
Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 04
Selection Structures:
if and switch Statements

Loading…

Chapter Objectives:

1. statements that control the flow of program execution

2. conditions and logical expressions

3. use if and switch statements to select one statement group to execute from many

alternatives

4. trace an algorithm or program to verify that it does what you expect.

➢ Control structures control the flow of execution in a program or function

➢ They enable you to combine individual instructions into a single logical unit with one entry
point and one exit point.

➢ Instructions are organized into three kinds of control structures to control execution flow:

sequence, selection, and repetition (CH05)

➢ Until now we have been using only sequential flow.

➢ A compound statement (1), written as a group of statements bracketed by { and } , is used to
specify sequential flow.

➢ A selection control structure chooses which alternative to execute. (2)

4.1 CONTROL
STRUCTURES

Loading…

➢ A program chooses among alternative statements by testing the value of key variables

➢ If rest_heart_rate is a type int variable, then
rest_heart_rate > 75 (1)

➢ Such an expression is called a condition because it establishes a criterion for either executing

or skipping a group of statements.

4.2 CONDITIONS

RELATIONAL AND EQUALITY OPERATORS

➢ With the three logical operators, we can form more complicated conditions or logical
expressions:

1. && (and), 2. || (or) 3. ! (not)

Examples:

• salary < MIN_SALARY || dependents > 5 (1)
• temperature > 90.0 && humidity > 0.90 (2)
• n >= 0 && n <= 100 (3)
• 0 <= n && n <= 100 (3)

LOGICAL
OPERATORS

LOGICAL
OPERATORS

➢ The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is nonzero
(true), !positive is 0 (false) and vice versa).

 !(0 <= n && n <= 100) (1)

LOGICAL
OPERATORS

Loading…

OPERATOR PRECEDENCE

Arithmetic

Relational

Logical

Equality

• Notice that the precedence of operators + and − depends on whether they have one
operand or two. In the expression -x - y * z

the unary minus is evaluated first (-x), then * , and then the second - .

• You can use parentheses to change the order of operator evaluation. In the expression
 (x < y || x < z) && x > 0.0 C evaluates II before &&. (1)

• You can also use parentheses to clarify the meaning of expressions.

If x , min , and max are type double , the C compiler will interpret the expression:
x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

OPERATOR PRECEDENCE

Example 4.2

* Figure 4.1, p.179 shows the evaluation tree and step-by-step evaluation for expression
3.

SHORT-CIRCUIT EVALUATION

➢ An expression of the form a || b must be true if a is true. (1)

➢ Similarly, an expression of the form a && b must be false if a is false. (2)
➢ We can use short-circuit evaluation to prevent potential run-time errors. (num %

div == 0) (3) What if div is 0?

➢ In this case, the remainder calculation would cause a division by zero run-time error.

➢ However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0)) (4)

WRITING ENGLISH CONDITIONS IN C

x = 3.0 y = 4.0 z = 2.0

In the first logical expression You may be tempted to write this as
 x && y > z /* invalid logical expression */ (1)

COMPARING CHARACTERS

LOGICAL ASSIGNMENT

The simplest form of a logical expression in C is a single type int value or variable intended to
represent the value true or false (1)

Example 4.5

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

Example 4.7

<= should be changed to >
< should be changed to >=

COMPLEMENTING A CONDITION

Example 4.8

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D') (1)

● if Statement with Two Alternatives:

if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
else
 printf("Your heart is in excellent health!\n");

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
else
 printf("Frigate\n"); (1)

4.3 THE IF STATEMENT

● if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

• If statement from figure 4.4(b)
/* Multiply Product by a nonzero x */
if (x != 0.0)
 product = product * x;

if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
printf("Combat ship\n"); (1)

if crsr_or_frgt == 'C‘ /* error - missing parentheses */(2)
 printf("Cruiser\n");
printf("Combat ship\n");

if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/ (3)
 printf("Cruiser\n");
printf("Combat ship\n");

if (students_today > students_yesterday) {

int increase = students_today - students_yesterday;

float increase_pct = 100.0 * increase / students_yesterday;

printf("Student attendance increased by %.2f%%\n", increase_pct);
}

if (ctri <= MAX_SAFE_CTRI) {

 printf("Car #%d: safe\n", auto_id);

 safe = safe + 1;

} else {

 printf("Car #%d: unsafe\n", auto_id);

 unsafe = unsafe + 1;

} (1)

4.4 IF STATEMENTS WITH COMPOUND
STATEMENTS

what if we omit the
braces?

➢ We enclose a compound statement that is a true task or a false task in
braces. The placement of the braces is a matter of personal preference.

➢ Some programmers prefer to type each brace on its own line and to align the

braces:

➢ Some programmers prefer to use braces around all true and false tasks whether compound or not,
so that all if statements in a program have a consistent style. We recommend enclosing both the
true and the false tasks in braces if either is a compound statement.

➢ Whichever style you choose, make sure you apply it consistently.

PROGRAM
STYLE

A hand trace, or desk check , is a careful, step-by-step simulation on paper of how the computer executes the
algorithm or statement

TRACING AN IF
STATEMENT

➢ Decision Steps :.Algorithm steps that select from a choice of actions.

4.5 DECISION STEPS IN ALGORITHMS

CASE STUDY (Homework)
P.195 - 204

Water Bill Problem

Example
4.15

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

False Task

Loading…

● Beginning programmers sometimes prefer to use a sequence of if statements rather than a single
nested if statement.

