Mustafa Jarrar: Lecture Notes on Linear Regression Birzeit University, 2018

Version 1

Machine Learning Linear Regression

Mustafa Jarrar

Birzeit University

STUDENTS-HUB.com

Watch this lecture and download the slides

Course Page: <u>http://www.jarrar.info/courses/Al/</u> More Online Courses at: <u>http://www.jarrar.info</u>

Acknowledgement:

This lecture is based on (but not limited to) Andrew Ng's course about Machine Learning https://www.youtube.com/channel/UCMoXOGX9mgrYNEwpclQUcag

STUDENTS-HUB.com

Mustafa Jarrar: Lecture Notes on Linear Regression Machine Learning Birzeit University, 2018

Machine Learning Linear Regression

In this lecture:

Part 1: Motivation (Regression Problems)

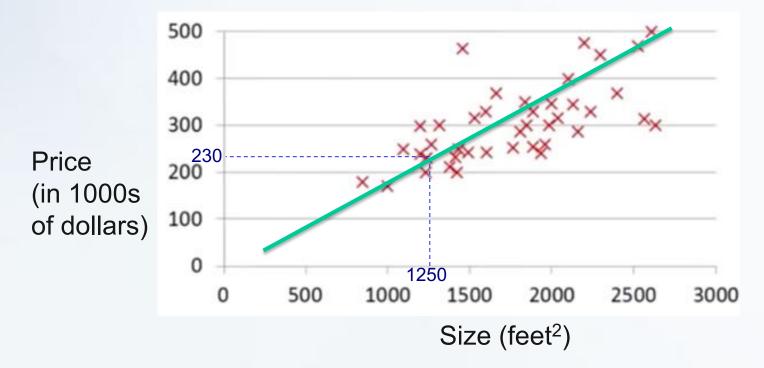
- Part 2: Linear Regression
- Part 3: The Cost Function
- Part 4: The Gradient Descent Algorithm
- Part 5: The Normal Equation
- Part 6: Linear Algebra overview
- Part 7: Using Octave
- Part 8: Using R

STUDENTS-HUB.com

Jarrar © 2018

Motivation

Given the following housing prices,



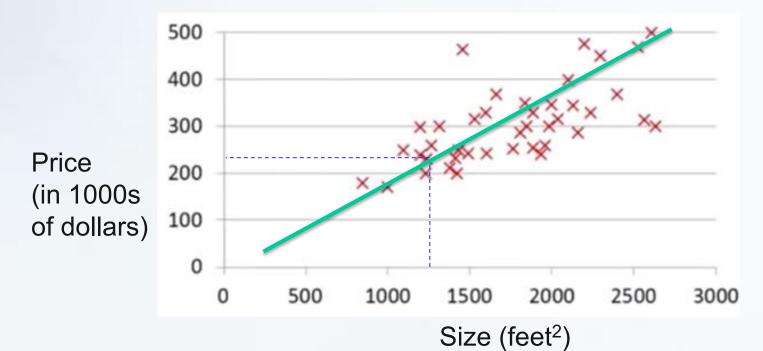
How much a house of 1250ft² costs?

We may assume a linear curve,

So, conclude that a house with 1250ft² costs 230K\$. STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Motivation

Given the following housing prices



Supervised Learning:

Given the right answers for each example in the data (training data)

Regression Problem:

Predict real-valued output

Remember that classification (not regression) refers to predicting discrete-valued output

STUDENTS-HUB.com

Motivation

Given the following training set of housing prices:

	Size in feet ² (x)	Price (\$) in 1000s (y)
Our job is to learn from this data how to predict prices	2104	460
	1416	232
	1534	315
	852	178

Notation:

m = Number of training examples x's = "input" variable/features y's = output variable/target variable (x, y) : a training example (x^{i}, y^{i}) : the *i*th training example STUDENTS-HUB.com

For example: $x^{1} = 2104$ $y^{1} = 460$

Uploaded By: Jibreel Bornat

Mustafa Jarrar: Lecture Notes on Linear Regression Machine Learning Birzeit University, 2018

