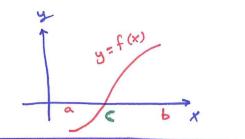
Chapter Two
Solving non linear equations
$$f(x) = 0$$

* In this chapter we will learn methods used to
solve non linear equations numerically.
Exp D solve $\sqrt{x} e^{cojx} = 5 \Rightarrow \sqrt{x} e^{cojx} - 5 = 0$
(2) solve $e^{x} = x \Rightarrow e^{-x} = 0$
 $f(x)$
* Numerical Methods to solve $f(x) = 0$:
II Fixed Point Iteration (FII)
(2) Bisection Method
(3) False Position Method
(5) Secant Method
(6) Bracketing Methodyploaded By: anonymous
for locating a yoots

ch2: solution of Nonlinear Equations f(x)=0

- · Assume B c e (a, b) s.t f (c) = 0
- · How to estimate c?



....

16

Iteration is used to find roots of equations, solution of linear and nonlinear systems of equations, solutions of differential equations, ----

. To build an iteration, we need a rule or function g(x) {PK} and a starting point Po.

$$Exp() g(x) = \frac{1}{x} \implies fixed points are 1, -1$$
since $f = g(f) \iff f = \frac{1}{f} \iff f^2 = 1$

$$STUDENTS-HUB.com$$

$$(2) g(x) = x \implies all points are fixed points$$

(9)
$$g(x) = x^3$$
 (>> $x = x^3$ (>> $x (x^2 - 1) = 0$ (>> $x = 0, 1, -1$
(5) $g(x) = cosx$ (>> $x = cosx$ "harder"

Proof (Fixed Point Iteration)
• The iteration
$$P_{n+1} = g(P_n)$$
, $n = o_1 b_2, ...$ is called
fixed point iteration.
• That is,
 $P_n = g(P_n)$
 $P_{n+1} = g(P_n)$
 $P_{n+1} = g(P_n)$
* which types of functions $g(x)$ that produce convergent
sequence $\{P_n\}^m$ be a fixed point iteration.
• Let $\{P_n\}^m$ be a fixed point iteration.
• If $\{P_n\}^m$ be a fixed point iteration $p_{n+1} = g(P_n)$
• The $\{P_n\}^m$ is fixed point iteration $p_{n+1} = g(P_n)$
• Hence, $g(P) = g(\lim_{n \to \infty} P_n) = \lim_{n \to \infty} g(P_n) = \lim_{n \to \infty} P_{n+1} = g(P_n)$
• Hence, $g(P) = g(\lim_{n \to \infty} P_n) = \lim_{n \to \infty} g(P_n) = \lim_{n \to \infty} P_{n+1} = P_n$
• To solve $f(x) = o$, we solve $x = g(x)$ for fixed point.
• That is, to find the roots of $f = j$
we find the fixed points of $g(x)$.

Exp
$$x^{2} + 3x - 4 = 0$$

The fixed points are $(x - 1)(x + 4) = 0 \iff x = 1, -4$
 $g(x)$ can have one of the following forms:
 $D = g(x) = \frac{4 - x^{2}}{3} \implies if \quad P_{0} = 3$ then (3 digit)
 $P_{1} = -1.67 \implies P_{2} = 0.403 \implies P_{3} = 1.28 \dots \implies P_{13} = 1.005$
which converges to the fixed point 1
 $= \implies if \quad P_{0} = -6$ then
 $P_{1} = -10.7 \implies P_{2} = -36.7 \implies P_{3} = -445$... diverges
 $= 4 \text{ there, } g \text{ can find only the fixed point 1}$
 $P_{1} = -10.7 \implies P_{2} = -36.7 \implies P_{3} = -445$... diverges
 $= 0 \text{ there, } g \text{ can find only the fixed point 1}$
 $P_{1} = -4.69 \implies P_{2} = -4.25 \implies P_{3} = -4.10 \implies \dots \implies f_{2} = -40000764$
which converges to the fixed point -4
 $P_{2}(x) = -\sqrt{4-3x} \implies if \quad P_{0} = -6$ then
 $P_{1} = -4.69 \implies P_{2} = -4.25 \implies P_{3} = -4.10 \implies \dots \implies f_{2} = -40000764$
which converges to the fixed point -4
 $P_{3}(x) = -\frac{4}{x+2} \implies if \quad P_{0} = 3$ then $\begin{cases} x(x+3) = 4}{x=3} = \frac{4}{3} = \frac{3}{2}(x)$
 $p_{1} = 0.667 \implies P_{2} = 1.09 \implies P_{3} = 0.978 \dots \implies P_{3} = 1.00002$
which converges to the fixed point 1
STUDENTS-HUB.com
 $p_{3} = 1.004$ which converges to 1
 $P_{3} = 0.778 \dots \implies P_{3} = 1.00002$
 $P_{3} = 0.778 \dots \implies P_{3} = 1.0$

Exp. Consider
$$f(x) = x^2 - 2x - 3$$

• clearly the roots of $f(x) = 0 \iff (x-3)(x+1) = 0$
are $x = 3$ and $x = -1$
• Note that we can estimate the roots as follows:
If $x^2 - 2x - 3 = 0 \iff x^2 = 2x - 3 \iff x = \sqrt{2x+3} = 9(x)$
if $f_0 = 4$ then $(\text{If } g_0 = -\frac{3}{2} + \text{Here} f_0 - 3)$ and we could not find-1)
 $f_1 = 9(f_0) = 9(4) = \sqrt{11} \approx 3.31662$
 $f_2 = 9(f_1) = 9(3.10375) = \sqrt{9.2075} \approx 3.03439$
 $f_3 = 9(f_3) = 9(3.0343) = \sqrt{9.06878} = 3.01144$
 $f_1 = 3(f_0) = 9(3.0343) = \sqrt{9.06878} = 3.01144$
 $f_1 = 3(f_0) = 9(4) = \frac{3}{2} = 1.5$
 $f_2 = 9(f_1) = 9(5.5) = \frac{3}{-0.5} = -6$
STUDENTERIEB $g(nP_2) = 9(-6) = \frac{3}{-8} = -0.375$
 $f_3 = 9(f_3) = 9(5.375) = -\frac{3}{-3.26316} = -0.91935$
 $f_4 = 9(f_3) = 9(5.375) = -\frac{3}{-3.26316} = -0.91935$
 $f_2 = 9(f_3) = 9(-1.26216) = \frac{3}{-3.26316} = -0.91935$
 $f_2 = 9(f_3) = 9(-1.26216) = \frac{3}{-3.26316} = -0.91935$
 $f_2 = 9(f_3) = 9(-1.26216) = \frac{3}{-3.26316} = -0.91935$
 $f_2 = 9(f_3) = 9(-1.26216) = \frac{3}{-3.26316} = -0.91935$
 $f_2 = 9(f_3) = 9(-1.26216) = -3.2765$
 $f_3 = 9(f_3) = 9(-1.26216) = \frac{3}{-3.26316} = -0.91935$
 $f_4 = 9(f_5) = 9(-0.91935) = -1.02763$
 $f_5 = 9(f_5) = 9(-0.91935) = -1.02763$
 $f_5 = 9(f_5) = 9(-0.91935) = -0.97987$
 $f_5 = 9(f_6) = 9(-1.02763) = -0.97987$

[3] Nole that if we choose

$$2x = x^2 - 3 \implies x = \frac{x^2 - 3}{2} = g(x)$$
 Hen we get a
divergence sequence and so it will not work.
 $f_o = 4$
 $f_1 = g(f_0) = g(4) = 6.5$
 $f_2 = g(f_1) = g(6.5) = 19.625$
 $f_3 = g(f_2) = g(19.625) = 191.0703$
 $f_1 = (Fixed Roint Theorem I) - FPTI$
Assume $g \in (Ia_1b]$.
 $f = (Fixed Roint Theorem I) - FPTI$
Assume $g \in (Ia_1b]$.
 $f = (Fixed Roint in Ea,b]$ for all $x \in [a,b]$, then g has a
 $fixed point in Ea,b]$.
 $f = fixed point in Ea,b]$.
 $f = fixed point in [a,b]$.
 $f = fixed noise fixed point in [a,b]$.
 $froof$ If $g(a) = a$ or $g(b) = b$, then we are done.
 $Other wist, g(a) \in (a,b] and g(b) \in [a,b]$.
Now let $f(x) = x - g(x) \Rightarrow f$ is continuous and
 $f = a - g(a) < o$ and
 $f = g(f_1) = o$
 $f = g(f_2) = o$
 $f = g(f_2) = o$
 $f = g(f_2) = 0$
 $f = g(f_2) = 0$

