design ER Modehonymous

Databases Model the Real World

- "Data Model" translates real world things into structures computers can store
- Many models:
 - Relational, E-R, O-O, Network, Hierarchical, etc.
- Relational (more next time)
 - Rows & Columns
 - Keys & Foreign Keys to link Relations

Enrolled

Students

sid	cid	grade		sid	name	login	age	gpa
53666	Carnatic101	С —	\longrightarrow	53666	Jones	jones@cs	18	3.4
53666	Reggae203	B —	1	53688	Smith	smith@eecs	18	3.2
53650	Topology112	A		53650	Smith	smith@math	19	3.8
53666	History105	В						

STUD Abread Abranaina

COMP333 | DB Design ER Modehonymous

One Solution: The E-R Model

n Instead of relations, it has:

ù Entities and Relationships

n These are described with diagrams

ù both structure, notation more obvious to humans

STUD Abread Abrenaina

Steps in Database Design

n Requirements Analysis

ù user needs; what must database do and have?

n Conceptual Design

ù high level descr (often done w/ER model)

n Logical Design

ù translate ER into DBMS data model

n Schema Refinement

ù consistency, normalization

n Physical Design

ù indexes, disk layout

n Security Design

ù who accesses what, and how

Example: DBA for Bank of America

- Requirements Specification
 - Determine the requirements of clients (Database to store information about customers, accounts, loans, branches, transactions, ...)
- Conceptual Design
 - Express client requirements in terms of E/R model.
 - Confirm with clients that requirements are correct.
 - Specify required data operations
- Logical Design
 - Convert E/R model to relational, object-based, XML-based,...
- Physical Design
 - Specify file organizations, build indexes

ER Model Basics

n *Entity:*

- **ù** Real-world thing, distinguishable from other objects.
- ù Noun phrase (e.g., Bob Smith, Comm Ave Branch, Account 1234, etc)
- **ù** Entity described by set of *attributes*.

n *Entity Set*: A collection of similar entities. E.g., all employees.

- ù All entities in an entity set have the same set of attributes. (Until we consider hierarchies, anyway!)
- ù Each attribute has a *domain*.

ER Model Basics (Contd.)

n *Relationship*: Association among two or more entities. E.g., Bob Smith works in Pharmacy department.

- **ù** relationships can have their own attributes.
- **ù** Verb phrases (e.g., works_at, enrolled_in, etc)

n Relationship Set: Collection of similar relationships.

ù An *n*-ary relationship set *R* relates *n* entity sets $E_1 \dots E_n$; each relationship in *R* involves entities $e_1 \in E_1, \dots, e_n \in E_n$

STUD Abread Abesnaina

COMP333 | DB Design ER Modehonymous

STUD Abread Abremaina

COMP333 | DB Design ER Modehonymous

STUD Abread Abranama

COMP333 | DB Design ER Modenhonymous

STUD Abread Abrenaina

COMP333 | DB Design ER Moden on ymous

Design Issue #1: Entity Sets vs. Attributes

An Example: Employees can have multiple phones

STUD Abread Abremaina

COMP333 | DB Design ER Moden on ymous

Design Issue #2: Entity Sets vs. Relationship Sets

n An Example: How to model bank loans

- n To resolve, determine how loans are issued
 - ù 1. Can there be more than one customer per loan?
 - If yes, then (a). Otherwise, loan info must be replicated for each customer (wasteful, potential <u>update anomalies</u>)
 - ù 2. Is loan a noun or a verb?
 - Both, but more of a noun to a bank. (hence (a) probably more appropriate)

Design Issue #3: Relationship Cardinalities

- n Variations on study:
 - **ù** 1. Can a student study <u>multiple courses</u>?
 - ù 2. Can a course be jointly held by more than 1 student?

n Cardinalities of <u>study</u>:

Туре	Illustrated	Multiple courses?	Joint courses?	
One-to-One (1:1)		No	No	
Many-to-one (n:1)		No	Yes	
One-to-many (1:n)	study	Yes	No	
Many-to-many (n:m)	study	Yes	Yes	

STUD Abread Abremaina

Design Issue #3: Relationship Cardinalities (cont)

In general... n ù 1:1 n:1 1:n n:m

STUD Abread Abrenaina

COMP333 | DB Design ER Modelonymous

Design Issue #4: N-ary vs Binary Relationship Sets

An Example: Works_At n

STUD Abread Abreanina

Design Issue #5: Total participation vs. Partial participation Relationship

- n Variations
- n 1. The student must study at least one course.
 - n Total participation: Thick line
- n 2. There is No constraint that the lecturer must teach courses.
 - n Partial participation: Normal line

STUD Abread Abrenaina

E/R Data Model Keys

• Key = set of attributes identifying individual entities or relationships

- □ A. Superkey:
 - any attribute set that distinguishes identities
 - e.g., {essn}, {essn, ename, eaddress}
- **B.** Candidate Key:
 - "minimal superkey" (can't remove attributes and preserve "keyness")
 - e.g., {essn}, {ename, eaddress}
- **C.** Primary Key:
 - candidate key chosen as the key by a DBA
 - e.g., <u>{essn</u>} (denoted by <u>underline</u>)

Existence Dependencies and Weak Entity Sets

- Idea:
 - Existence of one entity depends on another
- Example: The Employee insurance can cover all of his children's

Existence Dependencies and Weak Entity Sets

- Idea:
 - Existence of one entity depends on another
- Example: The Employee insurance can cover all of his children's

Weak Entity Sets

existence of Childs depends upon Employee

 have no superkeys: different childs records (for different Employees) can be identical

□ instead of keys, discriminators: discriminate between

We say: childs for a given Employee

- Employee is owner in Insurance_coverage
- □ Child is weak entity

STUD And Abbanama

— Total Participation

□ One-to-many

Q. Is {att_{b1}, ..., att_{bn}} a superkey of E₂?
A: No

Q. Name a candidate key of E_2 A: {att_{a1}, att_{b1}}

STUD Abread Abremaina

Extensions to the Model: Specialization and Generalization

- An Example:
 - Customers can have checking and savings accts
 - Checking ~ Savings (many of the same attributes)

□ Old Way:

ISA : Specialization and Generalization

- An Example:
 - Customers can have checking and savings accts
 - Checking ~ Savings (many of the same attributes)

Extensions to the Model: Specialization and Generalization

- Subclass Distinctions:
 - □ 2. Overlapping vs. Disjoint
 - Overlapping: Entities can belong to >1 entity set (e.g., Adult, Senior)
 - Disjoint: Entities belong to exactly 1 entity set (e.g., Child)

Extensions to the Model: Aggregation

- □ E/R: No relationships between relationships
 - □ E.g.: Associate loan officers with Borrows relationship set

Associate Loan Officer with Loan?

STUD Abread Abrenaina

- Entities, Relationships (sets)
- Both can have attributes (simple, multivalued, derived, composite)
- □ Cardinality or relationship sets (1:1, n:1, n:m)
- □ Keys: superkeys, candidate keys, primary key
 - DBA chooses primary key for entity sets
 - Automatically determined for relationship sets
- □ Weak Entity Sets, Existence Dependence, Total/Partial Participation
- Specialization and Generalization (E/R + inheritance)

These things get pretty!

• Many E-R diagrams will be covered!