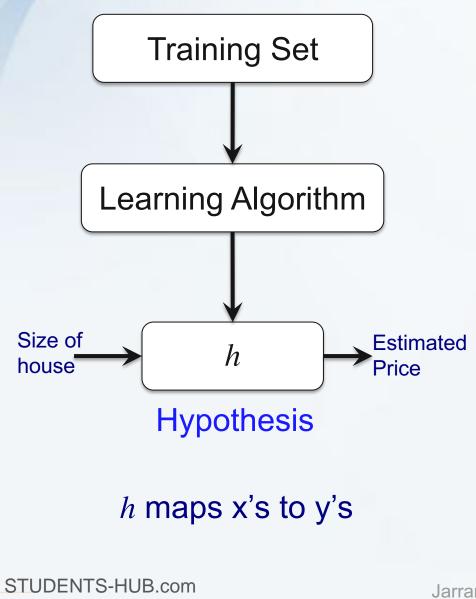
Machine Learning Linear Regression

In this lecture:

- Part 1: Motivation (Regression Problems)
 - Part 2: Linear Regression
- Part 3: The Cost Function
- Part 4: The Gradient Descent Algorithm
- Part 5: The Normal Equation
- Part 6: Linear Algebra overview
- Part 7: Using Octave
- **Part 8: Using R**

STUDENTS-HUB.com

Linear Regression



How to represent *h*? $h(x) = \theta_0 + \theta_1 x$ h(x) \mathcal{Y} $\boldsymbol{\chi}$ This is a linear function. Also called linear regression with

Uploaded By: Jibreel Bornat

Linear Regression with Multiple Features

Linear regression with multiple features is also called *multiple linear regression*

Suppose we have the following features

x_1	x_2	x_3	x_4	y
Size ft ²	bedrooms	floors	Age	Price
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

A hypothesis function h(x) might be:

 $h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \ldots + \theta_n x_n$

or $h(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \ldots + \theta_n x_n$ $(x_0=1)$

e.g., $h(x) = 80 + 0.1 \cdot x_1 + 0.01 \cdot x_2 + 3 \cdot x_3 - 2 \cdot x_4$

STUDENTS-HUB.com

Polynomial Regression

Suppose we have the following features

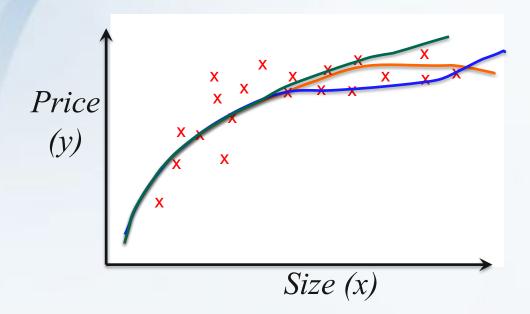
x_1	x_2	x_3	x_4	У
Size ft ²	bedrooms	floors	Age	Price
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Another hypothesis function h(x) might be (polynomial):

$$h(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2^2 + \theta_2 x_3^3 + \dots + \theta_n x_n^n \qquad (x_0 = 1)$$

STUDENTS-HUB.com

Polynomial Regression



 $h(x) = \theta_0 + \theta_1 x + \theta_2 x^2$ $h(x) = \theta_0 + \theta_1 x + \theta_2 \sqrt[2]{x}$ $h(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$

- We may combine features (e.g., size = width * depth).
- We have the option of what features and what models (quadric, cubic,...) to use.
- Deciding which features and models that best fit our data and application, is beyond the scope of this course, but there are several algorithms for this.

STUDENTS-HUB.com

Mustafa Jarrar: Lecture Notes on Linear Regression Machine Learning Birzeit University, 2018

Machine Learning Linear Regression

In this lecture:

- Part 1: Motivation (Regression Problems)
- Part 2: Linear Regression
 - Part 3: The Cost Function
- Part 4: The Gradient Descent Algorithm
- Part 5: The Normal Equation
- Part 6: Linear Algebra overview
- Part 7: Using Octave
- Part 8: Using R