• (Uniqueness)
Suppose
$$F_1$$
 and F_2 are two fixed points of g
 $\Rightarrow g(F_1) = F_1$ and $g(F_2) = F_2$
Hyply Mean Value Theorem on $(F_1, F_2) \Rightarrow$
 $\exists c \in (F_1, F_2) s.t$
 $g'(c) = \frac{g(F_1) - g(F_2)}{F_2 - F_1} = \frac{F_2 - F_1}{F_2 - F_1} = 1$ X.
Since $[g(x)] \leq K < 1$. Hence, $F_1 = F_2$
 $f'(x) = \frac{g(x) - g(x)}{F_2 - F_1} = \frac{F_2 - F_1}{F_2 - F_1} = 1$ X.
Since $[g(x)] \leq K < 1$. Hence, $F_1 = F_2$
 $f'(x) = \frac{g(x) - g(x)}{F_2 - F_1} = \frac{F_2 - F_1}{F_2 - F_1} = 1$ X.
 g is continuous on $F_0, F_1 \Rightarrow ge c(F_0, F_1)$
 g is decreasing on $F_0, F_1 \Rightarrow ge c(F_0, F_1)$
 $f'(x) \leq cos x \leq cos c$
Hence, $g(x) \in F(\frac{cos F_1}{cos F_1}, F_1) \subseteq F_0, F_1$ for all $x \in F_0, F_1$
Thus, g has a fixed point in $F_0, F_1 = sin x \leq sin | < 1$
Thus, $K = sin | = \frac{G(F_1)}{G(F_1)} \leq 1 \Rightarrow g$ has a unique fixed point in F_1 .
Subscript HUB.com hen the fixed point Hereation (F_1)
Uploaded By: anonymous $F_{K+1} = g(F_K)$, F_0 , $K = o, F_2$.
 $F_1 = g(F_K)$, F_0 , $K = o, F_2$.
 $F_2 = F_1 T T$ page $[T]$ does not apply when $g'(F_1) = 1$.
See $F_2 = F_1 T$ page $[T]$ does not apply when $g'(F_1) = 1$.

Therefore,
$$f_n \in (a,b)$$
 and hence, by induction all the
points $\{f_n\}_{n=0}^{\infty} \in (a,b)$.
Now we need to prove $\lim |I - P_n| = 0$
 $(1 - P_n) \leq K^n |I - P_n| = 0$
 $(1 - P_n) \leq K^n |I - P_n| = 0$
 $(1 - P_n) \leq K^n |I - P_n| \leq K |I - P_n| \leq K |I - P_n| \leq K^n |I - P_n|$
 $(1 - P_n) \leq K |I - P_n| \leq K |I - P_n| \leq K |I - P_n| \leq K |I - P_n|$
 $(1 - P_n) \leq K |I - P_n| \leq K |I - P_n| \leq K |I - P_n| = K |I - P_n|$
 $(1 - P_n) \leq K |I - P_n| \leq \lim_{n \to \infty} K^n |I - P_n| = 0$
 $(1 - P_n) \leq K |I - P_n| \leq \lim_{n \to \infty} K^n |I - P_n| = 0$
 $(1 - P_n) \leq \lim_{n \to \infty} K^n |I - P_n| \leq \lim_{n \to \infty} K^n |I - P_n| = 0$
 $(1 - P_n) \leq \lim_{n \to \infty} K^n |I - P_n| \leq \lim_{n \to \infty} K^n |I - P_n| = 0$
 $(1 - P_n) \leq \lim_{n \to \infty} K^n |I - P_n| \leq \lim_{n \to \infty} K^n |I - P_n| = 0$
 $(1 - P_n) \leq \lim_{n \to \infty} K^n |I - P_n| \leq \lim_{n \to \infty} K^n |I - P_n| = 0$
 $(1 - P_n) \leq \lim_{n \to \infty} K^n |I - P_n| \leq \lim_{n \to \infty}$

Exp Given
$$g(x) = \sqrt{3x-2}$$
.
Find the fixed points of $g(x)$ and
determine the nature of these fixed points.
 $x = g(x)$ (D) $x = \sqrt{3x-2}$ (D) $x^2 = 3x-2$
(D) $x^2 - 3x + 2 = 0$ (D) $(x - 1)(x - 2) = 0$
(D) $x = 1$, $x = 2$ are fixed points
 $g'(x) = \frac{3}{2\sqrt{3x-2}}$ $\Rightarrow |g'(1)| = \frac{3}{2} > 1$ $\Rightarrow x = 1$ is repeller
 $\Rightarrow FPI$ diverges
 $\Rightarrow |g'(2)| = \frac{3}{4} < 1$ $\Rightarrow x = 2$ is attractor
 $\Rightarrow FPI$ converges to 2

Uploaded By: anonymous

STUDENTS-HUB.com

Exp
$$x^{2} + 3x - y = 0$$
 has fixed points $x=1, -y$ (22.2)

$$\square g_{1}(x) = \frac{y-x^{2}}{3}$$

$$= \frac{9}{3}(x) = -\frac{2}{3}x \implies 3$$

$$= \frac{2}{3}(x) = -\frac{2}{3}(x) \implies 3$$

$$= \frac{2}{3}(x) = -\frac{2}{3}(x) \implies 3$$

$$= \frac{2}{3}(x) \implies 3$$

Exp Let
$$g(x) = 1 + x - \frac{x}{4}^{2}$$
. Can we use the FFI [23]
to find the solution of the equation $x = g(x)?$ why?
Folding $x = g(x) \Leftrightarrow x = 1 + x - \frac{x^{2}}{4} \Leftrightarrow x^{\frac{2}{2}} + \frac{1}{2} \Leftrightarrow x^{\frac{2}{2}} + \frac{1}{2}$
 $x = g(x) \Leftrightarrow x = 1 + x - \frac{x^{2}}{4} \Leftrightarrow x^{\frac{2}{2}} + \frac{1}{2} \Leftrightarrow x^{\frac{2}{2}} + \frac{1}{2}$
 $(X=2) \Rightarrow g(x) = 1 - \frac{x}{2} \Rightarrow |g(z)| = 0 < 1$
Hence, by Remark page 21 \Rightarrow the FPI converges to 2
 $\cdot 50$ we can use the FPI to find the solution of $x = g(x)$:
 $I_{0} = 1.6$
 $I_{1} = g(I_{0}) = g(1.6) = 1 + 1.6 - \frac{(1.6)^{2}}{4} = 1.96$
 $I_{1} = g(I_{0}) = g(1.6) = 1 + 1.96 - \frac{(1.6)^{2}}{4} = 1.9376$
 $I_{2} = g(I_{2}) = g(1.996) = 1 + 1.996 - \frac{(1.9396)^{2}}{4} = 2$ attractor
 $I_{0} = 2.5$
 $I_{1} = g(I_{0}) = g(2.5) = 1 + 25 - \frac{(2.5)^{2}}{4} = 1.9375$
 $I_{2} = g(I_{1}) = g(1.9375) = 1.999$
 $I_{3} = g(I_{2}) = g(1.999) = 2$
 $\cdot (x = -2) \Rightarrow |g(-2)| = |1 - \frac{-2}{2}| = 2 > 1$. Hence, by Remark
FPI diverges and $I_{2} - 2$ is repulser (repuisive) fixed
 $part.$
STUDENTS-HUBEONFEE that:
 $I_{0} = 2.05$
 $I_{1} = g(I_{0}) = g(-2.05) = 1 - 2.05 - \frac{(1.03)^{2}}{4} = -2.1$
 $I_{2} = g(I_{1}) = g(-2.1) = -2.2025$
 $I_{3} = g(I_{2}) = g(-2.2015) = -2.4153$
 \vdots
 I_{n} diverges

Exp^{*} Consider the iteration
$$P_{n+1} = g(R_n)$$
 where $g(x) = 2\sqrt{x-1}$ (24)
for $x \ge 1$. Can FPI be used to find the solution of $x = g(x)$?
Fixed point $x = g(x) \iff x = 2\sqrt{x-1} \iff x^2 = 4(x-1)$
 $\iff x^2 - 4x + 4 = 0 \iff (x-2)(x-2) = 0 \iff X = 2$
FPI $g(x) = \frac{1}{\sqrt{x-1}} \implies g(z) = 1$
 $\implies FPI TII$ does not apply.
There are two cases to consider:
 $Case 1 \quad start with \ f_0 = 1.5$
 $f_1 = g(F_0) = g(1.5) = 2\sqrt{15-1} = 1.4142$
 $F_2 = g(F_1) = g(1.2872) = 1.0718$
 $F_3 = g(F_1) = g(1.2872) = 1.0718$
 $F_4 = g(F_1) = g(1.2872) = 1.0718$
 $F_4 = g(F_2) = g(1.2773) = 0.5359$ outside the domain of g
 $F_5 \quad can not be \ computed$
 $Case 2 \quad start with \ F_0 = 2.5$
 $F_1 = g(F_1) = g(2.44795) = 2.44795$
 $F_2 = g(F_1) = g(2.4979) = 2.3731$
STUDENTS-HUB.copy $g(F_3) = g(2.3731) = 2.3436$
Hence, the FPI converges in this exp for every $F_2 > 2$
and diverges for every $\leq F_2 < 2$