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)
 num_pos = num_pos + 1;
if (x < 0)
 num_neg = num_neg + 1;
if (x == 0)
 num_zero = num_zero + 1;

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

● In situations like Example 4.15 in which each false task (except possibly the last) is followed by
an if-then-else statement, you can code the nested if as the multiple-alternative decision.

if (x > 0)
 num_pos = num_pos + 1;
else if (x < 0)
 num_neg = num_neg + 1;
else /* x equals 0 */
 num_zero = num_zero + 1;

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

EXAMPLE 4.16

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

/* Display perception of noise loudness */ noise_db = 62;

if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

● When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes.(1)

/* incorrect perception of noise loudness */ (2)

if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

An equivalent statement that uses a single if with a compound condition follows

NESTED IF STATEMENTS WITH MORE THAN ONE
VARIABLE

● When you are writing a nested if statement, you should know that C associates an else
with the most recent incomplete if

● For example, if the first else of the road sign decision were omitted, the following
would be left:

 (1)

● To force the else to be the false branch of the first if , we place braces around the true
task of the first decision.task of the first decision.

● Figure 4.12 p.214

• Change the initial condition so the branches were switched, and the multiple-alternative

structure would work

if (road_status == 'D') {
 printf("Drive carefully!\n");
} else if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
} else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
}

4.8 THE SWITCH STATEMENT

● The switch statement may also be used in C to select one of several alternatives.

● The switch statement is especially useful when the selection is based on the value of a

single variable or of a simple expression (called the controlling expression).

● The value of this expression may be of type int or char , but not of type double or

string.

● Example 4.20 p.218

THE SWITCH STATEMENT
RULES
● It is important to remember that type int and char values may be used as case labels,

but strings and type double values cannot be used.

● Another common error is the omission of the break statement at the end of one

alternative. In such a situation, execution “falls through” into the next alternative.

● Forgetting the closing brace of the switch statement body is also easy to do. If the brace

is missing and the switch has a default label, the statements following the switch
statement become part of the default case.

The controlling expression

Label set

THE SWITCH STATEMENT
RULES
● You can use a nested if statement, which is more general than the switch statement, to

implement any multiple-alternative decision.

● The switch as described in the syntax display is more readable in many contexts and

should be used whenever practical.

● Case labels that contain type double values or strings are not permitted.

● You should use the switch statement when each label set contains a reasonable number

of case labels (a maximum of ten). (1)

● You should include a default label in switch statements wherever possible. (2)

4.9 COMMON PROGRAMMING
ERRORS
● Displays Condition is true for all values of x .

● /*consider x is 5 */ (1)
if (0 <= x <= 4) => Compiler can’t detect! printf("Condition is true\n");

We should use:
 (0 <= x && x <= 4)

What do we call such an error?

4.9 COMMON PROGRAMMING
ERRORS
● Remember that the C equality operator is == not

if (x = 10) => Compiler can’t detect! (1)
 printf("x is 10");

always prints x is 10 , regardless of the value of x .

4.9 COMMON PROGRAMMING
ERRORS
● parenthesize the condition of an if statement.
● enclose in braces a single-alternative if used as a true task within a

double-alternative if. (1)

if (x > y)
 if (x % 2 == 0)
 printf("x is even\n");

 else
 printf("x is smaller than y\n");

• If x = 5 , y = 4 => “x is smaller than y”

if (x > y) {
 if (x % 2 == 0) {
 printf("x is even\n");

 }
 } else {
 printf("x is greater than
y\n");
 }

/*Correct
Version*/

4.9 COMMON PROGRAMMING
ERRORS
● Enclose in braces a compound statement used as a true task or false task. (1)

if (x > 0)
 sum = sum + x;
 printf("Greater than zero\n");
else
 printf("Less than or equal to zero\n");

4.9 COMMON PROGRAMMING
ERRORS
● When writing a nested if statement, try to select the conditions so that you

can use the multiple-alternative format.

● When possible, the logic should be constructed so each intermediate

condition falls on the false branch of the previous decision.

● If more than one condition can be true at the same time, place the most

restrictive condition first

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

task of the first decision.

● Figure 4.12 p.214

• Change the initial condition so the branches were switched, and the multiple-alternative

structure would work

if (road_status == 'D') {
 printf("Drive carefully!\n");
} else if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
} else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
}

4.8 THE SWITCH STATEMENT

● The switch statement may also be used in C to select one of several alternatives.

● The switch statement is especially useful when the selection is based on the value of a

single variable or of a simple expression (called the controlling expression).

● The value of this expression may be of type int or char , but not of type double or

string.

● Example 4.20 p.218

THE SWITCH STATEMENT
RULES
● It is important to remember that type int and char values may be used as case labels,

but strings and type double values cannot be used.

● Another common error is the omission of the break statement at the end of one

alternative. In such a situation, execution “falls through” into the next alternative.

● Forgetting the closing brace of the switch statement body is also easy to do. If the brace

is missing and the switch has a default label, the statements following the switch
statement become part of the default case.

The controlling expression

Label set

THE SWITCH STATEMENT
RULES
● You can use a nested if statement, which is more general than the switch statement, to

implement any multiple-alternative decision.

