Introduction to Computers

 \bigcirc

Uploaded By: anonymous

 \bigcirc

& Programming

Comp 1330/ First Semester 2024/2025

Instructor: Saif Harbia

Faculty of Engineering and Technology Department of Computer Science STUDENTS-HUB.com

Chapter 04

Selection Structures: if and switch Statements

 \bigcirc

 \bigcirc

Uploaded By: anonymous .

STUDENTS-HUB.com

Chapter Objectives:

- 1. statements that control the flow of program execution
- 2. conditions and logical expressions
- 3. use if and switch statements to select one statement group to execute from many alternatives

· · · · · · · · ·

.

 \bigcirc

.

.

Uploaded By: anonymous

4. trace an algorithm or program to verify that it does what you expect.

4.1 CONTROL STRUCTURES

- **Control structures** control the flow of execution in a program or function
- > They enable you to combine individual instructions into a single logical unit with one entry point and one exit point.

.

- Instructions are organized into three kinds of control structures to control execution flow:
 sequence, selection, and repetition (CH05)
- > Until now we have been using only sequential flow.
- A compound statement (1), written as a group of statements bracketed by { and }, is used to specify sequential flow.

A selection control structure chooses which alternative to execute. (2)
 STUDENTS-HUB.com
 Uploaded By: anonymous

4.2 CONDITIONS

> A program chooses among alternative statements by testing the value of key variables

.

Uploaded By: anonymous

- > If rest_heart_rate is a type int variable, then
 rest heart rate > 75 (1)
- Such an expression is called a condition because it establishes a criterion for either executing or skipping a group of statements.

STUDENTS-HUB.com

RELATIONAL AND EQUALITY OPERATORS

variable	relational-operator	variable
variable	relational-operator	constant
variable	equality-operator	variable
variable	equality-operator	constant

TABLE 4.1 Relational and Equality Operators

 \cap

 \bigcirc

S

	Operator	Meaning	Туре	
	<	less than	relational	
	>	greater than	relational	Ũ
	<=	less than or equal to	relational	
	>=	greater than or equal to	relational	\bigcirc
•••		equal to	equality	
•••	-	not equal to	equality	
JDEN	ITS-HUB.com		Uplo	aded By: anonymous

x power -5 1024	MAX_POW y item 1024 7 1.5	MIN_ITEM mom_or_dad num -999.0 'M' 999	SENTINEL 999
TABLE 4.2	Sample Conditions		
Operator	Condition	English Meaning	Value
<=	x <= 0	${f x}$ less than or equal to 0	1 (true)
<	power < MAX_POW	power less than MAX_POW	0 (false)
>=	x >= y	x greater than or equal to y	0 (false)
>	item > MIN_ITEM	item greater than MIN_ITEM	1 (true)
==	<pre>mom_or_dad == 'M'</pre>	mom_or_dad equal to 'M'	1 (true)
!=	num != SENTINEL	num not equal to SENTINEL	0 (false)

STUDENTS-HUB.com

•

• • • •

Ο

• •

Uploaded By: anonymous

•

.

. . .

•

 \bigcirc

. . . .

LOGICAL

PERATORS With the three logical operators, we can form more complicated conditions or logical \succ expressions:

Uploaded By: anonymous

&& (and), 3. ! (not) 2. || (or)

Examples:

. STUDENTS-HUB.com

1.

- salary < MIN_SALARY || dependents > 5 (1) ٠
- temperature > 90.0 && humidity > 0.90 (2)•
- $n \ge 0 \&\& n \le 100 (3)$
- \bigcirc $0 \le n \&\& n \le 100 (3)$ •

LOGICAL

OCTABLE 4.3 The && Operator (and)

operand1	operand2	operand1 && operand2
nonzero (true)	nonzero (true)	1 (true)
nonzero (true)	0 (false)	0 (false)
0 (false)	nonzero (true)	0 (false)
0 (false)	0 (false)	0 (false)

TABLE 4.4 The || Operator (or)

operand1	operand2	operand1 operand2
nonzero (true)	nonzero (true)	1 (true)
nonzero (true)	0 (false)	1 (true)
0 (false)	nonzero (true)	1 (true)
0 (false)	0 (false)	0 (false)