Corollary Assume g satisfies conditions of FPITT.
If Pn is used to approximate the fixed point P, then
an upper bounds for the error are

$$\begin{bmatrix} |P-Pn| \leq K^{n} |P-P_{0}| \text{ for all } n \geq 1 & \dots & \textcircled{P} \\ \text{Error} \\ \text{and} \\ (|P-Pn| \leq \frac{K^{n}}{1-K} |P_{1}-P_{0}| \text{ for all } n \geq 1 & \dots & \textcircled{P} \\ \text{for all } n \geq 1 & \square & \square \\ \text{for all } n \geq 1 & \square & \square \\ \text{for all } n \geq 1 & \square & \square \\ \text{for all } n \geq 1 & \square & \square \\ \text{for all } n \geq 1 & \square & \square \\ \text{for all } n \geq 1 & \square & \square \\ \text{for all } n \geq 1 & \square & \square \\ \text{for all } n \geq 1 & \square & \square \\ \text{for all } n \geq 1 & \square & \square \\ \text{for all } n \geq 1 & \square & \square \\ \text{for all } n \geq 1 & \square & \square \\ \text{for all } n \geq 1 & \square & \square \\ \text{for all } n \geq 1 & \square & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n \geq 1 & \square \\ \text{for all } n = 1 & \square \\ \text{for all } n = 1 & \square \\ \text{for all } n = 1 & \square \\ \text{for all } n = 1 & \square \\ \text{for all } n = 1 & \square \\ \text{for all } n = 1 & \square \\ \text{for all } n = 1 & \square \\ \text{for all } n = 1 & \square \\ \text{for all } n = 1 & \square \\ \text{for all } n = 1 & \square \\ \text{for all } n = 1 & \square \\ \text{fo$$

Proof of (2) in different way:

$$[Froof of (2) in different way:
$$[Froof of (2) in different way:
$$[Frool = | I - I_1 + I_1 - I_0]$$

$$[Frool = | I - I_1 + | I_1 - I_0]$$

$$[Frool = | I - I_0 - K | I - I_0 | \le | I_1 - I_0 |$$

$$[Froon (2) | I - I_0 | \le | I_1 - I_0 |$$

$$[From (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_0 |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_n |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_n |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_n |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_n |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_n |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_n |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_n |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_n |$$

$$[Froon (2) we have$$

$$[I - I_n] \le K | I - I_n |$$

$$[Froon (2) we have$$

$$[I - I_n] = [I - I_n |$$

$$[Froon (2) we have$$

$$[I - I_n] = [I - I_n |$$

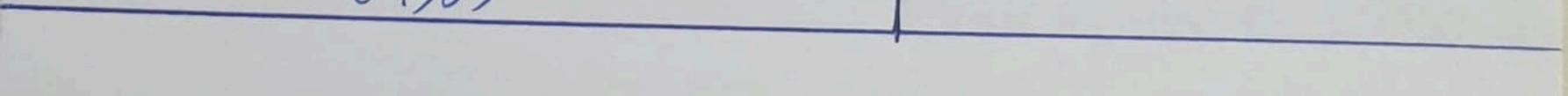
$$[Froon (2) we have$$

$$[I$$$$$$

Exp Let x'- x-5=0 26 I show that fix) has a root on [0,2] $f(x) = x^3 - x - 5 =) f(0) = -5 < 0 = 3$ Bolzano $f(x) = x^3 - x - 5 =) f(0) = -5 < 0 = 3$ Bolzano $f(x) = x^3 - x - 5 = 3$ f(x) = -5 < 0 = 3 Bolzano $f(x) = x^3 - x - 5 = 3$ f(x) = -5 < 0 = 3 Bolzano $f(x) = x^3 - x - 5 = 3$ f(x) = -5 < 0 = 3 Bolzano $f(x) = x^3 - x - 5 = 3$ f(x) = -5 < 0 = 3 Bolzano $f(x) = x^3 - x - 5 = 3$ f(x) = -5 < 0 = 3 Bolzano $f(x) = x^3 - x - 5 = 3$ f(x) = -5 < 0 = 3 f(x) =[2] Consider g(x) = VX+5. Use 5 decimal with B= 1.5 to approximate the root of f(x) " FP of g(x)" by finding P1, P2, P3 $P_1 = g(P_0) = g(1.5000) = \sqrt{6.5000} = 1.8663$ Fran $P_2 = g(R) = g(1.8663) = \sqrt{6.8663} = 1.9007$ (P=1.9042) $P_3 = g(P_2) = g(1.9007) = \sqrt[3]{6.9007} = 1.9038$ $(P_2 - 0.9521 \pm 1.31131)$ complex roots 3 Find K K is upper bound for lá(x) on [0,2] $\left| \frac{g(x)}{2} \right| = \left| \frac{1}{3\sqrt{(x+5)^2}} \right| = \frac{1}{3\sqrt{(x+5)^2}} \leq \frac{1}{3} \frac{1}{\sqrt{25}} \text{ decreasing}$ on [0,2] $|\hat{g}(x)| \le (\frac{1}{3}, \frac{1}{\sqrt{25}}) \le (\frac{1}{3}, \frac{1}{\sqrt{8}}) = (\frac{1}{3}, \frac{1}{2}) \le (\frac{1}{3}, \frac{1}{\sqrt{8}}) \le (\frac{1}{\sqrt{8}}) \le$ K max = 0.114 STUDENTS-HUB.com $K_{min} = \frac{1}{3\sqrt[3]{49}} = 0.09/1$ Uploaded By: anonymous 12) show that gix has a unique fixed point in [0,2] • g(x) is cont. on [0,2] g(x) is increasing on $[0,2] = \int_{2}^{3} \sqrt{5} = g(0) \le g(x) \le g(2) = \sqrt{7} \le \sqrt{8}$ 0 ≤ g(x) ≤ 2 VXE EO,2] Hence, by FPII g has a fixed point in E0,2] • $1\hat{g}(x)1 = \frac{1}{3\sqrt{(x+5)^2}} \leq K = \frac{1}{6} < 1$ since \hat{g} is decreasing g has a unique fixed point in [0,2]

Exp Consider
$$g(x) = \frac{1}{x^3} + 2$$
 on $[z,z]$
I show that $g(x)$ has fixed points in $[z,3]$
Noke that g is continuous on $[z,3]$
Noke also g is decreasing on $[z,3]$
 $2 < 2.037 = g(3) \le g(x) \le g(2) = 2.125 < 3 \quad \forall x \in [z,3]$
Hence, $g(x) \in [z,3] \quad \forall x \in [z,3]$
There fore by FPTT page 19 g has a fixed point in $[z,3]$
I s it unique?
 $1 \quad g(x) | = | -\frac{3}{x^4} | = \frac{3}{x^4}$ decreasing on $(z,3)$
 $1 \quad g(x) | \le \frac{3}{(x)^4} = 0.1875 = K_{max} \le 1$ for all $x \in (z,3)$
Hence, g has a unique fixed point in $[z,3]$
Show that the FPI converges for every $f_0 \in (z,3)$
Noke that $g, g \in C[z,3]$ and $g(x) \in [z,3] \quad \forall x \in [z,3]$
Noke also $| \quad g(x) | \le 0.1875 = K < 1 \quad \forall x \in [z,3]$
Upleaded By: anonymous
Hence, by FPITTI page 21 the FPI converges $\forall f_0 \in (2,3)$
Upleaded By: anonymous
Hence, by $FPITTI$ page 21 the FPI converges $\forall f_0 \in (2,3)$
Hence, by $FPITTI$ page 21 the FPI converges $\forall f_0 \in (2,3)$
Hence, $g = 1.5$ and with error less
Han 0.001 .

Exp Let g(x) = cosx on [0,1]. Use 4 digits to I show that g has a unique fixed point in [0,1] • g is conf. on $E_{0,1}$ • g is decreasing on $E_{0,1}$ so $g(1) \leq g(x) \leq g(0)$ $0 \le 0.5403 \le g(x) \le 1$. To prove the fixed point is unique => $|\hat{g}(x)| = |-\sin x| = |\sin x| \leq \sin 1| = 0.8415 = k < 1$ $\forall x \in (0,1)$ Hence, g has a unique FP in [0,1](Z) Find the number of iterations needed to estimate this FP of g with error of magnifude less than 10⁻³ (take Po = 0.5) $P_1 = g(P_0) = cos(0.5) = 0.8776$ \Rightarrow | $P_1 - P_0$ = 0.3776 Uploaded By: anonymous STUDENTS-HUB.com I-K= I- 0.8415 = 0.1585 $(0.8415)^n < \frac{10^3}{2.382} = 0.0004198$ $|I - P_n| \le \frac{\kappa}{1-\kappa} |P_1 - P_0| < 10^3$ $(0.8415)^{n} < 0.000 4198$ $\frac{(0.8415)}{0.1585}(0.3776) < 10^{-3}$ (n > 46)



