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Introducing Arrays 
 Array is a data structure that represents a collection of 
the same types of data.  
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Declaring Array Variables 

datatype[] arrayRefVar; 
Example:  

    double[] myList; 
 
datatype arrayRefVar[]; // This style is allowed, but not preferred 

Example:  

    double myList[]; 
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Creating Arrays 

arrayRefVar = new datatype[arraySize]; 

Example: 

myList = new double[10]; 
 myList[0] references the 1st element in the 

array. 

 myList[9] references the last element in 
the array. 
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Declaring and Creating in 1 Step 

datatype[] arrayRefVar = new datatype[arraySize]; 

  double[] myList = new double[10]; 

datatype arrayRefVar[] = new datatype[arraySize]; 

 double myList[] = new double[10]; 
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The Length of an Array 

 Once an array is created, its size is fixed.  

 It cannot be changed.  

 You can find its size using: 

arrayRefVar.length 
For example: 

myList.length      returns    10 
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Default Values 

 When an array is created, its elements 
are assigned the default value of : 

0 for the numeric data types.  

 '\u0000' for char types. 

 false for boolean types.  
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Indexed Variables 

 The array elements are accessed through 
the index.  

 The array indices are 0-based, i.e., it starts 
from 0 to arrayRefVar.length-1.  

 Each element in the array is represented 
using the following syntax, known as an 
indexed variable: 

arrayRefVar[index]; 
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Using Indexed Variables 

 After an array is created, an indexed variable 
can be used in the same way as a regular 
variable.  

 For example, the following code adds the 
value in myList[0] and myList[1] to myList[2]: 

myList[2] = myList[0] + myList[1]; 
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Array Initializers 
 Declaring, creating, initializing in 1 step: 

 double[] myList = {1.9, 2.9, 3.4, 3.5}; 

 This shorthand notation is equivalent to the 
following statements: 

double[] myList = new double[4]; 

myList[0] = 1.9; 

myList[1] = 2.9; 

myList[2] = 3.4; 

myList[3] = 3.5;  STUDENTS-HUB.com
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Trace Program with Arrays 

public class Test { 
  public static void main(String[] args) { 
       int[] values = new int[5]; 
       for (int i = 1; i < 5; i++) { 
             values[i] = i + values[i-1]; 
       } 
       values[0] = values[1] + values[4]; 
  } 
} 
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Initializing arrays with input values 

Scanner input = new Scanner(System.in); 

System.out.print("Enter "  +  myList.length  +  " values: "); 

for (int i = 0 ;  i < myList.length  ;   i++)  

        myList[ i ] = input.nextDouble(); 
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Initializing arrays with random values 

for (int i = 0; i < myList.length; i++)  

    myList[i] = Math.random() * 100; 

Printing arrays 

for (int i = 0; i < myList.length; i++)  

     System.out.print(myList[i] + " "); 
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Summing all elements 

double total = 0; 

for (int i = 0; i < myList.length; i++) 

     total += myList[i]; 

Finding the largest element 
double max = myList[0]; 

for (int i = 1; i < myList.length; i++) { 

      if (myList[i] > max)  

             max = myList[i]; 
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Random Shuffling 
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Shifting Elements 
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Enhanced for Loop (for-each loop) 

 JDK 1.5 introduced a new for loop that enables you to traverse 
the complete array sequentially without using an index variable.  
 For example, the following code displays all elements in the 
array myList: 

          for (double value: myList)   System.out.println(value); 

 In general, the syntax is: 

       for (elementType value: arrayRefVar) { 

           // Process the value 

  } 

 You still have to use an index variable if you wish to traverse 
the array in a different order or change the elements in the array.  
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Copying Arrays 
 Often, in a program, you need to duplicate an array or a 
part of an array. In such cases you could attempt to use 
the assignment statement (=), as follows: 

 list2 = list1; 
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Copying Arrays 

 Using a loop: 

int[] sourceArray = {2, 3, 1, 5, 10}; 

int[] targetArray = new int[sourceArray.length]; 