● The switch as described in the syntax display is more readable in many contexts and

should be used whenever practical.

● Case labels that contain type double values or strings are not permitted.

● You should use the switch statement when each label set contains a reasonable number

of case labels (a maximum of ten). (1)

● You should include a default label in switch statements wherever possible. (2)

4.9 COMMON PROGRAMMING
ERRORS
● Displays Condition is true for all values of x .

● /*consider x is 5 */ (1)
if (0 <= x <= 4) => Compiler can’t detect! printf("Condition is true\n");

We should use:
 (0 <= x && x <= 4)

What do we call such an error?

4.9 COMMON PROGRAMMING
ERRORS
● Remember that the C equality operator is == not

if (x = 10) => Compiler can’t detect! (1)
 printf("x is 10");

always prints x is 10 , regardless of the value of x .

4.9 COMMON PROGRAMMING
ERRORS
● parenthesize the condition of an if statement.
● enclose in braces a single-alternative if used as a true task within a

double-alternative if. (1)

if (x > y)
 if (x % 2 == 0)
 printf("x is even\n");

 else
 printf("x is smaller than y\n");

• If x = 5 , y = 4 => “x is smaller than y”

if (x > y) {
 if (x % 2 == 0) {
 printf("x is even\n");

 }
 } else {
 printf("x is greater than
y\n");
 }

/*Correct
Version*/

4.9 COMMON PROGRAMMING
ERRORS
● Enclose in braces a compound statement used as a true task or false task. (1)

if (x > 0)
 sum = sum + x;
 printf("Greater than zero\n");
else
 printf("Less than or equal to zero\n");

4.9 COMMON PROGRAMMING
ERRORS
● When writing a nested if statement, try to select the conditions so that you

can use the multiple-alternative format.

● When possible, the logic should be constructed so each intermediate

condition falls on the false branch of the previous decision.

● If more than one condition can be true at the same time, place the most

restrictive condition first

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

task of the first decision.

● Figure 4.12 p.214

• Change the initial condition so the branches were switched, and the multiple-alternative

structure would work

if (road_status == 'D') {
 printf("Drive carefully!\n");
} else if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
} else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
}

4.8 THE SWITCH STATEMENT

● The switch statement may also be used in C to select one of several alternatives.

● The switch statement is especially useful when the selection is based on the value of a

single variable or of a simple expression (called the controlling expression).

● The value of this expression may be of type int or char , but not of type double or

string.

● Example 4.20 p.218

THE SWITCH STATEMENT
RULES
● It is important to remember that type int and char values may be used as case labels,

but strings and type double values cannot be used.

● Another common error is the omission of the break statement at the end of one

alternative. In such a situation, execution “falls through” into the next alternative.

● Forgetting the closing brace of the switch statement body is also easy to do. If the brace

is missing and the switch has a default label, the statements following the switch
statement become part of the default case.

The controlling expression

Label set

THE SWITCH STATEMENT
RULES
● You can use a nested if statement, which is more general than the switch statement, to

implement any multiple-alternative decision.

● The switch as described in the syntax display is more readable in many contexts and

should be used whenever practical.

● Case labels that contain type double values or strings are not permitted.

● You should use the switch statement when each label set contains a reasonable number

of case labels (a maximum of ten). (1)

● You should include a default label in switch statements wherever possible. (2)

4.9 COMMON PROGRAMMING
ERRORS
● Displays Condition is true for all values of x .

● /*consider x is 5 */ (1)
if (0 <= x <= 4) => Compiler can’t detect! printf("Condition is true\n");

We should use:
 (0 <= x && x <= 4)

What do we call such an error?

4.9 COMMON PROGRAMMING
ERRORS
● Remember that the C equality operator is == not

if (x = 10) => Compiler can’t detect! (1)
 printf("x is 10");

always prints x is 10 , regardless of the value of x .

4.9 COMMON PROGRAMMING
ERRORS
● parenthesize the condition of an if statement.
● enclose in braces a single-alternative if used as a true task within a

double-alternative if. (1)

if (x > y)
 if (x % 2 == 0)
 printf("x is even\n");

 else
 printf("x is smaller than y\n");

• If x = 5 , y = 4 => “x is smaller than y”

if (x > y) {
 if (x % 2 == 0) {
 printf("x is even\n");

 }
 } else {
 printf("x is greater than
y\n");
 }

/*Correct
Version*/

4.9 COMMON PROGRAMMING
ERRORS
● Enclose in braces a compound statement used as a true task or false task. (1)

if (x > 0)
 sum = sum + x;
 printf("Greater than zero\n");
else
 printf("Less than or equal to zero\n");

4.9 COMMON PROGRAMMING
ERRORS
● When writing a nested if statement, try to select the conditions so that you

can use the multiple-alternative format.

● When possible, the logic should be constructed so each intermediate

condition falls on the false branch of the previous decision.

● If more than one condition can be true at the same time, place the most

restrictive condition first

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

task of the first decision.

● Figure 4.12 p.214

• Change the initial condition so the branches were switched, and the multiple-alternative

structure would work

if (road_status == 'D') {
 printf("Drive carefully!\n");
} else if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
} else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
}

4.8 THE SWITCH STATEMENT

● The switch statement may also be used in C to select one of several alternatives.

● The switch statement is especially useful when the selection is based on the value of a

single variable or of a simple expression (called the controlling expression).