-

• In general, the new interation is
$$C_n = \frac{a_n + b_n}{2}$$

in Bisection Method where $n = 0, 1, 2, ...$
EXP Use the Bisection Method to find the first five
iterations C_0, C_1, C_2, C_3, C_4 that estimate the
root of $X \sin x - 1 = 0$ on $[0, 2]$. Use the digital
• $f(x) = x \sin x - 1$ $[a_0, b_0] = [0, 2]$ findenal
• $f(x) = x \sin x - 1$ $[a_0, b_0] = [0, 2]$ findenal
• $f(x) = x \sin x - 1$ $[a_0, b_0] = [0, 2]$ findenal
• $f(x) = x \sin x - 1$ $[a_0, b_0] = [1, 2]$ of $1 = 2$
• $f(x) = x \sin x - 1$ $[a_0, b_0] = [1, 2]$ of $1 = 2$
• $f(x) = f(1) = -0.4585 < 0 \Rightarrow [a_1, b_1] = [1, 2]$ of interval
 $\frac{a_0}{2}$ iteration $C_1 = \frac{a_1 + b_1}{2} = \frac{1 + 2}{2} = 1.5$ $\frac{1}{1 + 1.5} = 2$
• $f(C_1) = f(1.5) = 0.4962 > 0 \Rightarrow [a_1, b_1] = [1, 1.5]$ generating
 $\frac{x^2}{3}$ iteration $C_2 = \frac{a_3 + b_2}{2} = \frac{1 + 1.5}{2} = 1.25$ $\frac{1}{1 + 1.25} = \frac{1}{1.25} = \frac{$

The (Bisection Theorem)
Assume that
$$f \in C[a,b]$$
,
 $\exists a$ number $r \in [a,b]$ set $f(r) = 0$,
 $f(a) f(b) < 0$ and $\{c, s_{n=0}^{\infty} represents the sequence
of midpoints generaled by the bisection method.
Then an upper bound of the error is
 $|r - Cn| \leq \frac{b-a}{2^{n+1}}$ for $n = 0, 1, 2, ...$
Further more, the sequence $\{c_n\}^{\infty}$ converges to the
zero $r \cdot That is$, $\lim_{n \to \infty} c_n = r \cdot \frac{b-a}{2}$
 $b_2 - a_2 = \frac{b_1 - a_1}{2} = \frac{b-a}{2}$
 $b_2 - a_2 = \frac{b_1 - a_1}{2} = \frac{b-a}{2^3}$
 $in page 31$
 $b_3 - a_3 = \frac{b_2 - a_1}{2} = \frac{b-a}{2^3}$
STUDENTSHUB. Since both the zero r and the midpoint $c_1 = \frac{b_1 - a_1}{2}$
 $|r - c_n| \leq \frac{b_1 - a_1}{2}$ for all n
 $|r - c_n| \leq \frac{b_1 - a_n}{2}$ for all $n$$

To prove the second part, note that

$$0 \leq |r - C_n| \leq \frac{b-a}{2^{n+1}}$$
and $\lim_{n \to \infty} \frac{b-a}{2^{n+1}} = 0$. Hence, by sandwich Theorem

$$\lim_{n \to \infty} |r - C_n| = 0 \quad \Leftrightarrow \quad \lim_{n \to \infty} (r - C_n) = 0$$

$$\lim_{n \to \infty} r = \lim_{n \to \infty} C_n$$
Remark: The Bisection Theorem provides a strategy to
find the number of iteration for a given
accuracy δ :

$$\frac{b-a}{2^{n+1}} \leq \delta \implies \ln(b-a) - \ln 2 \leq \ln \delta$$

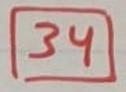
$$\implies \ln(b-a) - \ln \delta \leq (n+1) \ln 2$$

$$\implies \frac{\ln(b-a) - \ln \delta}{\ln 2} \leq n+1$$

$$\lim_{n \to \infty} \frac{\ln(b-a) - \ln \delta}{\ln 2} \leq n+1$$

STUDENTS-HUB.com

Uploaded By: anonymous

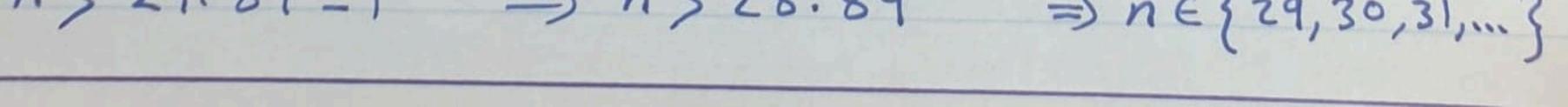


Exp Use Bisection method to find cy as an estimate to the root of this equation e - cosx = 1 on [0,1]

 \check{e} $\cos x - 1 = 0 \implies f(x) = \check{e} - \cos x - 1 \quad on \quad [9,1]$ f(0) = -1 < 0 and f(1) = 1.18 > 0 F(1) = -1 < 0 and f(1) = 1.18 > 0 $C_0 = \frac{0+1}{2} = 0.5 \Rightarrow f(0.5) = -0.229$ =)[a,,b,]=[0.5,1]

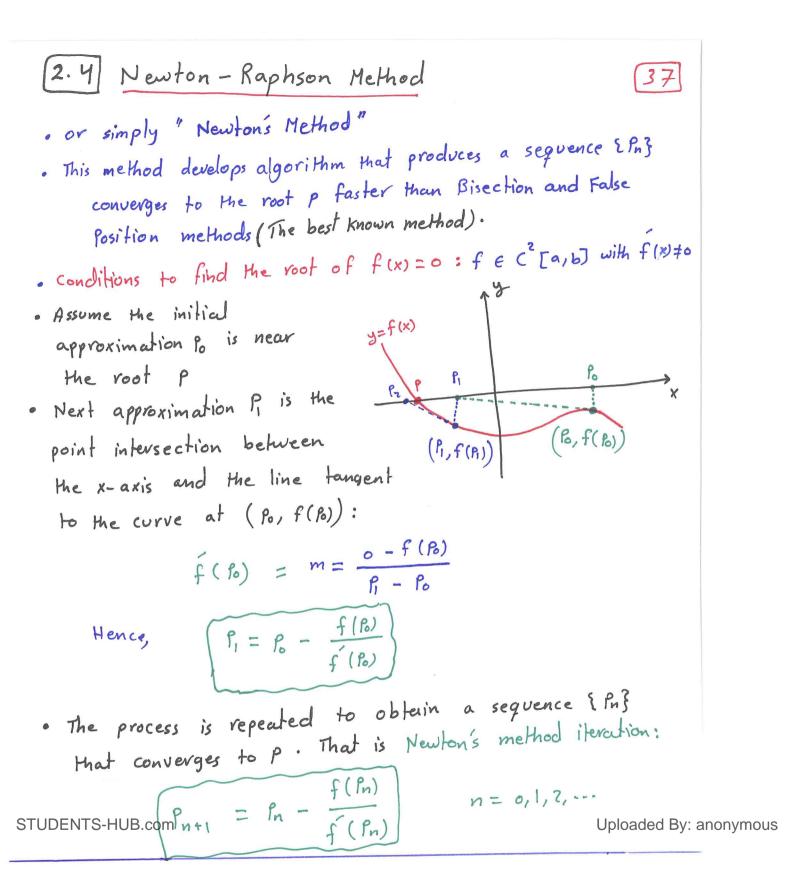
 $C_1 = \frac{0.5+1}{2} = 0.75 \Rightarrow f(0.75) = 0.385 > 0 \Rightarrow [a_2, b_2] = [0.5, 0.75]$