STUDENTS-HUB.com

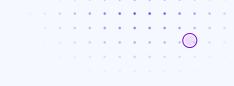
• • • • • • • • • • •

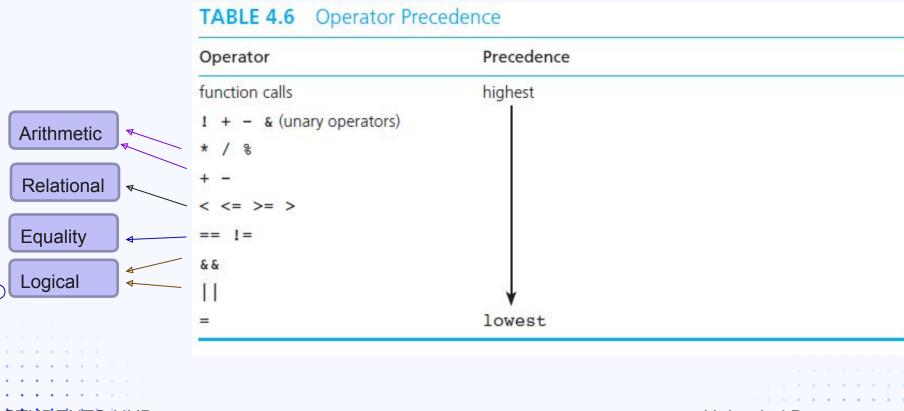
 \bigcirc

Uploaded By: anonymous

.

>


 \bigcirc


OPERATORS The third logical operator, ! (not), has a single operand and yields the **logical** complement, or negation, of its operand (that is, if the variable positive is nonzero (true), !positive is 0 (false) and vice versa).

 $!(0 \le n \&\& n \le 100) (1)$

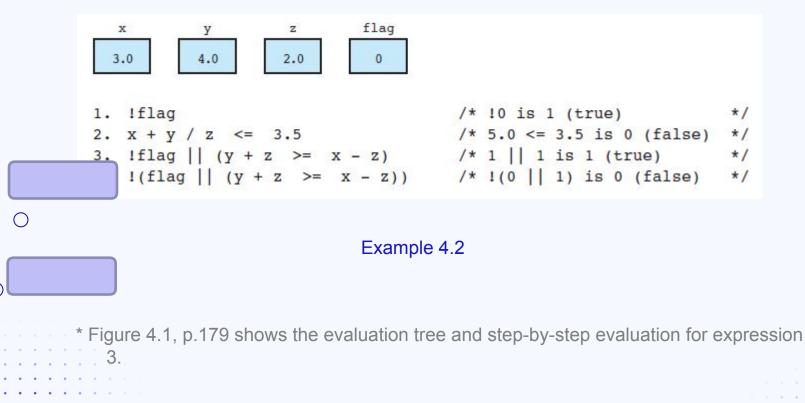
	operand1	!operand1		U
)	nonzero (true)	0 (false)		
	0 (false)	1 (true)		0
•••••	• • • •			
• • • • • • •				• • • •
	TS-HUB.com		Uploaded By: anony	

OPERATOR PRECEDENCE

STUDENTS-HUB.com

Uploaded By: anonymous

OPERATOR PRECEDENCE


STUDENTS-HUB.com

- Notice that the precedence of operators + and depends on whether they have one operand or two. In the expression -x y * z the unary minus is evaluated first (-x), then *, and then the second -.
- You can use parentheses to change the order of operator evaluation. In the expression $(x < y \parallel x < z) \&\& x > 0.0 C$ evaluates II before &&. (1)

Uploaded By: anonymous

 You can also use parentheses to clarify the meaning of expressions. If x, min, and max are type double, the C compiler will interpret the expression:
 x + y < min + max as (x + y) < (min + max) (2)

OPERATOR PRECEDENCE

STUDENTS-HUB.com

Uploaded By: anonymous

.

.