● The value of this expression may be of type int or char , but not of type double or

string.

● Example 4.20 p.218

THE SWITCH STATEMENT
RULES
● It is important to remember that type int and char values may be used as case labels,

but strings and type double values cannot be used.

● Another common error is the omission of the break statement at the end of one

alternative. In such a situation, execution “falls through” into the next alternative.

● Forgetting the closing brace of the switch statement body is also easy to do. If the brace

is missing and the switch has a default label, the statements following the switch
statement become part of the default case.

The controlling expression

Label set

THE SWITCH STATEMENT
RULES
● You can use a nested if statement, which is more general than the switch statement, to

implement any multiple-alternative decision.

● The switch as described in the syntax display is more readable in many contexts and

should be used whenever practical.

● Case labels that contain type double values or strings are not permitted.

● You should use the switch statement when each label set contains a reasonable number

of case labels (a maximum of ten). (1)

● You should include a default label in switch statements wherever possible. (2)

4.9 COMMON PROGRAMMING
ERRORS
● Displays Condition is true for all values of x .

● /*consider x is 5 */ (1)
if (0 <= x <= 4) => Compiler can’t detect! printf("Condition is true\n");

We should use:
 (0 <= x && x <= 4)

What do we call such an error?

4.9 COMMON PROGRAMMING
ERRORS
● Remember that the C equality operator is == not

if (x = 10) => Compiler can’t detect! (1)
 printf("x is 10");

always prints x is 10 , regardless of the value of x .

4.9 COMMON PROGRAMMING
ERRORS
● parenthesize the condition of an if statement.
● enclose in braces a single-alternative if used as a true task within a

double-alternative if. (1)

if (x > y)
 if (x % 2 == 0)
 printf("x is even\n");

 else
 printf("x is smaller than y\n");

• If x = 5 , y = 4 => “x is smaller than y”

if (x > y) {
 if (x % 2 == 0) {
 printf("x is even\n");

 }
 } else {
 printf("x is greater than
y\n");
 }

/*Correct
Version*/

4.9 COMMON PROGRAMMING
ERRORS
● Enclose in braces a compound statement used as a true task or false task. (1)

if (x > 0)
 sum = sum + x;
 printf("Greater than zero\n");
else
 printf("Less than or equal to zero\n");

4.9 COMMON PROGRAMMING
ERRORS
● When writing a nested if statement, try to select the conditions so that you

can use the multiple-alternative format.

● When possible, the logic should be constructed so each intermediate

condition falls on the false branch of the previous decision.

● If more than one condition can be true at the same time, place the most

restrictive condition first

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

task of the first decision.

● Figure 4.12 p.214

• Change the initial condition so the branches were switched, and the multiple-alternative

structure would work

if (road_status == 'D') {
 printf("Drive carefully!\n");
} else if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
} else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
}

4.8 THE SWITCH STATEMENT

● The switch statement may also be used in C to select one of several alternatives.

● The switch statement is especially useful when the selection is based on the value of a

single variable or of a simple expression (called the controlling expression).

● The value of this expression may be of type int or char , but not of type double or

string.

● Example 4.20 p.218

THE SWITCH STATEMENT
RULES
● It is important to remember that type int and char values may be used as case labels,

but strings and type double values cannot be used.

● Another common error is the omission of the break statement at the end of one

alternative. In such a situation, execution “falls through” into the next alternative.

● Forgetting the closing brace of the switch statement body is also easy to do. If the brace

is missing and the switch has a default label, the statements following the switch
statement become part of the default case.

The controlling expression

Label set

THE SWITCH STATEMENT
RULES
● You can use a nested if statement, which is more general than the switch statement, to

implement any multiple-alternative decision.

● The switch as described in the syntax display is more readable in many contexts and

should be used whenever practical.

● Case labels that contain type double values or strings are not permitted.

● You should use the switch statement when each label set contains a reasonable number

of case labels (a maximum of ten). (1)

● You should include a default label in switch statements wherever possible. (2)

4.9 COMMON PROGRAMMING
ERRORS
● Displays Condition is true for all values of x .

● /*consider x is 5 */ (1)
if (0 <= x <= 4) => Compiler can’t detect! printf("Condition is true\n");

We should use:
 (0 <= x && x <= 4)

What do we call such an error?

4.9 COMMON PROGRAMMING
ERRORS
● Remember that the C equality operator is == not

if (x = 10) => Compiler can’t detect! (1)
 printf("x is 10");

always prints x is 10 , regardless of the value of x .

4.9 COMMON PROGRAMMING
ERRORS
● parenthesize the condition of an if statement.
● enclose in braces a single-alternative if used as a true task within a

double-alternative if. (1)

if (x > y)
 if (x % 2 == 0)
 printf("x is even\n");

 else
 printf("x is smaller than y\n");

• If x = 5 , y = 4 => “x is smaller than y”

if (x > y) {
 if (x % 2 == 0) {
 printf("x is even\n");

 }
 } else {
 printf("x is greater than
y\n");
 }

/*Correct
Version*/

4.9 COMMON PROGRAMMING
ERRORS
● Enclose in braces a compound statement used as a true task or false task. (1)

if (x > 0)
 sum = sum + x;
 printf("Greater than zero\n");
else
 printf("Less than or equal to zero\n");

4.9 COMMON PROGRAMMING
ERRORS
● When writing a nested if statement, try to select the conditions so that you

can use the multiple-alternative format.

