
Arrays

STUDENTS-HUB.com

https://students-hub.com

2

Introducing Arrays
 Array is a data structure that represents a collection of
the same types of data.

STUDENTS-HUB.com

https://students-hub.com

3

Declaring Array Variables

datatype[] arrayRefVar;
Example:

 double[] myList;

datatype arrayRefVar[]; // This style is allowed, but not preferred

Example:

 double myList[];

STUDENTS-HUB.com

https://students-hub.com

4

Creating Arrays

arrayRefVar = new datatype[arraySize];

Example:

myList = new double[10];
 myList[0] references the 1st element in the

array.

 myList[9] references the last element in
the array.

STUDENTS-HUB.com

https://students-hub.com

5

Declaring and Creating in 1 Step

datatype[] arrayRefVar = new datatype[arraySize];

 double[] myList = new double[10];

datatype arrayRefVar[] = new datatype[arraySize];

 double myList[] = new double[10];

STUDENTS-HUB.com

https://students-hub.com

6

The Length of an Array

 Once an array is created, its size is fixed.

 It cannot be changed.

 You can find its size using:

arrayRefVar.length
For example:

myList.length  returns 10

STUDENTS-HUB.com

https://students-hub.com

7

Default Values

 When an array is created, its elements
are assigned the default value of :

0 for the numeric data types.

 '\u0000' for char types.

 false for boolean types.

STUDENTS-HUB.com

https://students-hub.com

8

Indexed Variables

 The array elements are accessed through
the index.

 The array indices are 0-based, i.e., it starts
from 0 to arrayRefVar.length-1.

 Each element in the array is represented
using the following syntax, known as an
indexed variable:

arrayRefVar[index];
STUDENTS-HUB.com

https://students-hub.com

9

Using Indexed Variables

 After an array is created, an indexed variable
can be used in the same way as a regular
variable.

 For example, the following code adds the
value in myList[0] and myList[1] to myList[2]:

myList[2] = myList[0] + myList[1];

STUDENTS-HUB.com

https://students-hub.com

10

Array Initializers
 Declaring, creating, initializing in 1 step:

 double[] myList = {1.9, 2.9, 3.4, 3.5};

 This shorthand notation is equivalent to the
following statements:

double[] myList = new double[4];

myList[0] = 1.9;

myList[1] = 2.9;

myList[2] = 3.4;

myList[3] = 3.5; STUDENTS-HUB.com

https://students-hub.com

11

Trace Program with Arrays

public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i-1];
 }
 values[0] = values[1] + values[4];
 }
}

STUDENTS-HUB.com

https://students-hub.com

12

Initializing arrays with input values

Scanner input = new Scanner(System.in);

System.out.print("Enter " + myList.length + " values: ");

for (int i = 0 ; i < myList.length ; i++)

 myList[i] = input.nextDouble();

STUDENTS-HUB.com

https://students-hub.com

13

Initializing arrays with random values

for (int i = 0; i < myList.length; i++)

 myList[i] = Math.random() * 100;

Printing arrays

for (int i = 0; i < myList.length; i++)

 System.out.print(myList[i] + " ");

STUDENTS-HUB.com

https://students-hub.com

14

Summing all elements

double total = 0;

for (int i = 0; i < myList.length; i++)

 total += myList[i];

Finding the largest element
double max = myList[0];

for (int i = 1; i < myList.length; i++) {

 if (myList[i] > max)

 max = myList[i];

} STUDENTS-HUB.com

https://students-hub.com

15

Random Shuffling

STUDENTS-HUB.com

https://students-hub.com

16

Shifting Elements

STUDENTS-HUB.com

https://students-hub.com

17

Enhanced for Loop (for-each loop)

 JDK 1.5 introduced a new for loop that enables you to traverse
the complete array sequentially without using an index variable.
 For example, the following code displays all elements in the
array myList:

 for (double value: myList) System.out.println(value);

 In general, the syntax is:

 for (elementType value: arrayRefVar) {

 // Process the value

 }

 You still have to use an index variable if you wish to traverse
the array in a different order or change the elements in the array.