SHORT-CIRCUIT EVALUATION

STUDENTS-HUB.com

- An expression of the form $\mathbf{a} \parallel \mathbf{b}$ must be true if \mathbf{a} is true. (1)
- > Similarly, an expression of the form $\mathbf{a} \& \& \mathbf{b}$ must be false if \mathbf{a} is false. (2)
- We can use *short-circuit evaluation* to prevent potential run-time errors. (num % div == 0) (3) What if div is 0?

In this case, the remainder calculation would cause a division by zero run-time error.

We we can prevent this error by using the revised condition v != 0 && (num % div == 0)) (4)

Uploaded By: anonymous

. . . **. . . .**

WRITING ENGLISH CONDITIONS IN C

$$x = 3.0$$
 $y = 4.0$ $z = 2.0$

TABLE 4.7 English Conditions as C Expressions

English Condition	Logical Expression	Evaluation
${f x}$ and ${f y}$ are greater than ${f z}$	x > z && y > z	1 & & 1 is 1 (true)
x is equal to 1.0 or 3.0	x == 1.0 x == 3.0	0 1 is 1 (true)
${f x}$ is in the range ${f z}$ to ${f y}$, inclusive	z <= x && x <= y	1 & & 1 is 1 (true)
\mathbf{x} is outside the range \mathbf{z} to \mathbf{y}	$ (z \le x \& x \le y) $ z > x x > y	!(1 && 1)is 0 (false) 0 0 is 0 (false)

Uploaded By: anonymous

In the first logical expression You may be tempted to write this as x & & y > z /* invalid logical expression */ (1)

STUDENTS-HUB.com

COMPARING CHARACTERS

	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	
		•	٠	•	•	•	•	•	•(
				•	•	•	•	•				

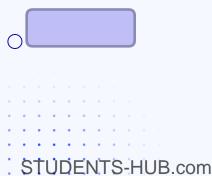
Expression	Value
'9' >= '0'	1 (true)
'a' < 'e'	1 (true)
'B' <= 'A'	0 (false)
'Z' == 'Z'	0 (false)
'a' <= 'A'	system dependent
'a' <= ch && ch <= 'z'	1 (true) if ch is a lowercase letter

0

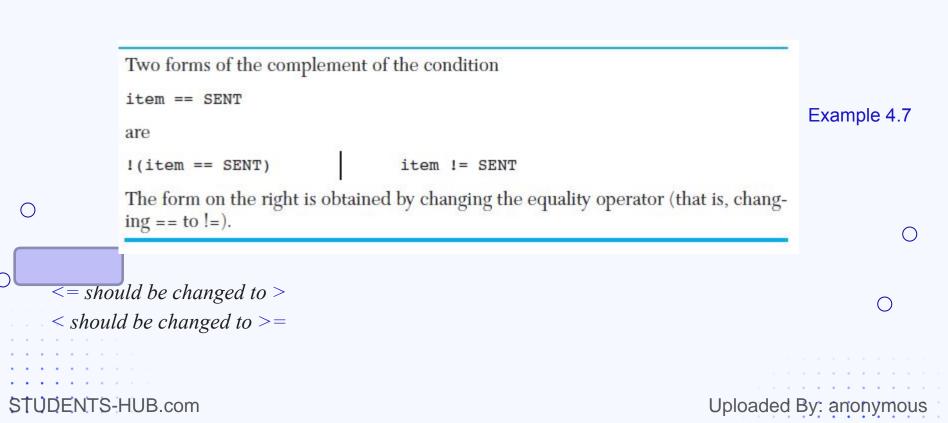
 \bigcirc

0

STUDENTS-HUB.com


Uploaded By: anonymous

LOGICAL ASSIGNMENT


The simplest form of a logical expression in C is a single type int value or variable intended to represent the value true or false (1)

Uploaded By: anonymo

You can delete the parentheses without affecting the order of operator evaluation.