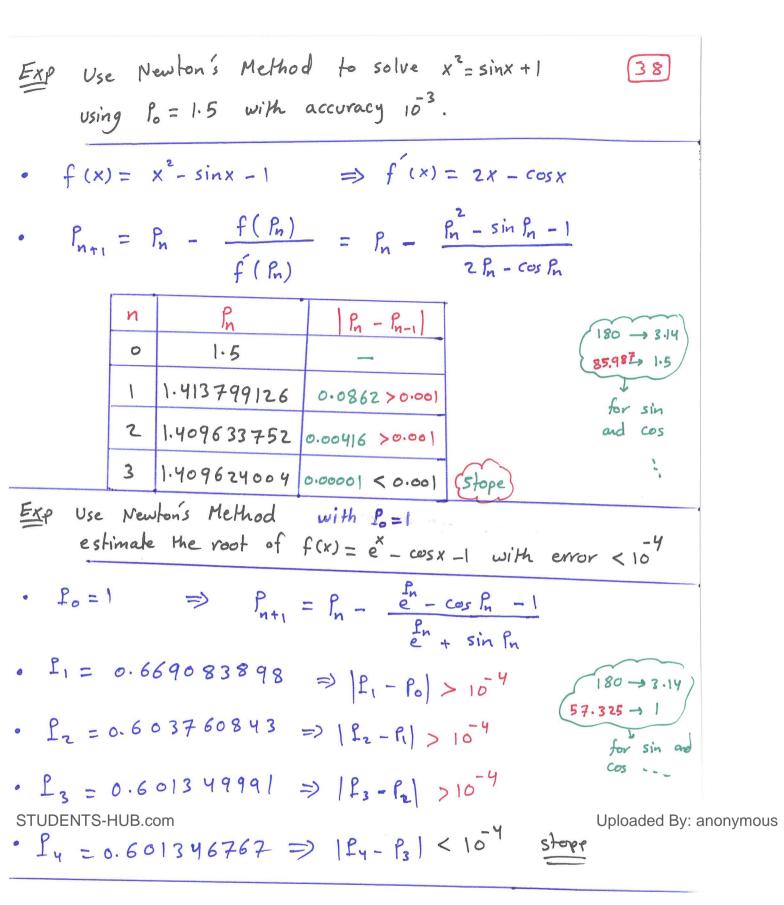
$(2 = 0.5 + 0.75 = 0.625 =) f(0.625) = 0.057370 =) [a_3, b_3]$	= [0.5,0.625]
$C_{3} = \frac{0.5 + 0.625}{2} = 0.5625 \Rightarrow f(0.5625) = -0.0909 < 0 \Rightarrow [ay, by] = 0.5625 + 0.625 = 0.59375 \Rightarrow f(0.59375) = -0.0178$	
$C_{y} = \frac{0.5625 + 0.625}{2} = 0.59375 \Rightarrow f(0.59375) = -0.0178$	(slow)
Exp Suppose the Bisection method is used to find a zero [2,7]. How many times this interval must be bisected to STUDENTS-HUB.com that the approximation Cn has an accuracy of 5x io	of f(x) on PBY: anonymous
$\ln\left(\frac{b-a}{-9}\right)$	a = 2 b = 7 $\delta = 5 \times 10^{9}$
$n > \frac{9 \ln 10}{\ln 2} - 1 \implies n > \frac{20.72}{0.6931} - 1$ $n > 29.89 - 1 \implies n > 28.89 \implies n > 28.29$	



False Bosition Method - FEM
(Regula Falsi Method)
Bisechion method converges at slow speed
However FPM converges faster.
Conditions to solve
$$f(x)=0$$
: $f \in C[a,b]$ and
 $f(a) f(b) < 0$
The Bisechion method uses the midpoint of $[a,b]$ as
next iterate. A better approximation is to use
the point (c,o) where the secant L crosses the x-axis.
To find c we equalize the slopes of L⁴
 $\frac{f(b)-f(a)}{b-a} = \frac{0-f(b)}{c-b}$
which gives the next iterat as
 $C_0 = b_0 - \left(\frac{b_0 - a_0}{f(b) - f(a)}\right)f(b)$
 $P = f(a) f(a) f(c) < 0$, then the zero $r \in [a,b]$
students type for $f(c) = f(b) < 0$, then the zero $r \in [a,b]$
 $I = f(a) f(c) < 0$, then the zero $r \in [a,b]$
 $I = f(c) = f(b) = f(c) = 0$, then the zero $r \in [a,b]$
 $I = f(c) = 0$, then the zero $r \in [a,b]$
 $I = f(c) = 0$, then the zero $r \in [a,b]$
 $I = f(c) = 0$, then the zero $r \in [a,b]$
 $I = f(c) = 0$, then the zero $r \in [a,b]$
 $I = a = b_n - \left(\frac{b_n - a_n}{f(b_n) - f(a_n)}\right) f(b_n)$
 $n = o_1, 2, 3, ...$

(a) $|c_n - c_{n-1}| < \delta$ this is estimate for the relative error (a) $2 \frac{|c_n - c_{n-1}|}{|c_n| + |c_{n-1}|} < \delta$ this is estimate for the relative error





Exp Use New bass method to estimate
$$\sqrt{5}$$

starting with $g = 2$
Let $x = \sqrt{5} \implies x^2 = 5 \implies x^2 - 5 = 0 \implies f(w) = x^2 \cdot 5$
Hence, $E_{n+1} = E_n - \frac{f(E_n)}{f(E_n)} \implies f(w) = 2x$
 $= E_n - \frac{P_n^2 - 5}{2E_n}$
 $= \frac{P_n - \frac{F_n^2}{2}}{2} = 2 \cdot 2 \cdot 5$
 $P_n = \frac{2 \cdot 5 + \frac{5}{2}}{2} = 2 \cdot 236 \text{ HIIII}$
 $P_n = \frac{P_n - 5}{2E_n}$
 $P_n = \frac{P_n - 5E_n}{2E_n}$
 $P_n = \frac{P_n -$

$$\begin{split} & \underbrace{\text{Tr}} (\text{New for-Raphson Theorem}) \\ & \text{Assume } f \in C_{[a,b]} \text{ and } \exists \text{ a number } p \in [a,b] \text{ s.t } f(P) = 0. \\ & \text{Assume } f \in C_{[a,b]} \text{ and } \exists \text{ a number } p \in [a,b] \text{ s.t } f(P) = 0. \\ & \text{If } f(P) \neq 0, \text{ And } \exists \delta_{>} 0 \text{ s.t } \text{ He sequence } [R_k]_{k=0}^{\infty} \\ & \text{defined by } f_{|k+1|} = \vartheta(P_k) = P_k - \frac{f(R_k)}{f(R_k)} \text{ for } k = 0, b, t. \\ & \text{will converge to } p \text{ for any initial approximation } P_k \in [P - \delta, H \cdot \delta], \\ & \text{where } \vartheta(x) = x - \frac{f(x)}{f(x)} \\ & \text{where } \vartheta(x) = x - \frac{f(x)}{f(x)} \\ & \text{for } f \text{ Taylor polynomial of degree 1 about } P_k \text{ is } \\ & f(x) = f(P_k) + f(P_k)(x - P_k) \\ & \text{subshive } x = p \text{ and nok that } f(P) = 0 = 3 \\ & 0 = f(P_k) + f(P_k)(P - P_k) \\ & \text{solve for } p \Rightarrow P = P_k - \frac{f(R_k)}{f(R_k)} = R \\ & \text{ This is used to define the next approximation } R \\ & \text{ and so } x \text{ is established.} \\ & \text{ To prove the convergence: Noke that } \vartheta(P) = P - \frac{f(P)}{f(P)} = P \\ & \text{ so } p \text{ is fixed point of } g \\ & \text{ SUDENTS-HUB.com} \\ & \vartheta(x) = 1 - \frac{ff - ff}{(f(x))^x} = \frac{ff}{(f)^x} \Rightarrow \vartheta(P) = 0 < 1 \text{ and} \\ & \text{ goy is continues} \\ & \text{ Hence, } \exists \delta_{>}0 \text{ s.t } | \vartheta(x)| < 1 \text{ on } (P - \delta_1 P + \delta) \\ & \text{ by } \text{ Th } FP \text{ IT II } \text{ page } \underline{2} 1 \\ \end{array}$$

Secant Method
• Recall that in Newton - Raphson method, it is required
the evaluation of
$$f(R_1)$$
 and $f(R_2)$ per iteration since
 $R_{n+1} = R_n - \frac{f(R_1)}{f(R_1)}$ for $n = 0, 1, 7, ...$
• It is desirable to have a method "secant method" that
converges almost as fost as Newton's method and
involves only evaluations of f and not f .
 \Rightarrow Given $(R_0, f(R_2))$
 $(R_1, f(R_1))$
 \Rightarrow To find P_2 :
 $\frac{f(R_1) - f(R_2)}{R_1 - R_0} = m = \frac{o - f(R_1)}{P_2 - R_1}$
 \Rightarrow solve for $P_2 \Rightarrow R_2 = R_1 - \left(\frac{f_1 - f_0}{f(R_1) - f(R_2)}\right) f(R_1)$
 \Rightarrow In general:
 $f_{n+2} = R_{n+1} - \left(\frac{f_{n-1} - f_n}{f(R_{n+1}) - f(R_2)}\right) f(R_{n+1})$
 $f(R) = m = cosx \cdot Take R_2 = 0.5 and plotadethy: anonymous$
Find the next ideration R_1 " using secant method to
 $F(R) = x - cosx , R_1 = \frac{T_1 - T_1}{T_1 - T_2} = \frac{T_2 - CosT_2}{T_1} = 0.7365 \times 107 = 0.0787$
 $f_2 = R_1 - \left(\frac{T_1 - R_2}{f(T_1) - f(T_2)}\right) f(T_1) = \frac{T_1 - T_2}{T_1} - \frac{T_1 - T_2}{f(T_2) - f(T_2)}\right)$

Def (Hulhiplicity of Roots)
• Assume f, f, ..., f are defined and continuous
on interval about the root p, where
$$M \in \mathbb{Z}^+$$
.
• We say $f(x) = 0$ has a root of order M at $x = p$
(or p has multiplicity M) iff
 $f(p) = 0$, $f(p) = 0$, $f(p) = 0$, ..., $f(p) = 0$, $f(p) \neq 0$
Def • A root p of order M=1 is called simple root.
• A root p of order M>1 is called multiple root.
• Lif $M = 2$, then p is called double root.
Lif $M = 3$, then p is called cubic root.
• Simple roots
• $f(x) = x^3 - 3x + 2$
• one can write $f(x) = (x+2)(x-1)^3$ so $p = -2$, $p=1$ roots
• $f(x) = 3x^2 - 3$ and $f(x) = 6x$
($P = 1$ =) $f(1) = 0$, $f(1) = 0$, $f(1) = 6 \neq 0$ so $M = 2$
STUDENTS-HUB.command $P = 1$ is double root.
($P = -2$) $\Rightarrow f(-1) = 0$, $f(-2) = 9 \neq 0$ so $M = 1$
and $p = -2$ is simple root.