● When possible, the logic should be constructed so each intermediate

condition falls on the false branch of the previous decision.

● If more than one condition can be true at the same time, place the most

restrictive condition first

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

task of the first decision.

● Figure 4.12 p.214

• Change the initial condition so the branches were switched, and the multiple-alternative

structure would work

if (road_status == 'D') {
 printf("Drive carefully!\n");
} else if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
} else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
}

4.8 THE SWITCH STATEMENT

● The switch statement may also be used in C to select one of several alternatives.

● The switch statement is especially useful when the selection is based on the value of a

single variable or of a simple expression (called the controlling expression).

● The value of this expression may be of type int or char , but not of type double or

string.

● Example 4.20 p.218

THE SWITCH STATEMENT
RULES
● It is important to remember that type int and char values may be used as case labels,

but strings and type double values cannot be used.

● Another common error is the omission of the break statement at the end of one

alternative. In such a situation, execution “falls through” into the next alternative.

● Forgetting the closing brace of the switch statement body is also easy to do. If the brace

is missing and the switch has a default label, the statements following the switch
statement become part of the default case.

The controlling expression

Label set

THE SWITCH STATEMENT
RULES
● You can use a nested if statement, which is more general than the switch statement, to

implement any multiple-alternative decision.

● The switch as described in the syntax display is more readable in many contexts and

should be used whenever practical.

● Case labels that contain type double values or strings are not permitted.

● You should use the switch statement when each label set contains a reasonable number

of case labels (a maximum of ten). (1)

● You should include a default label in switch statements wherever possible. (2)

4.9 COMMON PROGRAMMING
ERRORS
● Displays Condition is true for all values of x .

● /*consider x is 5 */ (1)
if (0 <= x <= 4) => Compiler can’t detect! printf("Condition is true\n");

We should use:
 (0 <= x && x <= 4)

What do we call such an error?

4.9 COMMON PROGRAMMING
ERRORS
● Remember that the C equality operator is == not

if (x = 10) => Compiler can’t detect! (1)
 printf("x is 10");

always prints x is 10 , regardless of the value of x .

4.9 COMMON PROGRAMMING
ERRORS
● parenthesize the condition of an if statement.
● enclose in braces a single-alternative if used as a true task within a

double-alternative if. (1)

if (x > y)
 if (x % 2 == 0)
 printf("x is even\n");

 else
 printf("x is smaller than y\n");

• If x = 5 , y = 4 => “x is smaller than y”

if (x > y) {
 if (x % 2 == 0) {
 printf("x is even\n");

 }
 } else {
 printf("x is greater than
y\n");
 }

/*Correct
Version*/

4.9 COMMON PROGRAMMING
ERRORS
● Enclose in braces a compound statement used as a true task or false task. (1)

if (x > 0)
 sum = sum + x;
 printf("Greater than zero\n");
else
 printf("Less than or equal to zero\n");

4.9 COMMON PROGRAMMING
ERRORS
● When writing a nested if statement, try to select the conditions so that you

can use the multiple-alternative format.

● When possible, the logic should be constructed so each intermediate

condition falls on the false branch of the previous decision.

● If more than one condition can be true at the same time, place the most

restrictive condition first

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

task of the first decision.

● Figure 4.12 p.214

• Change the initial condition so the branches were switched, and the multiple-alternative

structure would work

if (road_status == 'D') {
 printf("Drive carefully!\n");
} else if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
} else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
}

4.8 THE SWITCH STATEMENT

● The switch statement may also be used in C to select one of several alternatives.

● The switch statement is especially useful when the selection is based on the value of a

single variable or of a simple expression (called the controlling expression).

● The value of this expression may be of type int or char , but not of type double or

string.

● Example 4.20 p.218

THE SWITCH STATEMENT
RULES
● It is important to remember that type int and char values may be used as case labels,

but strings and type double values cannot be used.

● Another common error is the omission of the break statement at the end of one

alternative. In such a situation, execution “falls through” into the next alternative.

● Forgetting the closing brace of the switch statement body is also easy to do. If the brace

is missing and the switch has a default label, the statements following the switch
statement become part of the default case.

The controlling expression

Label set

THE SWITCH STATEMENT
RULES
● You can use a nested if statement, which is more general than the switch statement, to

implement any multiple-alternative decision.

● The switch as described in the syntax display is more readable in many contexts and

should be used whenever practical.

● Case labels that contain type double values or strings are not permitted.

● You should use the switch statement when each label set contains a reasonable number

of case labels (a maximum of ten). (1)

● You should include a default label in switch statements wherever possible. (2)

4.9 COMMON PROGRAMMING
ERRORS
● Displays Condition is true for all values of x .

● /*consider x is 5 */ (1)
if (0 <= x <= 4) => Compiler can’t detect! printf("Condition is true\n");

We should use:
 (0 <= x && x <= 4)

What do we call such an error?

4.9 COMMON PROGRAMMING
ERRORS
● Remember that the C equality operator is == not

if (x = 10) => Compiler can’t detect! (1)
 printf("x is 10");

always prints x is 10 , regardless of the value of x .