COMPLEMENTING A CONDITION

• • • • • • • • • • •

COMPLEMENTING A CONDITION

```
The condition

status == 'S' && age > 25

is true for a single person over 25. The complement of this condition is

!(status == 'S' && age > 25)
```

Using DeMorgan's theorem, we can write the complement of

```
    ○ age > 25 && (status == 'S' || status == 'D')
    ○ as
age <= 25 || (status != 'S' && status != 'D') (1)</li>
    STUDENTS-HUB.com
```

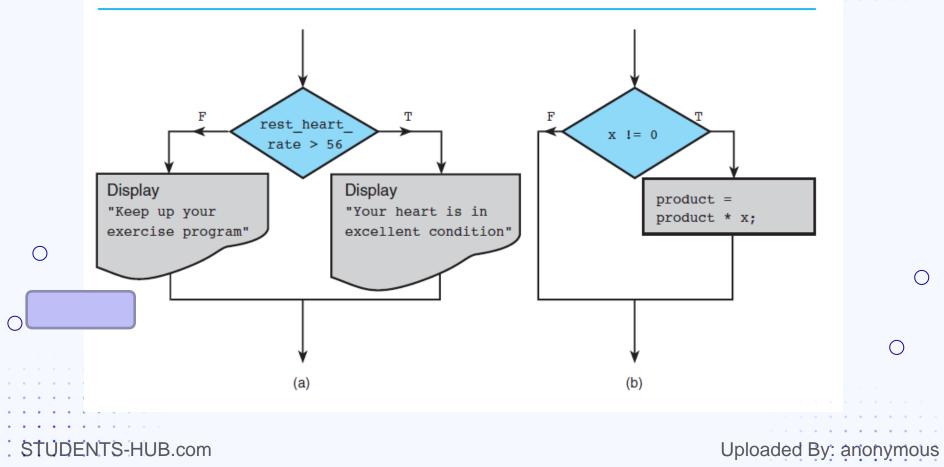
Example 4.8

 \bigcirc

Uploaded By: anonymous

4.3 THE IF STATEMENT

• if Statement with Two Alternatives:


```
if (rest_heart_rate > 56)
printf("Keep up your exercise program!\n");
else
printf("Your heart is in excellent health!\n");
```

```
    if (crsr_or_frgt == 'C')
    printf("Cruiser\n");
    printf("Frigate\n"); (1)
```

STUDENTS-HUB.com

Uploaded By: anonymous

FIGURE 4.4 Flowcharts of if Statements with (a) Two Alternatives and (b) One Alternative

0

• if Statement with One Alternatives:

• You also can write if statements with a single alternative that executes only when the condition is true.

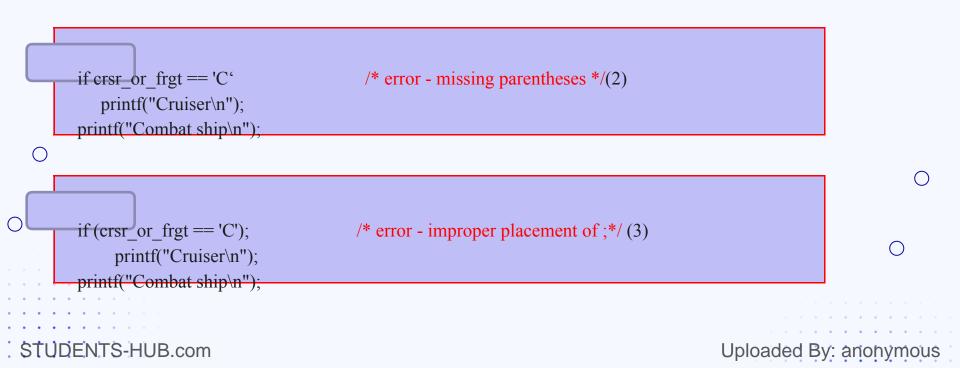
.

Uploaded By: anonymous

```
If statement from figure 4.4(b)

/* Multiply Product by a nonzero x */

if (x != 0.0)


product = product * x;
```

Ο

STUDENTS-HUB.com

if (crsr_or_frgt == 'C')
printf("Cruiser\n");
printf("Combat ship\n"); (1)

.