...

Perf (Speed of Convergence)
• Assume that the sequence
$$\{P_n\}_{n=0}^{\infty}$$
 converges to P .
• If there exist two positive constants $A \neq o$ and $R > o$ st
 $\lim_{n \to \infty} \frac{|P - P_n|^R}{|P - R_n|^R} = \lim_{n \to \infty} \frac{|F_nn|}{|F_n|^R} = A$.
• then we say that $\{P_n\}$ converges to P with
order of convergence R .
Remarks () We use the order of convergence R to measure
the speed of convergence of any method:
• if $R=1$, then the convergence of $\{F_n\}$ is linear
• if $R=2$, then the convergence of $\{F_n\}$ is grad ratic
• if $R=2$, then the convergence of $\{F_n\}$ is grad ratic
• if $R=3$, then the convergence of $\{F_n\}$ is cubic
() when $R\uparrow \Longrightarrow$ speed $\uparrow \Longrightarrow$ error \downarrow
() A is called the asymptotic error constant
This is because \bullet as n gets large \Rightarrow
STUDENTS:HUB.com
 $|F_{n+1}| \approx A |F_n|^R$
• if $|F_n| \approx a |F_n|^R$
• if $|F_n| \approx a |F_n|^R$
• if $|F_n| = n |F_{n+1}| \approx R|F_n| = A(o_0)^n$
 $R=2 \Rightarrow |F_{n+1}| \approx A|F_n|^2 = A(o_0)^n$
 $= A(o_0001)$

Exp Find A and R for the following sequences:

$$\begin{bmatrix} f_{10} \\ f_{10} \\ g_{10} \end{bmatrix}^{\infty} = 1, \frac{1}{10}, \frac{1}{100}, \frac{1}{100}, \dots$$

$$= \lim_{n \to \infty} \frac{1}{|0^{n}|} = 0 = P$$

$$= \lim_{n \to \infty} \frac{1}{|0^{n}|} = \lim_{n \to \infty} \frac{1P - R_{n+1}}{|P - R_{n}|^{R}} = \lim_{n \to \infty} \frac{10 - \frac{1}{10^{n}}}{|0^{n} - \frac{1}{10^{n}}|^{R}}$$

$$= \lim_{n \to \infty} \frac{10^{n} R}{|0^{n+1}|} = \left\{ \begin{array}{c} \frac{1}{10} & \frac{1}{10} - \frac{1}{10^{n}} \\ \frac{1}{10} & \frac{1}{10} R \\ \frac{1}{$$

In (Speed of Newton's Method)
Assume Newton-Raphson iteration

$$R_{n+1} = R_n - \frac{f(R_n)}{f(R_n)}$$
, given R_n , $n = 0, 1, 2, ...$
produces a sequence $\{R_n\}$ that converges to the root P
of the function $f(x)$. Then,
ID if P is simple root $(M=1)$, then Newton's iteration $\{R_n\}$
converges to P guadratically $(R=2)$ with
 $A = \left|\frac{f(P)}{2f(P)}\right|$ and $\lim_{N\to\infty} \frac{|E_{nn}|}{|E_n|^2} = A$
There is a multiple root (of order $M > 1$), then Newton's
iteration $\{P_n\}$ converges to P linearly $(R=1)$ with
 $A = \frac{M-1}{M}$ and $\lim_{N\to\infty} \frac{|E_{nn}|}{|E_n|} = \frac{M-1}{M}$
For Let $f(x) = x^3 - 3x + 2$
ID Find the order of convergence R and
the asymptotic error constant A when
STUDENTSMEWHORM-Raphson iteration is used to find the roots of
 $f(X) = 0$ and $\lim_{P \to \infty} \frac{|E_n|}{2f(2)} = \frac{-12}{2(4)} = \frac{2}{3}$
Note that $P = -2$ is simple root $(M=1) = 3c$ $R = 1$ by Thabove
and hence, $R = \frac{M-1}{M} = \frac{2-1}{2} = \frac{1}{2}$

2) start with $P_0 = -2.4$ and use Newton's - Raphson 46 iteration to find the root $p = -2$. (Prove the quadratic convergence at simple root in I).									
$P = -2$, $P_0 = -2.4$									
$P_{n+1} = P_n - \frac{f(P_n)}{f(P_n)} = P_n - \frac{P_n - 3P_n + 2}{3P_n^2 - 3}$									
$=\frac{2 \ln -2}{3 \mu^2 -3}$									
n	Ρ	no need	5 -10 - 81	1 - 1/1 2					
-	In	Tn+[7 In+	$E_n = P - P_n $	$ E_{n+1} / E_n ^2$					
0	The second s	0.323809524	0.4	0.476190475					
		0.072594466	0.076190476	0.619469086					
2		0.003587422	0.003596011	(0.664202613)					
3	-2.000008589	0.000008589	0.000008589	$\sim \frac{2}{3}$					
Ч	-2		0	3					

Note that | En+1 |≈ A | En|² for larg n

· To check this =>

 $|E_3| = |P - P_3| = 0.00000 8589$ STUDEN FS-HUB.com $P_2| = 0.003596011 \implies |E_2| = 0.000012931$ Uploaded By: anonymous

· Now it is easy to see that

$$|E_3| \approx A |E_2|^2 \iff 0.000008589 \approx \frac{2}{3} (0.0000 |2931)$$

= 0.000008621

3	start with Po=1.2 and use Newton's Method (47) to prove the linear convergence at the double root p=1.							
	P = 1	$, P_{o} = 1.2$						
	P_{n+1}	$= \frac{2 P_n^3 - 2}{3 P_n^2 - 3}$						
n	Pn	$E_n = P - P_n $	$ E_{n+1} / E_n $					
0	1.2	0.2	0.515151515					
1	1. 03030303	0.103030303	0.508165253					
2	1.052356420	0.052356420						
3	1.026400811	0.026400811	0.496751115					
Ч	1.013257730	0.013257730	0.509753688					
5	1.006643419	0.006643419	0.501097775					
	1.00 3325375	0.003325375	6.500550093 7 0.5					
20	1.000000 409							
•	Note that	$ \mathcal{E}_{n+1} \approx A$	En] for larg n					
• To check this =>								
T = 0								

 $|E_5| = |P - P_5| = 0.006643419$ STUDENTS-AUBROOMPY = 0.13257730

Uploaded By: anonymous

Now if is easy to see that

$$|E_5| \approx A |E_4| \iff 0.006643419 \approx (0.5)(0.13257730)$$

 $= 0.06628865$

Remark. In the previous Exp the root p was known.
• However, sometimes p is unknown (see next Exp).
Exp (P is unknown)
Consider the equation
$$x^2 - \sin x - 1 = 0$$

D Use Newton's method with $B = 1.5$ to estimate the
solution of this equation with error less than 10^{-3} .
 $3.14 \rightarrow 180$
 1.5
 1.5
 1.5
 1.5
 1.799624004
 1.799624004
 $P = 1.409624004$
 $P = 0.56173286$

3 Prove part (2) Numerically $|E_{n+1}|/|E_{n}|^{2}$ $E_n = |P - P_n|$ Pn n 1.5 0.090375 0.5/11162 0 Q. 559212) = A 1.413799126 0.004175 ١ 0.00000 9748 1.409624004 2 · |E2 = 0.00000 9748 $|E_1| = 0.004175 \implies |E_1|^2 = 0.0000174306$ · Note that $|E_2| \approx A |E_1|^2 \iff$ 0.000009748 ~ (0.56173286) (0.0000174306) = 0.00000 97913 · ·

STUDENTS-HUB.com

. 2 Uploaded By: anonymous

$$P_{n+1} = P_n - \frac{f(P_n)}{f'(P_n)}$$
, given P_o , $n=0,1,2,...$

Proof Part ID: We need to show if p is simple root

$$(M=1)$$
 then Newton's iteration $P_n \rightarrow P$
quadrahically $(R=2)$ with $A = \int \frac{f'(P)}{2f(P)}$
• Define $g(x) = x - \frac{f(x)}{f(x)}$
• since p is root of $f(x) \Rightarrow f(P) = 0 \Rightarrow$
p is fixed point of $g \Rightarrow g(P) = P - \frac{f(P)}{f(P)} = P$