STUDENTS-HUB.com

https://students-hub.com

18

Copying Arrays
 Often, in a program, you need to duplicate an array or a
part of an array. In such cases you could attempt to use
the assignment statement (=), as follows:

 list2 = list1;

STUDENTS-HUB.com

https://students-hub.com

19

Copying Arrays

 Using a loop:

int[] sourceArray = {2, 3, 1, 5, 10};

int[] targetArray = new int[sourceArray.length];

for (int i = 0; i < sourceArrays.length; i++)

 targetArray[i] = sourceArray[i];

STUDENTS-HUB.com

https://students-hub.com

20

The arraycopy Utility

System.arraycopy(sourceArray, src_pos,
targetArray, tar_pos, length);

 Example:

System.arraycopy(sourceArray, 0,
targetArray, 0, sourceArray.length);

STUDENTS-HUB.com

https://students-hub.com

21

Passing Arrays to Methods

public static void printArray(int[] array) {

 for (int i = 0; i < array.length; i++) {

 System.out.print(array[i] + " ");

 }

}

 Invoke the method

int[] list = {3, 1, 2, 6, 4, 2};

printArray(list);

STUDENTS-HUB.com

https://students-hub.com

22

Anonymous Array

 The statement

printArray(new int[]{3, 1, 2, 6, 4, 2});

 Creates array using the following syntax:

new dataType[]{literal0, literal1, ..., literalk}

 There is no explicit reference variable for
the array.

 Such array is called an anonymous array.

STUDENTS-HUB.com

https://students-hub.com

23

Pass by Value
 For a parameter of a primitive type value, the
actual value is passed.

 Changing the value of the local parameter
inside the method does not affect the value of
the variable outside the method.

 For a parameter of an array type, the value of
the parameter contains a reference to an array;
this reference is passed to the method.

 Any changes to the array that occur inside the
method body will affect the original array that
was passed as the argument.

STUDENTS-HUB.com

https://students-hub.com

24

public class Test {

 public static void main(String[] args) {

 int x = 1;

 int[] y = new int[10];

 m(x, y);

 System.out.println("x is " + x);

 System.out.println("y[0] is " + y[0]);

 }

 public static void m(int number, int[] numbers) {

 number = 1001;

 numbers[0] = 5555;

 }

}

Simple Example

STUDENTS-HUB.com

https://students-hub.com

25

Returning an Array from a Method

public static int[] reverse(int[] list) {

 int[] result = new int[list.length];
 for (int i=0, j=result.length - 1; i < list.length/2; i++, j--) {
 result[j] = list[i];
 }

 return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

STUDENTS-HUB.com

https://students-hub.com

26

Linear Search
 The linear search approach compares the key
element, key, sequentially with each element in
the array list.

 The method continues to do so until the key
matches an element in the list or the list is
exhausted without a match being found.

 If a match is made, the linear search returns
the index of the element in the array that
matches the key.

 If no match is found, the search returns -1.

STUDENTS-HUB.com

https://students-hub.com

27

From Idea to Solution

public static int linearSearch(int[] list, int key) {

 for (int i = 0; i < list.length; i++)

 if (key == list[i]) return i;

 return -1;

}

int[] list = {1, 4, 4, 2, 5, -3, 6, 2};
int i = linearSearch(list, 4); // returns 1

int j = linearSearch(list, -4); // returns -1

int k = linearSearch(list, -3); // returns 5

Trace the method:

STUDENTS-HUB.com

https://students-hub.com

28

The Arrays.binarySearch Method

Since binary search is frequently used in programming,
Java provides several binarySearch methods for
searching a key in an array of int, double, char, short,
long, and float in the java.util.Arrays class.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};

System.out.println("Index is " + Arrays.binarySearch(list, 11));

char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'};

System.out.println("Index is " + Arrays.binarySearch(chars, 't'));

For the binarySearch method to work, the array must
be pre-sorted in increasing order.

STUDENTS-HUB.com

https://students-hub.com

29

 Selection sort finds the smallest number in the list and places it
first. It then finds the smallest number remaining and places it
second, and so on until the list contains only a single number.

Selection Sort

STUDENTS-HUB.com

https://students-hub.com

30

From Idea to Solution

for (int i = 0; i < list.length; i++) {
 select the smallest element in list[i..listSize-1];
 swap the smallest with list[i], if necessary;
 // list[i] is in its correct position.
 // The next iteration apply on list[i+1..listSize-1]
}

STUDENTS-HUB.com

https://students-hub.com

31

The Arrays.sort Method
 Java provides several sort methods for sorting an array
of int, double, char, short, long, and float in the
java.util.Arrays class.