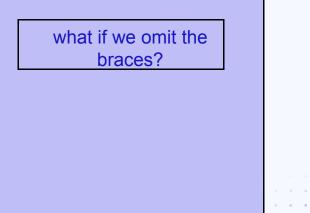
· · · · · · ·

4.4 IF STATEMENTS WITH COMPOUND

if (students_today > students_yesterday) {

```
int increase = students_today - students_yesterday;
```

```
float increase_pct = 100.0 * increase / students_yesterday;
```


```
printf("Student attendance increased by %.2f%%\n", increase_pct);
```

```
if (ctri <= MAX_SAFE_CTRI) {
    printf("Car #%d: safe\n", auto_id);</pre>
```

```
safe = safe + 1;
```

S-HUB.com

```
printf("Car #%d: unsafe\n", auto_id);
unsafe = unsafe + 1;
} (1)
```


Uploaded By: anonymo

. if (condition) **PROGRAM** STYLE true task We enclose a compound statement that is a true task or braces. The placement of the braces is a matter of personal pre else false task Some programmers prefer to type each brace on its own line a braces: Some programmers prefer to use braces around all true and false tasks whether compound or not, so that all if statements in a program have a consistent style. We recommend enclosing both the true and the false tasks in braces if either is a compound statement. whichever style you choose, make sure you apply it consistently.

Uploaded By: anonymous

STUDENTS-HUB.com

TRACING AN IF

5.

}

TATEMENT A hand trace, or desk check, is a careful, step-by-step simulation on paper of how the computer executes the algorithm or statement

FIGURE 4.6 if Statement to Order	x and y
----------------------------------	---------

if (x > y) {	/* Switch x and y */
temp = x;	/* Store old x in temp */
x = y;	/* Store old y in x */
y = temp;	<pre>/* Store old x in y */</pre>

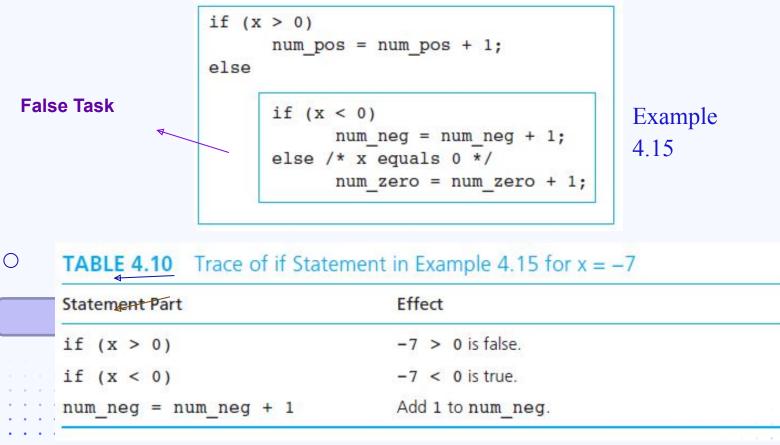
TABLE 4.9 Trace of if Statement

	Statement Part	х	У	temp	Effect	U
		12.5	5.0	?		
	if (x > y) {				12.5 > 5.0 is true.	0
	<pre>temp = x;</pre>			12.5	Store old x in temp.	
· · · · · · · · · ·	x = y;	5.0			Store old y in x.	••••••
STUDENTS-	y = temp; HUB.com		12.5		Store old x in y. Uploaded By: ar	nonymous

4.5 DECISION STEPS IN ALGORITHMS

> **Decision Steps :** Algorithm steps that select from a choice of actions.

CASE STUDY (Homework) P.195 - 204



S	t	Ů	DI	Ξ١	٦ ل	S	;-]-	ΗL	JB	.00	om
•	•	•	•	•	•	•	•				
•	•	•	•	•	•	•					
•	•	•	•	•	•	•					
•	•	•	•	•							

Water Bill Problem

Uploaded By: anonymous

4.7 NESTED IF STATEMENTS AND MULTIPLE-ALTERNATIVE DECISIONS

STUDENTS-HUB.com

```
Uploaded By: anonymous
```

COMPARISON OF NESTED IF AND SEQUENCE OF IFS

• Beginning programmers sometimes prefer to use a <u>sequence of if statements</u> rather than a <u>single</u> <u>nested if statement.</u>

For Example: the nested if statement in Example 4.15 is rewritten as a sequence of if statements.