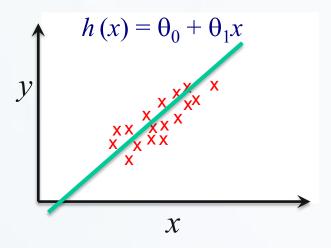
STUDENTS-HUB.com

Jarrar © 2018

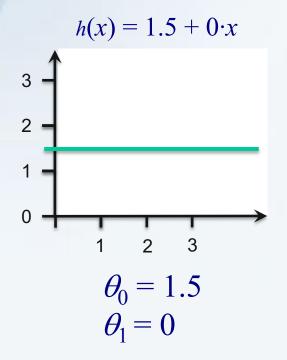
Understanding *θ***s** Values

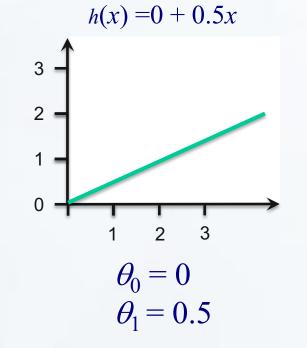
 θ_i 's: Parameters

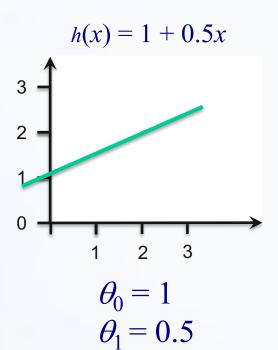
How to choose θ_i 's?



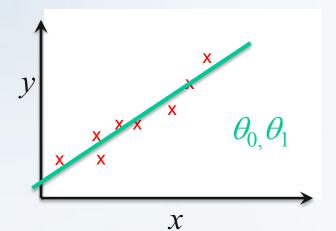
Understanding *θ***s** Values







The Cost Function



Idea: Choose $\theta_{0,}\theta_{1}$ so that h(x) is close to y for our training examples (x,y).

y: is the actual value.*h(x)*: is the estimated value.

The **Cost Function** *J* aims to find θ_0, θ_1 that minimizes the error.

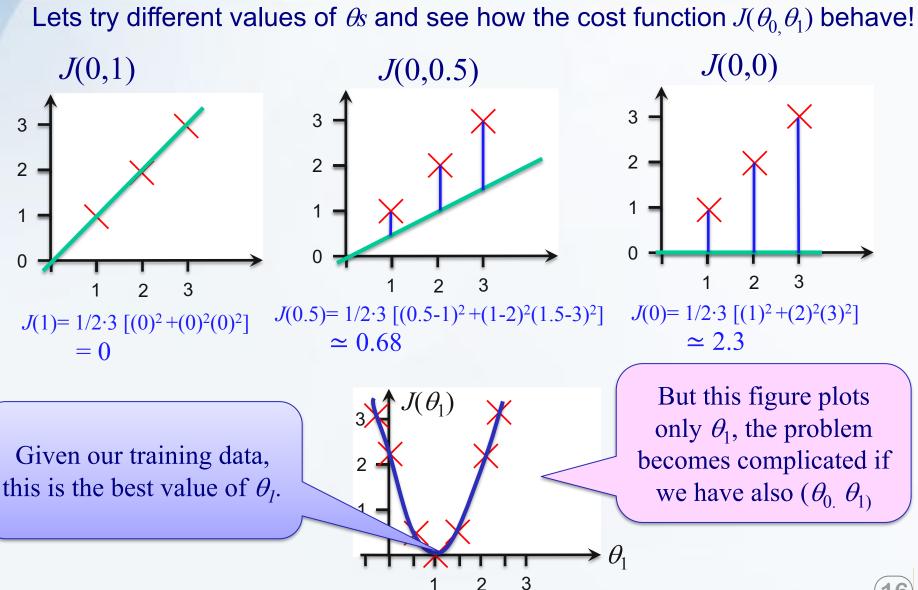
$$\mathbf{J}(\theta_{0,}\theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{i}) - y^{i})^{2}$$

This cost function is also called a **Squared Error function**



STUDENTS-HUB.com

Undersetting the Cost Function



STUDENTS-HUB.com

Remember that our goal is find the minimum values of θ_0 and θ_1

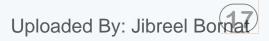
Hypothesis: $h(x) = \theta_0 + \theta_1$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_{0}, \theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{i}) - y^{i})^{2}$