. The Taylor expansion of g(x) about the fixed point P is $g(x) = g(p) + \hat{g}(p)(x-p) + \frac{\hat{g}(e)}{2!}(x-p)^{2}$, $c \in (x,p)$ $\left(g(P_n) = g(P) + \hat{g}(P)(P_n - P) + \frac{\hat{g}(c)}{2!}(P_n - P)\right), c \in (P_n, P)$ · Find g and g => Use * STUDENTS-HUB.com $\begin{aligned}
\hat{\mathcal{G}}(x) &= 1 - \frac{f(x)f(x) - f(x)f(x)}{(f(x))^2} &= \frac{f(x)f(x)}{[f(x)]^2}
\end{aligned}$ Uploaded By: anonymous $\begin{aligned}
\hat{\mathcal{G}}(x) &= 1 - \frac{f(x)f(x) - f(x)f(x)}{(f(x))^2} &= \frac{f(x)f(x)}{[f(x)]^2}
\end{aligned}$ • Note that g(P) = 0 since f(P) = 0 and $f(P) \neq 0$ $g'(P) = \frac{f'(P)}{f'(P)} \neq 0$ since $f(P) \neq 0$ f'(P)

substitue $\hat{g}(P) = 0$ and $(\hat{g}(P) = \frac{f(P)}{f(P)})$ in $(A) = \frac{1}{2}$ g(P) = P $g(R_n) = P + o(R_n - P) + \frac{\dot{g}(c)}{2}(R_n - P)^2$ $P_{n+1} = P + \frac{\hat{g(c)}}{2} (P_n - P)^2$ $c \in (h, p)$ $P_n < c < p$ $P_{n+1} - P = \frac{\hat{g}(c)}{2} (P_n - P)^2$ since $P_n \rightarrow P$ as $n \rightarrow \infty$ $|P_{n+1} - P| = |\frac{\hat{g}(c)}{2}|P_{n} - P|$ as $n \rightarrow \infty \Rightarrow$ $\frac{\left|P_{n+1}-P\right|}{2} = \frac{1}{2}\left|\hat{g}(c)\right|$

$$|f_{n}-P|^{2} = \frac{1}{2} |\partial f(r)| = \frac{1}{2} |\tilde{g}(r)| = \frac{1}{2} |\tilde{g}(r)|$$

$$\lim_{n \to \infty} \frac{|E_{n}|^{2}}{|E_{n}|^{2}} = \frac{1}{2} |\tilde{f}(r)| \qquad using \mathbb{B}$$

$$\lim_{n \to \infty} \frac{|E_{n+1}|}{|STUDENTS-HUB.cdm^{E_{n}}|^{2}} = \frac{1}{2} |\tilde{f}(r)| \qquad uploaded By: anonymous$$

$$Honce, A = \left|\frac{\tilde{f}(r)}{2\tilde{f}(r)}\right| \qquad and \quad R = 2$$

we know that
$$P_{n+1} = g(P_n) = P_n - \frac{f(T_n)}{f(P_n)}$$

Define $g(x) = x - \frac{f(x)}{f(x)}$

$$M = x - \frac{(x-p) h(x)}{(x-p)^{M} h'(x) + M(x-p)^{M-1} h(x)} \cdot \frac{(x-p)^{M-1}}{(x-p)^{M} h'(x) + M(x-p)^{M-1} h(x)}$$

$$g(x) = x - \frac{(x-p) h(x)}{M h(x) + (x-p) h'(x)} \text{ Nole that } g(p) = p$$

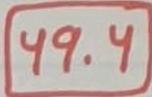
$$MODENTSHABBAAND g(x) \text{ about } p \text{ using Taylor } \overrightarrow{\text{uploaded By: anonymous}}$$

$$g(x) = g(p) + g(c) (x-p) \quad c \in (x, p)$$

$$g(Pn) = g(P) + g(c) (Pn-P) \quad c \in (Pn, P)$$

$$Pn+1 = P + g(c) (Pn-P)$$

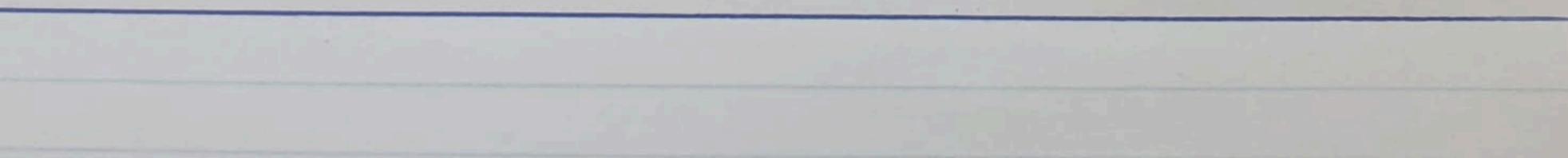
$$Pn+1 = P + g(c) (Pn-P)$$



 $|P_{n+1} - P| = |\hat{g}(c)| |P_n - P|$ Pn < c < P (since Pn -> P) as n-> 0 $|E_{n+1}| = |g(c)| |E_n|$ $\frac{|E_{n+1}|}{|E_n|} = |\hat{g}(c)| \qquad (R=1)$ C -> P as n > 20 $\lim_{n \to \infty} \left| \frac{E_{n+1}}{E_n} \right| = \lim_{n \to \infty} \left| \hat{g}(c) \right| = \left| \hat{g}(P) \right|$ Hence, $A = \left| \hat{g}(P) \right|$ (Mh'(x) + (x - P)h'(x) + h'(x))

But
$$\hat{g}(x) = 1 - \frac{[Mh(x) + (x-p)h(x)][(x-p)h(x) + h(x)] - (x-p)h(x)[1]}{[Mh(x) + (x-p)^{M-1}h(x)]^2}$$

 $\hat{g}(p) = 1 - \frac{Mh^2(p)}{M^2h^2(p)}$
 $= 1 - \frac{1}{M}$
STUDENTS-HUB.com $\frac{M-1}{M}$ Uploaded By: anonymous
Hence, $A = 1 \hat{g}(p) = \frac{M-1}{M}$ since p is
 $moltiple \Rightarrow M>1$

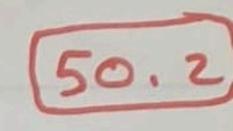


The (Accelerated Newton-Raphson Iteration) 50							
· Assume Newton - Raphson iteration							
$P_{n+1} = P_n - \frac{f(P_n)}{c(P_n)}$, given P_0 , $n = 0, 1, 2, \cdots$							
produces a sequence EPn3 that converges to the root P.							
· Assume p is a multiple root (of order M>1). Then							
Done "by The page 45 => Newton's iteration EPn3 converges linearly (R=1)							
with $A = \frac{M-1}{M}$ and $\lim_{n \to \infty} \frac{ E_{n+1} }{ E_n } = A''$							
2) the modification of Newton's iteration							
$P_{n+1} = P_n - \frac{Mf(P_n)}{f(P_n)}, \text{ given } P_o, n=0,1,2,\dots$							
converges quadratically (R=2) to P and A=lim Entil note IEn12							
Ere $f(x) = x^3 - 3x + 2$. Estimate $p = 1$ using accelerated							
newton method with to = 1.2							
• Noke that p=1 has multiplicity M=2 since f(1)=f(1)=0 but f(1)=670							
• Note that $p=1$ has multiplicity $M=2$ since $f(1)=f(1)=0$ but $f'(1)=6\neq 0$ STUPENTS-HUBISOM formular: $P_{n+1} = P_n - \frac{2f(P_n)}{f(P_n)} = \frac{P_n + 3P_n - 4}{3P_n^2 - 3}$ $n = P_n - \frac{2f(P_n)}{f(P_n)} = \frac{P_n - 4}{3P_n^2 - 3}$							
0 1.2 0.2 0.151515150							
1 1.006060606 0.006060606 6.165718578 = A							
2 1.000006087 0.000006087							
0							

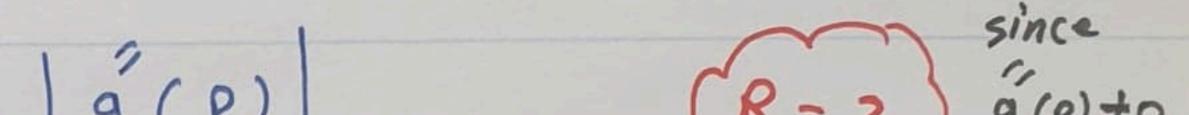
Proof of Th (Accelerated Newton-Raphson Iteration) 50.1 page 50

we need to show if p is multiple root (M>1), then the accelerated iteration

 $P_{n+1} = P_n - \frac{Mf(P_n)}{f(P_n)}$, given P_0 , n=0,1,2,...converges quadratically (R=2) to the root P. . Since p is multiple (M>1) = (f(x) = (x - p) h(x)) where h(x) is cont. s.t $h(p) \neq 0$. • Define $g(x) = x - \frac{Mf(x)}{f(x)} = x - \frac{M(x-P)h(x)}{Mh(x) + (X-P)h(x)}$ see page 49.3 Mh(P)g(P) = 1 see page 49.4 $M^2h^2(P)$ $(\hat{g}(P) = 0)$. Expand g about P using Taylor expansion STUDENTS-HUB.com Uploaded By: anonymous $g(x) = g(P) + \hat{g}(P)(x-P) + \frac{\hat{g}(c)}{2!}(x-P)^{2}, c \in (x,P)$ $\mathcal{G}(\mathbf{P}_n) = \mathbf{P} + \mathbf{O}(\mathbf{P}_n - \mathbf{P}) + \frac{\mathcal{G}(\mathbf{C})}{2!}(\mathbf{P}_n - \mathbf{P}), \quad \mathbf{C} \in (\mathbf{P}_n, \mathbf{P})$ $P_{n+1} = P + \frac{g(c)}{2} (P_n - P)^2$ Pn < c < p since Pn -> P as n-> a $f_{n+1} - P = \frac{g(c)}{2} (f_n - P)^2$ C -> P as n -> 00