Uploaded By: anonymous

```
if (x > 0)
      num pos = num pos + 1;
    if (x < 0)
\bigcirc
      num_{\triangleleft} neg = num neg + 1;
    if(x == 0)
      num zero = num zero + 1;
```

STUDENTS-HUB.com

MULTIPLE-ALTERNATIVE DECISION FORM OF NESTED IF

In situations like **Example 4.15** in which each false task (except possibly the last) is followed by an if-then-else statement, you can code the nested if as the **multiple-alternative decision**.

Uploaded By: anonymous

```
if (x > 0)
    num_pos = num_pos + 1;
else if (x < 0)
    num_neg = num_neg + 1;
else /* x equals 0 */
    num<u><zero</u> = num_zero + 1;
```

STUDENTS-HUB.com

ORDER OF CONDITIONS IN A MULTIPLE-ALTERNATIVE DECISION

- /* Display perception of noise loudness */ noise_db = 62;
- if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
 else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
 else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);</pre>
- else if (noise_db <= 110)
- printf("%d-decibel noise is very annoying.\n", noise_db);
 else
 - printf("%d-decibel noise is uncomfortable.\n", noise_db);
 - STUDENTS-HUB.com

EXAMPLE 4.16

Uploaded By: anonymous

When more than one condition in a multiple-alternative decision is true, only the task following the first true condition executes.(1)

```
/* incorrect perception of noise loudness */ (2)
```

```
if (noise_db <= 110)
```

printf("%d-decibel noise is very annoying.\n", noise_db); else if (noise db <= 90)</pre>

printf("%d-decibel noise is annoying.\n", noise_db);

```
○ else if (noise_db <= 70)
```

printf("%d-decibel noise is intrusive.\n", noise_db);

```
○ else if (noise_db <= 50)
```

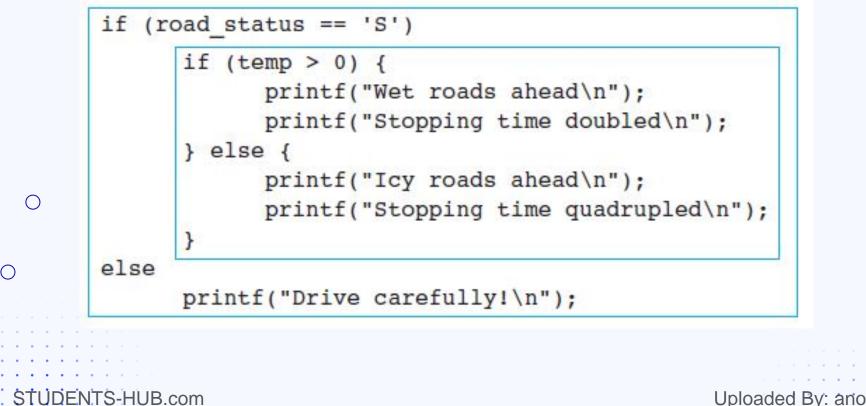
printf("%d-decibel noise is quiet.\n", noise_db);