 For example, the following code sorts an array of
numbers and an array of characters:

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};

java.util.Arrays.sort(numbers);

char[] chars = {'a', 'A', '4', 'F', 'D', 'P'};

java.util.Arrays.sort(chars);

STUDENTS-HUB.com

https://students-hub.com

32

main Method is just a Regular Method

 You can call a regular method by passing actual
parameters.

 You can pass arguments to main.

 For example, the main method in class B is
invoked by a method in A, as shown below:

STUDENTS-HUB.com

https://students-hub.com

33

Command-Line Parameters
class TestMain {

 public static void main(String[] s) {

 ...

 }

}

  In the main method, get the arguments from

s[0], s[1], ..., s[n], which corresponds to arg0,
arg1, ..., argn in the command line.

STUDENTS-HUB.com

https://students-hub.com

34

Problem: Calculator

 Objective: Write a program that will
perform binary operations on integers.
The program receives three parameters:

an operator and two integers.

java Calculator 2 + 3

java Calculator 2 - 3

 java Calculator 2 / 3

 java Calculator 2 . 3

STUDENTS-HUB.com

https://students-hub.com

35

Declare/Create 2D Arrays
// Declare array refvar

dataType[][] refVar;

// Create array and assign its reference to variable

refVar = new dataType[10][10];

// Combine declaration and creation in one statement

dataType[][] refVar = new dataType[10][10];

// Alternative syntax

dataType refVar[][] = new dataType[10][10];
STUDENTS-HUB.com

https://students-hub.com

36

Creating 2D Arrays

int[][] matrix = new int[10][10];

for (int i = 0; i < matrix.length; i++)
 for (int j = 0; j < matrix[i].length; j++)
 matrix[i][j] = (int)(Math.random() * 1000);

STUDENTS-HUB.com

https://students-hub.com

37

Declaring, Creating, and Initializing
Using Shorthand Notations
 You can also use an array initializer to declare,

create and initialize a 2-dimensional array.

 For example:

int[][] array = {

 {1, 2, 3},

 {4, 5, 6},

 {7, 8, 9},

 {10, 11, 12}

};
STUDENTS-HUB.com

https://students-hub.com

38

Lengths of 2D Arrays

int[][] x = new int[3][4];

STUDENTS-HUB.com

https://students-hub.com

39

Lengths of 2D Arrays, cont.

int[][] array = {

 {1, 2, 3},

 {4, 5, 6},

 {7, 8, 9},

 {10, 11, 12}

};

array.length

array[0].length

array[1].length

array[2].length

array[3].length

array[4].length  ArrayIndexOutOfBoundsException

STUDENTS-HUB.com

https://students-hub.com

40

Ragged Arrays
Each row in a 2D array is itself an array. So, the rows can

have different lengths.

 Such an array is known as a ragged array.

For example:

STUDENTS-HUB.com

https://students-hub.com

41

Printing arrays

for (int row = 0; row < matrix.length; row++) {
 for (int column = 0; column < matrix[row].length;
 column++) {
 System.out.print(matrix[row][column] + " ");
 }

 System.out.println();
}

STUDENTS-HUB.com

https://students-hub.com

42

What is Sudoku?

Checking Whether a Solution Is Correct

STUDENTS-HUB.com

https://students-hub.com

43

Multidimensional Arrays
 Occasionally, you will need to represent

n-dimensional data structures.

 In Java, you can create n-dimensional arrays for
any integer n.

 The way to declare two-dimensional array
variables and create two-dimensional arrays can
be generalized to declare n-dimensional array
variables and create n-dimensional arrays for n > 2.

STUDENTS-HUB.com

https://students-hub.com

44

Multidimensional Arrays
double[][][] scores = {

 {{7.5, 20.5}, {9.0, 22.5}, {15, 33.5}, {13, 21.5}, {15, 2.5}},

 {{4.5, 21.5}, {9.0, 22.5}, {15, 34.5}, {12, 20.5}, {14, 9.5}},

 {{6.5, 30.5}, {9.4, 10.5}, {11, 33.5}, {11, 23.5}, {10, 2.5}},

 {{6.5, 23.5}, {9.4, 32.5}, {13, 34.5}, {11, 20.5}, {16, 7.5}},

 {{8.5, 26.5}, {9.4, 52.5}, {13, 36.5}, {13, 24.5}, {16, 2.5}},

 {{9.5, 20.5}, {9.4, 42.5}, {13, 31.5}, {12, 20.5}, {16, 6.5}}};

STUDENTS-HUB.com

https://students-hub.com