 

for (int i = 0; i < sourceArrays.length; i++) 

      targetArray[i] = sourceArray[i]; 
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The arraycopy Utility 

System.arraycopy(sourceArray, src_pos, 
targetArray, tar_pos, length); 

 

 Example: 

System.arraycopy(sourceArray, 0, 
targetArray, 0, sourceArray.length);  
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Passing Arrays to Methods 

public static void printArray(int[] array) { 

  for (int i = 0; i < array.length; i++) { 

    System.out.print(array[i] + " "); 

  } 

}  

 Invoke the method 

int[] list = {3, 1, 2, 6, 4, 2}; 

printArray(list); 
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Anonymous Array 

 The statement  

printArray(new int[]{3, 1, 2, 6, 4, 2});  

 Creates array using the following syntax:  

new dataType[]{literal0, literal1, ..., literalk} 

 There is no explicit reference variable for 
the array.  

 Such array is called an anonymous array.  
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Pass by Value 
 For a parameter of a primitive type value, the 
actual value is passed.  

 Changing the value of the local parameter 
inside the method does not affect the value of 
the variable outside the method. 

 For a parameter of an array type, the value of 
the parameter contains a reference to an array; 
this reference is passed to the method.  

 Any changes to the array that occur inside the 
method body will affect the original array that 
was passed as the argument.  
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public class Test { 

  public static void main(String[] args) { 

      int x = 1;    

      int[] y = new int[10];  

      m(x, y);   

      System.out.println("x is " + x); 

      System.out.println("y[0] is " + y[0]); 

  } 
  

  public static void m(int number, int[] numbers) { 

      number = 1001;    

      numbers[0] = 5555;   

  } 

} 

Simple Example 
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Returning an Array from a Method 

public static int[] reverse(int[] list) { 

   int[] result = new int[list.length]; 
   for (int i=0, j=result.length - 1; i < list.length/2; i++, j--) { 
           result[j] = list[i]; 
   } 

   return result; 
} 

int[] list1 = {1, 2, 3, 4, 5, 6}; 

int[] list2 = reverse(list1); 
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Linear Search 
 The linear search approach compares the key 
element, key, sequentially with each element in 
the array list.  

 The method continues to do so until the key 
matches an element in the list or the list is 
exhausted without a match being found.  

 If a match is made, the linear search returns 
the index of the element in the array that 
matches the key.  

 If no match is found, the search returns -1.  
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From Idea to Solution 

public static int linearSearch(int[] list, int key) { 

   for (int i = 0; i < list.length; i++) 

        if (key == list[i])     return i; 

   return -1; 

} 

int[] list = {1, 4, 4, 2, 5, -3, 6, 2}; 
int i = linearSearch(list, 4);  // returns 1 

int j = linearSearch(list, -4); // returns -1 

int k = linearSearch(list, -3); // returns 5 

Trace the method: 
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The Arrays.binarySearch Method 

Since binary search is frequently used in programming, 
Java provides several binarySearch methods for 
searching a key in an array of int, double, char, short, 
long, and float in the java.util.Arrays class.  

 

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79}; 

System.out.println("Index is " +  Arrays.binarySearch(list, 11)); 

  

char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'}; 

System.out.println("Index is " + Arrays.binarySearch(chars, 't')); 
  

For the binarySearch method to work, the array must 
be pre-sorted in increasing order.  
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 Selection sort finds the smallest number in the list and places it 
first. It then finds the smallest number remaining and places it 
second, and so on until the list contains only a single number.  

Selection Sort 
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From Idea to Solution 

for (int i = 0; i < list.length; i++)   { 
  select the smallest element in list[i..listSize-1]; 
  swap the smallest with list[i], if necessary; 
  // list[i] is in its correct position.  
  // The next iteration apply on list[i+1..listSize-1] 
} 
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The Arrays.sort Method 
 Java provides several sort methods for sorting an array 
of int, double, char, short, long, and float in the 
java.util.Arrays class.  