else

printf("%d-decibel noise is uncomfortable.\n", noise_db);
STUDENTS-HUB.com

NESTED IF STATEMENTS WITH MORE THAN ONE VARIABLE

```
/* Print a message if all criteria are met. */
if (marital_status == 'S')
    if (gender == 'M')
        if (age >= 18 && age <= 26)
            printf("All criteria are met.\n");</pre>
```


```
An equivalent statement that uses a single if with a compound condition follows

if (marital_status == 'S' && gender == 'M' O

&& age >= 18 && age <= 26)

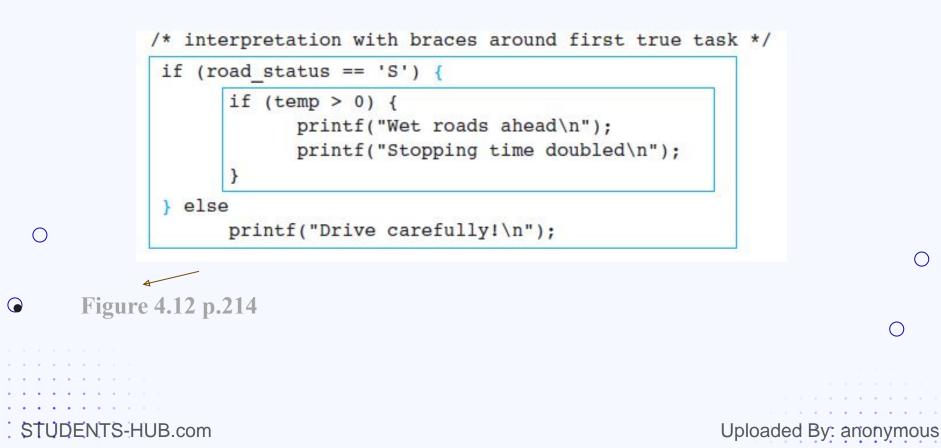
printf("All criteria are met.\n");
Uploaded By: anonymous
```

When you are writing a nested if statement, you should know that C associates an else \odot with the most recent incomplete if

Uploaded By: anonymous

For example, if the first else of the road sign decision were omitted, the following \bigcirc would be left:

```
/* incorrect interpretation of nested if */
if (road status == 'S')
      if (temp > 0) {
             printf("Wet roads ahead\n");
             printf("Stopping time doubled\n");
      }
else
      printf("Drive carefully!\n");
       /* correct interpretation of nested if */
       if (road status == 'S')
  (1)
             if (temp > 0) {
                   printf("Wet roads ahead\n");
                   printf("Stopping time doubled\n");
             } else
                   printf("Drive carefully!\n");
```


 \bigcirc

STUDENTS-HUB.com

0

Uploaded By: anony

To force the else to be the false branch of the first if , we place braces around the true \bigcirc task of the first decision.

• Change the initial condition so the branches were switched, and the multiple-alternative structure would work

Uploaded By: anonymous

```
if (road status == 'D') {
 printf("Drive carefully!\n");
} else if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
} else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
```

STUDENTS-HUB.com

4.8 THE SWITCH STATEMENT

• The switch statement may also be used in C to select one of several alternatives.

• The switch statement is especially useful when the selection is based on the value of a single variable or of a simple expression (called the controlling expression).

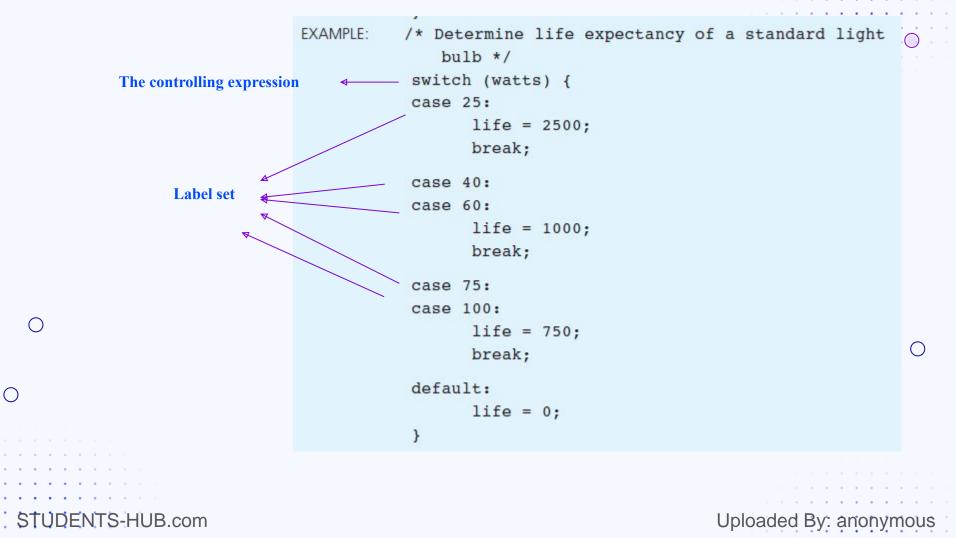
.