4.9 COMMON PROGRAMMING
ERRORS
● parenthesize the condition of an if statement.
● enclose in braces a single-alternative if used as a true task within a

double-alternative if. (1)

if (x > y)
 if (x % 2 == 0)
 printf("x is even\n");

 else
 printf("x is smaller than y\n");

• If x = 5 , y = 4 => “x is smaller than y”

if (x > y) {
 if (x % 2 == 0) {
 printf("x is even\n");

 }
 } else {
 printf("x is greater than
y\n");
 }

/*Correct
Version*/

4.9 COMMON PROGRAMMING
ERRORS
● Enclose in braces a compound statement used as a true task or false task. (1)

if (x > 0)
 sum = sum + x;
 printf("Greater than zero\n");
else
 printf("Less than or equal to zero\n");

4.9 COMMON PROGRAMMING
ERRORS
● When writing a nested if statement, try to select the conditions so that you

can use the multiple-alternative format.

● When possible, the logic should be constructed so each intermediate

condition falls on the false branch of the previous decision.

● If more than one condition can be true at the same time, place the most

restrictive condition first

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

task of the first decision.

● Figure 4.12 p.214

• Change the initial condition so the branches were switched, and the multiple-alternative

structure would work

if (road_status == 'D') {
 printf("Drive carefully!\n");
} else if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
} else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
}

4.8 THE SWITCH STATEMENT

● The switch statement may also be used in C to select one of several alternatives.

● The switch statement is especially useful when the selection is based on the value of a

single variable or of a simple expression (called the controlling expression).

● The value of this expression may be of type int or char , but not of type double or

string.

● Example 4.20 p.218

THE SWITCH STATEMENT
RULES
● It is important to remember that type int and char values may be used as case labels,

but strings and type double values cannot be used.

● Another common error is the omission of the break statement at the end of one

alternative. In such a situation, execution “falls through” into the next alternative.

● Forgetting the closing brace of the switch statement body is also easy to do. If the brace

is missing and the switch has a default label, the statements following the switch
statement become part of the default case.

The controlling expression

Label set

THE SWITCH STATEMENT
RULES
● You can use a nested if statement, which is more general than the switch statement, to

implement any multiple-alternative decision.

● The switch as described in the syntax display is more readable in many contexts and

should be used whenever practical.

● Case labels that contain type double values or strings are not permitted.

● You should use the switch statement when each label set contains a reasonable number

of case labels (a maximum of ten). (1)

● You should include a default label in switch statements wherever possible. (2)

4.9 COMMON PROGRAMMING
ERRORS
● Displays Condition is true for all values of x .

● /*consider x is 5 */ (1)
if (0 <= x <= 4) => Compiler can’t detect! printf("Condition is true\n");

We should use:
 (0 <= x && x <= 4)

What do we call such an error?

4.9 COMMON PROGRAMMING
ERRORS
● Remember that the C equality operator is == not

if (x = 10) => Compiler can’t detect! (1)
 printf("x is 10");

always prints x is 10 , regardless of the value of x .

4.9 COMMON PROGRAMMING
ERRORS
● parenthesize the condition of an if statement.
● enclose in braces a single-alternative if used as a true task within a

double-alternative if. (1)

if (x > y)
 if (x % 2 == 0)
 printf("x is even\n");

 else
 printf("x is smaller than y\n");

• If x = 5 , y = 4 => “x is smaller than y”

if (x > y) {
 if (x % 2 == 0) {
 printf("x is even\n");

 }
 } else {
 printf("x is greater than
y\n");
 }

/*Correct
Version*/

4.9 COMMON PROGRAMMING
ERRORS
● Enclose in braces a compound statement used as a true task or false task. (1)

if (x > 0)
 sum = sum + x;
 printf("Greater than zero\n");
else
 printf("Less than or equal to zero\n");

4.9 COMMON PROGRAMMING
ERRORS
● When writing a nested if statement, try to select the conditions so that you

can use the multiple-alternative format.

● When possible, the logic should be constructed so each intermediate

condition falls on the false branch of the previous decision.

● If more than one condition can be true at the same time, place the most

restrictive condition first

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

task of the first decision.

● Figure 4.12 p.214

• Change the initial condition so the branches were switched, and the multiple-alternative

structure would work

if (road_status == 'D') {
 printf("Drive carefully!\n");
} else if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
} else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
}

4.8 THE SWITCH STATEMENT

● The switch statement may also be used in C to select one of several alternatives.

● The switch statement is especially useful when the selection is based on the value of a

single variable or of a simple expression (called the controlling expression).

● The value of this expression may be of type int or char , but not of type double or

string.

● Example 4.20 p.218

THE SWITCH STATEMENT
RULES
● It is important to remember that type int and char values may be used as case labels,

but strings and type double values cannot be used.

● Another common error is the omission of the break statement at the end of one

alternative. In such a situation, execution “falls through” into the next alternative.

● Forgetting the closing brace of the switch statement body is also easy to do. If the brace

is missing and the switch has a default label, the statements following the switch
statement become part of the default case.

The controlling expression

Label set

THE SWITCH STATEMENT
RULES
● You can use a nested if statement, which is more general than the switch statement, to

implement any multiple-alternative decision.

● The switch as described in the syntax display is more readable in many contexts and

should be used whenever practical.

● Case labels that contain type double values or strings are not permitted.