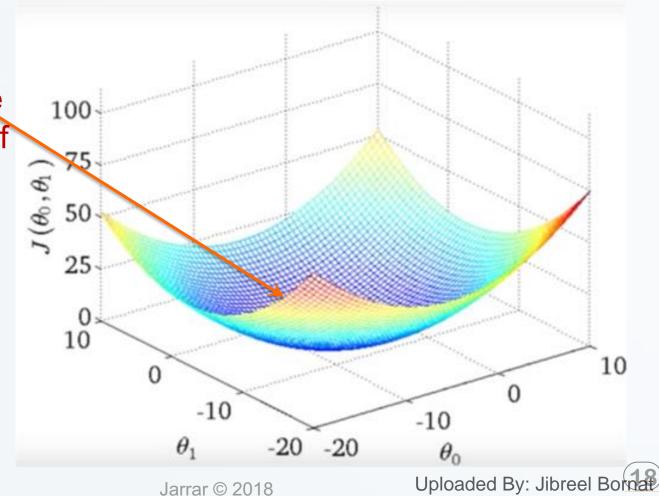
Our Goal: minimize $J(\theta_0, \theta_1)$

STUDENTS-HUB.com



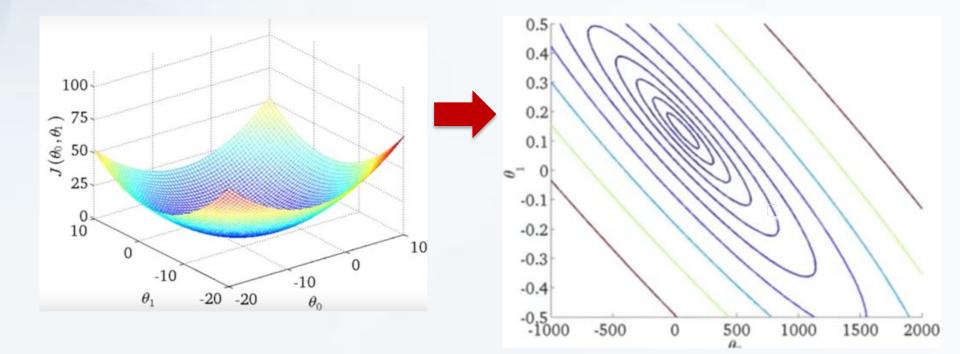
Given any dataset, when we try to draw the cost function $J(\theta_0, \theta_1)$, we may get this 3D shape:

Given a dataset, our goal is find the minimum values of $J(\theta_0, \theta_1)$

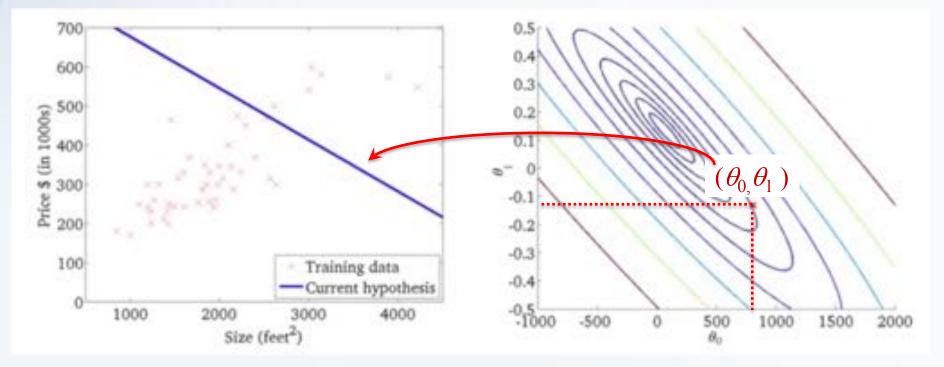


STUDENTS-HUB.com

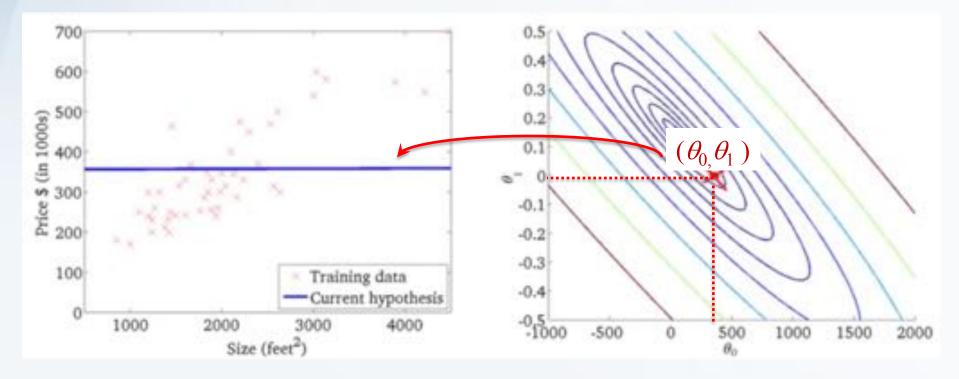
We may draw the cost function also using contour figures:

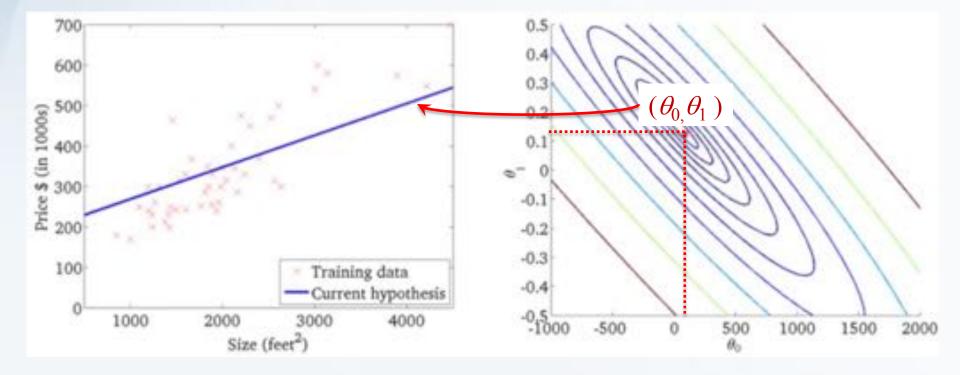


 $h(x) = 800 + 0.15 \cdot x$



 $h(x) = 360 + 0 \cdot x$





Is there any way/algorithm to find θ s automatically? Yes, e.g., the **Gradient Descent** Algorithm

STUDENTS-HUB.com

Jarrar © 2018

Mustafa Jarrar: Lecture Notes on Linear Regression Machine Learning Birzeit University, 2018

Machine Learning Linear Regression

In this lecture:

- Part 1: Motivation (Regression Problems)
- Part 2: Linear Regression
- Part 3: The Cost Function

Part 4: The Gradient Descent Algorithm

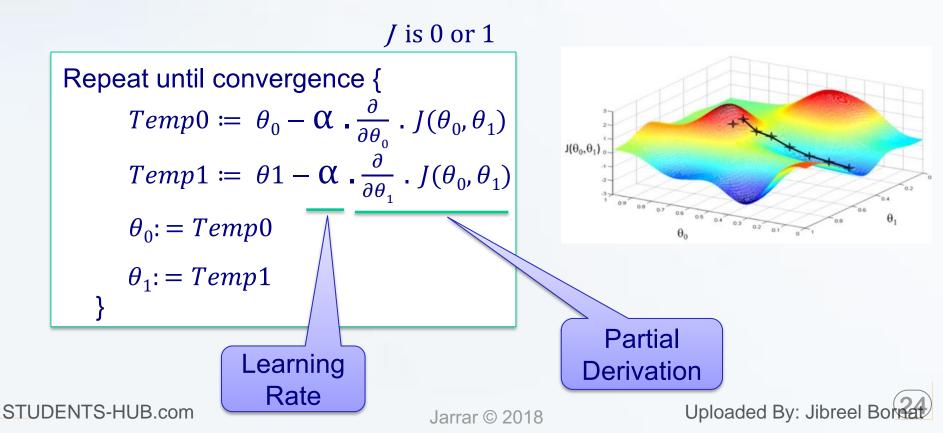
- Part 5: The Normal Equation
- Part 6: Linear Algebra overview
- Part 7: Using Octave
- Part 8: Using R