Uploaded By: anonymous

- The value of this expression may be of type int or char, but not of type double or string.
- Example 4.20 p.218

STUDENTS-HUB.com

THE SWITCH STATEMENT


RULES
 It is important to remember that type int and char values may be used as case labels, but strings and type double values cannot be used.

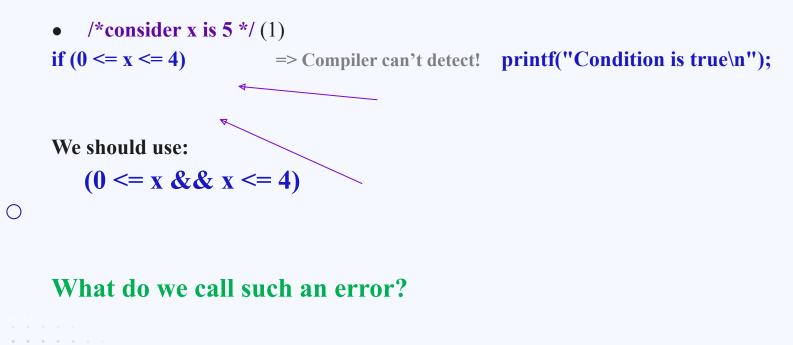
• Another common error is the omission of the break statement at the end of one alternative. In such a situation, execution "falls through" into the next alternative.

• Forgetting the closing brace of the switch statement body is also easy to do. If the brace is missing and the switch has a default label, the statements following the switch statement become part of the default case.

Uploaded By: anonymous

STUDENTS-HUB.com

THE SWITCH STATEMENT


STUDENTS-HUB.com

- **RULES** You can use a nested if statement, which is more general than the switch statement, to implement any multiple-alternative decision.
 - The switch as described in the syntax display is more readable in many contexts and should be used whenever practical.
 - Case labels that contain type double values or strings are not permitted.
- You should use the switch statement when each label set contains a reasonable number of case labels (a maximum of ten). (1)
 - You should include a default label in switch statements wherever possible. (2)

 \bigcirc

Uploaded By: anonymous

<u>4.9 COMMON PROGRAMMING</u> <u>ERRORS</u> • Displays Condition is true for all values of x .

Uploaded By: anonymous

.

- •••••
- STUDENTS-HUB.com

<u>4.9 COMMON PROGRAMMING</u> <u>ERRORS</u> • Remember that the C equality operator is == not

.

.

Uploaded By: anonymous

if (x = 10) => Compiler can't detect! (1) printf("x is 10");

• • • • • •

STUDENTS-HUB.com

always prints x is 10, regardless of the value of x.

4.9 COMMON PROGRAMMING

- **ERRORS** parenthesize the condition of an if statement.
 - enclose in braces a single-alternative if used as a true task within a
 - double-alternative if. (1)

$$f(x > y)$$
if (x % 2 == 0)
printf("x is even\n");

else

printf("x is smaller than $y\n"$);

If x = 5, $y = 4 \implies$ "x is smaller than y" STUDENTS-HUB.com

/*Correct Version*/ if (x > y) { if (x % 2 == 0) { printf("x is even\n"); } else { printf("x is greater than y\n"); Uploaded By: anonymous

4.9 COMMON PROGRAMMING ERRORS

• Enclose in braces a compound statement used as a true task or false task. (1)

.

Uploaded By: anonymous

```
if (x > 0)
sum = sum + x;
printf("Greater than zero\n");
else
```

 \circ printf("Less than or equal to zero\n");

```
STUDENTS-HUB.com
```

4.9 COMMON PROGRAMMING

STUDENTS-HUB.com

- **ERRORS** When writing a nested if statement, try to select the conditions so that you can use the multiple-alternative format.
 - When possible, the logic should be constructed so each intermediate condition falls on the false branch of the previous decision.
 - If more than one condition can be true at the same time, place the most restrictive condition first

Refernces

Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B. Koffman

()

STUDENTS-HUB.com

Uploaded By: anonymous