● You should use the switch statement when each label set contains a reasonable number

of case labels (a maximum of ten). (1)

● You should include a default label in switch statements wherever possible. (2)

4.9 COMMON PROGRAMMING
ERRORS
● Displays Condition is true for all values of x .

● /*consider x is 5 */ (1)
if (0 <= x <= 4) => Compiler can’t detect! printf("Condition is true\n");

We should use:
 (0 <= x && x <= 4)

What do we call such an error?

4.9 COMMON PROGRAMMING
ERRORS
● Remember that the C equality operator is == not

if (x = 10) => Compiler can’t detect! (1)
 printf("x is 10");

always prints x is 10 , regardless of the value of x .

4.9 COMMON PROGRAMMING
ERRORS
● parenthesize the condition of an if statement.
● enclose in braces a single-alternative if used as a true task within a

double-alternative if. (1)

if (x > y)
 if (x % 2 == 0)
 printf("x is even\n");

 else
 printf("x is smaller than y\n");

• If x = 5 , y = 4 => “x is smaller than y”

if (x > y) {
 if (x % 2 == 0) {
 printf("x is even\n");

 }
 } else {
 printf("x is greater than
y\n");
 }

/*Correct
Version*/

4.9 COMMON PROGRAMMING
ERRORS
● Enclose in braces a compound statement used as a true task or false task. (1)

if (x > 0)
 sum = sum + x;
 printf("Greater than zero\n");
else
 printf("Less than or equal to zero\n");

4.9 COMMON PROGRAMMING
ERRORS
● When writing a nested if statement, try to select the conditions so that you

can use the multiple-alternative format.

● When possible, the logic should be constructed so each intermediate

condition falls on the false branch of the previous decision.

● If more than one condition can be true at the same time, place the most

restrictive condition first

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

task of the first decision.

● Figure 4.12 p.214

• Change the initial condition so the branches were switched, and the multiple-alternative

structure would work

if (road_status == 'D') {
 printf("Drive carefully!\n");
} else if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
} else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
}

4.8 THE SWITCH STATEMENT

● The switch statement may also be used in C to select one of several alternatives.

● The switch statement is especially useful when the selection is based on the value of a

single variable or of a simple expression (called the controlling expression).

● The value of this expression may be of type int or char , but not of type double or

string.

● Example 4.20 p.218

THE SWITCH STATEMENT
RULES
● It is important to remember that type int and char values may be used as case labels,

but strings and type double values cannot be used.

● Another common error is the omission of the break statement at the end of one

alternative. In such a situation, execution “falls through” into the next alternative.

● Forgetting the closing brace of the switch statement body is also easy to do. If the brace

is missing and the switch has a default label, the statements following the switch
statement become part of the default case.

The controlling expression

Label set

THE SWITCH STATEMENT
RULES
● You can use a nested if statement, which is more general than the switch statement, to

implement any multiple-alternative decision.

● The switch as described in the syntax display is more readable in many contexts and

should be used whenever practical.

● Case labels that contain type double values or strings are not permitted.

● You should use the switch statement when each label set contains a reasonable number

of case labels (a maximum of ten). (1)

● You should include a default label in switch statements wherever possible. (2)

4.9 COMMON PROGRAMMING
ERRORS
● Displays Condition is true for all values of x .

● /*consider x is 5 */ (1)
if (0 <= x <= 4) => Compiler can’t detect! printf("Condition is true\n");

We should use:
 (0 <= x && x <= 4)

What do we call such an error?

4.9 COMMON PROGRAMMING
ERRORS
● Remember that the C equality operator is == not

if (x = 10) => Compiler can’t detect! (1)
 printf("x is 10");

always prints x is 10 , regardless of the value of x .

4.9 COMMON PROGRAMMING
ERRORS
● parenthesize the condition of an if statement.
● enclose in braces a single-alternative if used as a true task within a

double-alternative if. (1)

if (x > y)
 if (x % 2 == 0)
 printf("x is even\n");

 else
 printf("x is smaller than y\n");

• If x = 5 , y = 4 => “x is smaller than y”

if (x > y) {
 if (x % 2 == 0) {
 printf("x is even\n");

 }
 } else {
 printf("x is greater than
y\n");
 }

/*Correct
Version*/

4.9 COMMON PROGRAMMING
ERRORS
● Enclose in braces a compound statement used as a true task or false task. (1)

if (x > 0)
 sum = sum + x;
 printf("Greater than zero\n");
else
 printf("Less than or equal to zero\n");

4.9 COMMON PROGRAMMING
ERRORS
● When writing a nested if statement, try to select the conditions so that you

can use the multiple-alternative format.

● When possible, the logic should be constructed so each intermediate

condition falls on the false branch of the previous decision.

● If more than one condition can be true at the same time, place the most

restrictive condition first

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

task of the first decision.

● Figure 4.12 p.214

• Change the initial condition so the branches were switched, and the multiple-alternative

structure would work

if (road_status == 'D') {
 printf("Drive carefully!\n");
} else if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
} else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
}

4.8 THE SWITCH STATEMENT

● The switch statement may also be used in C to select one of several alternatives.

● The switch statement is especially useful when the selection is based on the value of a

single variable or of a simple expression (called the controlling expression).

● The value of this expression may be of type int or char , but not of type double or

string.

● Example 4.20 p.218

THE SWITCH STATEMENT
RULES
● It is important to remember that type int and char values may be used as case labels,

but strings and type double values cannot be used.