 $\lim_{n \to \infty} \frac{|E_{n+1}|}{|E_{n}|} = \frac{1}{2} \lim_{n \to \infty} |\hat{g}(c)|$



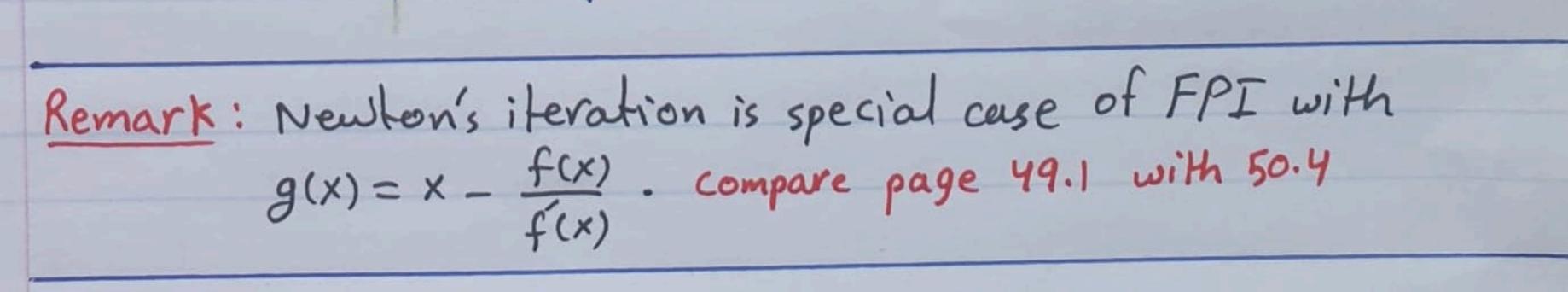
= 2) g(p) = 0 $A = \frac{1}{2} \left| g(P) \right|$ Companing the Exp page 47 using Neuton Iteration with same Exp page 50 we see Remark: that using Accelerated Neuton Iteration we need only 4 iterations to reach the exact root .__ Solve questions 17, 18, 21, 23 page 86 STUDENTS-HUB.com Exercises: 87 88

Speed of Convergence for FPI

Exp show that if g(P) = P and $\tilde{g}(P) = \tilde{g}(P) = 0$, then the fixed point iteration converges to P with R at least 3 and $A = \frac{1}{6} |\tilde{g}(P)|$. Recall the fixed Point Iteration Pn+1 = g(Pn) · Expand g about the root p $g(x) = g(P) + \hat{g}(P)(x-P) + \frac{\hat{g}(P)}{2!}(x-P) + \frac{\hat{g}(c)}{3!}(x-P)$ $0 + \frac{g(c)}{6} (P_n - P)^3$ $g(\mathbf{fn}) = \mathbf{f} + \mathbf{O} + \mathbf{f}$ $P_{n+1} = P + \frac{g(c)}{(P_n - P)^3}$ $P_{n+1} - P = \frac{3}{6} \frac{6}{(P_n - P)^3} \frac{x < c < P}{P_n < c < 0}$ C→P as n→20 $E_{n+1} = \frac{\cancel{g}(c)}{6} E_n$ since Pn > P as n > ao $\frac{|E_{n+1}|}{|STUDENTS-HEB_{c}cpm} = \frac{1}{6} \left| \frac{g(c)}{g(c)} \right|$ Uploaded By: anonymous $\lim_{n \to \infty} \frac{|E_{n+1}|}{|E_{n}|^{3}} = \frac{1}{6} \lim_{n \to \infty} \left| \hat{g}(c) \right| = \frac{1}{6} \left| \hat{g}(P) \right|$ $A = \frac{1}{6} \left| \frac{g(e)}{2} \right|$, $R_{at} | east 3 = since$ if $\tilde{g}(P) \neq 0 = R = 3$ if $\tilde{g}'(P) = 0 = R > 3$

Exp Let p be a fixed point of g(x). show that if $g'(P) = g'(P) = \cdots = g'(P) = 0$ and $g'(P) \neq 0$, then the fixed point iteration of g(x)will converge to p with R = K and $A = \left| \frac{g(P)}{K} \right|$ Apply Taylor Series of g(x) about P => $g(x) = g(P) + \hat{g}(P)(x-P) + \frac{\hat{g}(P)}{2!}(x-P)^{2} + \dots + \frac{\hat{g}(P)}{(k-1)!}(x-P) + \frac{\hat{g}(c)}{k!}(x-P)$ $(k) \qquad (k) \qquad$ $g(\mathbf{P_n}) = P + O + O + \dots + O + \frac{g(c)}{k!} (\mathbf{P_n} - P)^k$

$$\begin{array}{rcl} R_{n+1} &= P &+ & \frac{g(c)}{\kappa_{1}} & (R_{n} - P)^{\kappa} & \text{since } R_{n+1} = g(P_{n}) \text{ is } FPI \\ \hline R_{n+1} &- P &= & \frac{g(c)}{\kappa_{1}} & (R_{n} - P)^{\kappa} & & \\ \hline R_{n+1} &= & \frac{g(c)}{\kappa_{1}} & K & \\ \hline E_{n+1} &= & \frac{g(c)}{\kappa_{1}} & E_{n} & & \\ \hline \frac{E_{n+1}}{E_{n}} &= & \frac{1}{\kappa_{1}} & g(c) & & \\ \hline R_{n} &= & \frac{g(c)}{\kappa_{1}} & & \\ \hline R_{n} &= & \\ \hline R$$



Speed of Convergence for Secant Method [5]

$$P_{n+2} = P_{n+1} - \left(\frac{P_{n+1} - P_n}{f(P_{n+1}) - f(P_n)}\right) f(P_{n+1})$$
 given P_n, P_1
[1] if P is simple voot $(M=1)$, then secant's ideration
 P_n converges to P with
 $R = 1.618$ and $\lim_{N \to \infty} \frac{1E_{n+1}}{|E_n|^{1.618}} = A = \left|\frac{f(P)}{2f(P)}\right|^{0.618}$
[2] if P is multiple root (of order $M > 1$), then
 $R = 1$ and A depends on $f(x)$
Exp start with $P_0 = -2.6$ and $P_1 = -2.4$ and use the
secant method to
[1] find the root $p = -2$ of $f(x) = x^3 - 3x + 2$
[2] find the asymptotic error constant A for $P^{=-2}$
[3] find the asymptotic error constant A for $P^{=-2}$
 $Prove part$ [3] numerically.
[4] Recall that $P^{=-2}$ is simple root since $f(-2) = 0$
but $f(-2) = 9 \neq 0$. Hence, $R = 1.618$
[3] $A = \left|\frac{f(-2)}{2f(-2)}\right|^{0.618} = (\frac{2}{3})^{0.618}$

1 + 4

n	Pn	$E_n = P - P_n $	En+1 / IEn 1.618					
0	-2.6	0.6	0.914152831					
_1	-2.4	0.4	0.469497765					
2	-2.106598985	0.106598985	0.847290012					
3	-2.022641412	0.022641412	0.693608922					
4	-2.001511098	0.001511098	0.825841116					
5	-2. <i>0</i> 00022537	0.000022537	0.727100987)	$\approx A$				
6	-2.000000022							
7	-2	0		$\left(1.618 \approx \frac{1+\sqrt{5}}{2}\right)$				
• This exp shows the convergence of the secant method at simple root $p=-2$ • Note that $E_5 = P - P_5 = 0.0000 22537$ $E_7 = P - P_7 = (0.001511098) = 0.000027296$ • It is easy to check that $ E_5 \approx A E_7 ^{1.618}$ STUDENTS-HUB.com $0.000022537 \approx (0.778351205)(0.000027296)$ = 0.0000212459								
• Speed of Convergence for Bisection Method: $R=1$ and $A=\frac{1}{2}$ • Speed of Convergence for False Position Method: $\frac{ E_{n+1} }{ E_n } \approx \frac{1}{2}$ $R=1$ and $\frac{ E_{n+1} }{ E_n } \approx A$								