 For example, the following code sorts an array of 
numbers and an array of characters: 
 

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5}; 

java.util.Arrays.sort(numbers); 
  

char[] chars = {'a', 'A', '4', 'F', 'D', 'P'}; 

java.util.Arrays.sort(chars); 
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main Method is just a Regular Method 

 You can call a regular method by passing actual 
parameters.  

 You can pass arguments to main.  

 For example, the main method in class B is 
invoked by a method in A, as shown below: 
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Command-Line Parameters 
class TestMain {  

    public static void main(String[] s) {  

    ...  

    } 

} 

 

  In the main method, get the arguments from 

s[0], s[1], ..., s[n], which corresponds to arg0, 
arg1, ..., argn in the command line. 
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Problem: Calculator 

 Objective: Write a program that will 
perform binary operations on integers.  
The program receives three parameters: 

an operator and two integers.  

java Calculator 2 + 3 

java Calculator 2 - 3 

 java Calculator 2 / 3 

 java Calculator 2 . 3 
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Declare/Create 2D Arrays 
// Declare array refvar 

dataType[][] refVar;  
 

// Create array and assign its reference to variable 

refVar = new dataType[10][10];  
 

// Combine declaration and creation in one statement 

dataType[][] refVar = new dataType[10][10];  

 

// Alternative syntax 

dataType refVar[][] = new dataType[10][10];  
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Creating 2D Arrays  

 

int[][] matrix = new int[10][10]; 

 
for (int i = 0; i < matrix.length; i++) 
  for (int j = 0; j < matrix[i].length; j++) 
    matrix[i][j] = (int)(Math.random() * 1000); 
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Declaring, Creating, and Initializing 
Using Shorthand Notations 
 You can also use an array initializer to declare, 

create and initialize a 2-dimensional array. 

 For example: 

int[][] array = { 

  {1, 2, 3}, 

  {4, 5, 6}, 

  {7, 8, 9}, 

  {10, 11, 12} 

}; 
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Lengths of 2D Arrays 

int[][] x = new int[3][4]; 
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Lengths of 2D Arrays, cont. 

int[][] array = { 

  {1, 2, 3}, 

  {4, 5, 6}, 

  {7, 8, 9}, 

  {10, 11, 12} 

}; 

array.length 

array[0].length 

array[1].length 

array[2].length 

array[3].length 

 

array[4].length   ArrayIndexOutOfBoundsException 
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Ragged Arrays 
Each row in a 2D array is itself an array. So, the rows can 

have different lengths.  

  Such an array is known as a ragged array.  

For example:  
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Printing arrays 

for (int row = 0; row < matrix.length; row++) { 
  for (int column = 0; column < matrix[row].length;      
                      column++) { 
         System.out.print(matrix[row][column] + " "); 
  } 
 
  System.out.println(); 
}  
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What is Sudoku? 

Checking Whether a Solution Is Correct 
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Multidimensional Arrays 
 Occasionally, you will need to represent  

n-dimensional data structures.  

 In Java, you can create n-dimensional arrays for 
any integer n.  

 The way to declare two-dimensional array 
variables and create two-dimensional arrays can 
be generalized to declare n-dimensional array 
variables and create n-dimensional arrays for n > 2. 
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Multidimensional Arrays 
double[][][] scores = { 

  {{7.5, 20.5}, {9.0, 22.5}, {15, 33.5}, {13, 21.5}, {15, 2.5}}, 

  {{4.5, 21.5}, {9.0, 22.5}, {15, 34.5}, {12, 20.5}, {14, 9.5}}, 

  {{6.5, 30.5}, {9.4, 10.5}, {11, 33.5}, {11, 23.5}, {10, 2.5}}, 

  {{6.5, 23.5}, {9.4, 32.5}, {13, 34.5}, {11, 20.5}, {16, 7.5}}, 

  {{8.5, 26.5}, {9.4, 52.5}, {13, 36.5}, {13, 24.5}, {16, 2.5}}, 

  {{9.5, 20.5}, {9.4, 42.5}, {13, 31.5}, {12, 20.5}, {16, 6.5}}}; 
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