● Another common error is the omission of the break statement at the end of one

alternative. In such a situation, execution “falls through” into the next alternative.

● Forgetting the closing brace of the switch statement body is also easy to do. If the brace

is missing and the switch has a default label, the statements following the switch
statement become part of the default case.

The controlling expression

Label set

THE SWITCH STATEMENT
RULES
● You can use a nested if statement, which is more general than the switch statement, to

implement any multiple-alternative decision.

● The switch as described in the syntax display is more readable in many contexts and

should be used whenever practical.

● Case labels that contain type double values or strings are not permitted.

● You should use the switch statement when each label set contains a reasonable number

of case labels (a maximum of ten). (1)

● You should include a default label in switch statements wherever possible. (2)

4.9 COMMON PROGRAMMING
ERRORS
● Displays Condition is true for all values of x .

● /*consider x is 5 */ (1)
if (0 <= x <= 4) => Compiler can’t detect! printf("Condition is true\n");

We should use:
 (0 <= x && x <= 4)

What do we call such an error?

4.9 COMMON PROGRAMMING
ERRORS
● Remember that the C equality operator is == not

if (x = 10) => Compiler can’t detect! (1)
 printf("x is 10");

always prints x is 10 , regardless of the value of x .

4.9 COMMON PROGRAMMING
ERRORS
● parenthesize the condition of an if statement.
● enclose in braces a single-alternative if used as a true task within a

double-alternative if. (1)

if (x > y)
 if (x % 2 == 0)
 printf("x is even\n");

 else
 printf("x is smaller than y\n");

• If x = 5 , y = 4 => “x is smaller than y”

if (x > y) {
 if (x % 2 == 0) {
 printf("x is even\n");

 }
 } else {
 printf("x is greater than
y\n");
 }

/*Correct
Version*/

4.9 COMMON PROGRAMMING
ERRORS
● Enclose in braces a compound statement used as a true task or false task. (1)

if (x > 0)
 sum = sum + x;
 printf("Greater than zero\n");
else
 printf("Less than or equal to zero\n");

4.9 COMMON PROGRAMMING
ERRORS
● When writing a nested if statement, try to select the conditions so that you

can use the multiple-alternative format.

● When possible, the logic should be constructed so each intermediate

condition falls on the false branch of the previous decision.

● If more than one condition can be true at the same time, place the most

restrictive condition first

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

task of the first decision.

● Figure 4.12 p.214

• Change the initial condition so the branches were switched, and the multiple-alternative

structure would work

if (road_status == 'D') {
 printf("Drive carefully!\n");
} else if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
} else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
}

4.8 THE SWITCH STATEMENT

● The switch statement may also be used in C to select one of several alternatives.

● The switch statement is especially useful when the selection is based on the value of a

single variable or of a simple expression (called the controlling expression).

● The value of this expression may be of type int or char , but not of type double or

string.

● Example 4.20 p.218

THE SWITCH STATEMENT
RULES
● It is important to remember that type int and char values may be used as case labels,

but strings and type double values cannot be used.

● Another common error is the omission of the break statement at the end of one

alternative. In such a situation, execution “falls through” into the next alternative.

● Forgetting the closing brace of the switch statement body is also easy to do. If the brace

is missing and the switch has a default label, the statements following the switch
statement become part of the default case.

The controlling expression

Label set

THE SWITCH STATEMENT
RULES
● You can use a nested if statement, which is more general than the switch statement, to

implement any multiple-alternative decision.

● The switch as described in the syntax display is more readable in many contexts and

should be used whenever practical.

● Case labels that contain type double values or strings are not permitted.

● You should use the switch statement when each label set contains a reasonable number

of case labels (a maximum of ten). (1)

● You should include a default label in switch statements wherever possible. (2)

4.9 COMMON PROGRAMMING
ERRORS
● Displays Condition is true for all values of x .

● /*consider x is 5 */ (1)
if (0 <= x <= 4) => Compiler can’t detect! printf("Condition is true\n");

We should use:
 (0 <= x && x <= 4)

What do we call such an error?

4.9 COMMON PROGRAMMING
ERRORS
● Remember that the C equality operator is == not

if (x = 10) => Compiler can’t detect! (1)
 printf("x is 10");

always prints x is 10 , regardless of the value of x .

4.9 COMMON PROGRAMMING
ERRORS
● parenthesize the condition of an if statement.
● enclose in braces a single-alternative if used as a true task within a

double-alternative if. (1)

if (x > y)
 if (x % 2 == 0)
 printf("x is even\n");

 else
 printf("x is smaller than y\n");

• If x = 5 , y = 4 => “x is smaller than y”

if (x > y) {
 if (x % 2 == 0) {
 printf("x is even\n");

 }
 } else {
 printf("x is greater than
y\n");
 }

/*Correct
Version*/

4.9 COMMON PROGRAMMING
ERRORS
● Enclose in braces a compound statement used as a true task or false task. (1)

if (x > 0)
 sum = sum + x;
 printf("Greater than zero\n");
else
 printf("Less than or equal to zero\n");

4.9 COMMON PROGRAMMING
ERRORS
● When writing a nested if statement, try to select the conditions so that you

can use the multiple-alternative format.

● When possible, the logic should be constructed so each intermediate

condition falls on the false branch of the previous decision.

● If more than one condition can be true at the same time, place the most

restrictive condition first

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