STUDENTS-HUB.com

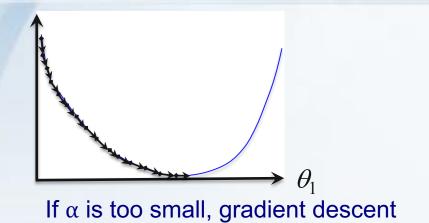
Jarrar © 2018

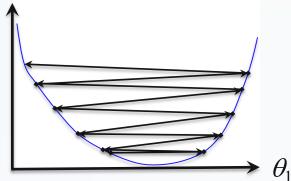
The Gradient Descent Algorithm

Starts with some initial values of θ_0 and θ_1 Keep changing θ_0 and θ_1 to reduce $J(\theta_0, \theta_1)$ Until hopefully we end up at a minimum

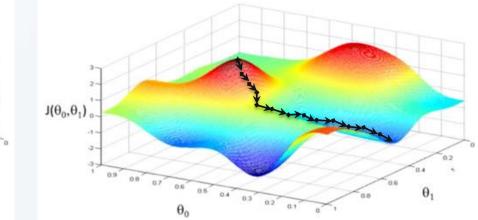


The Problem of the Gradient Descent algo.

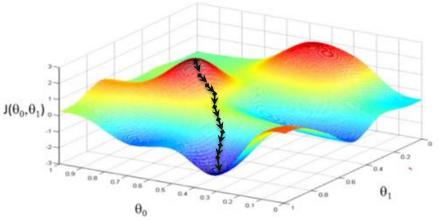




If α is too large, gradient decent can overshoot the minimum. It may fail to converge or even diverge



May converge to a local minimum



May converge to global minimum

STUDENTS-HUB.com

can be slow

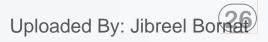
The Gradient Descent for Linear Regression

Simplified version for linear regression

Repeat until convergence { $\theta_0 \coloneqq \theta_0 - \alpha \cdot \frac{1}{m} \cdot \sum_{i=1}^m (h(x^i) - y^i)$ $\theta_1 \coloneqq \theta_1 - \alpha \cdot \frac{1}{m} \cdot \sum_{i=1}^m (h(x^i) - y^i) \cdot x^i$ }

Next, we will try to use Linear Algebra to *numerically* minimize θs (called **Normal Equation**) without needing to use iterating algorithms like Gradient Descent. However Gradient Descent scales better for bigger datasets.

STUDENTS-HUB.com



Mustafa Jarrar: Lecture Notes on Linear Regression Machine Learning Birzeit University, 2018

Machine Learning Linear Regression

In this lecture:

- Part 1: Motivation (Regression Problems)
- Part 2: Linear Regression
- Part 3: The Cost Function
- Part 4: The Gradient Descent Algorithm
 - Part 5: The Normal Equation
- Part 6: Linear Algebra overview
- Part 7: Using Octave
- Part 8: Using R

STUDENTS-HUB.com

Minimizing θs **numerically**

Another way to numerically (using linear algebra) estimate the optimal values of θs .

Given the following features:

STUDENTS-HUB.com

x_1	x_2	x_3	x_4	У
Size ft ²	bedrooms	floors	Age	Price
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Convert the features and the target value into matrixes:

Minimizing θs **numerically**

x_1	x_2	x_3	x_4	У
Size ft ²	bedrooms	floors	Age	Price
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

add x_0 , so to represent θ_0

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \quad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

STUDENTS-HUB.com

The Normal Equation

To obtain the optimal values (minimized) of θ_s , Use the following **Normal Equation**:

$$\boldsymbol{\theta} = (\mathbf{X}^{\mathrm{T}} \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^{\mathrm{T}} \cdot \mathbf{y}$$

Where:

- θ : the set of θ s we want to minimize
 - X: the set of features in the training set

Uploaded By: Jibreel Born

- y: the output values we try to predict
- X^{T} : the transpose of X
- X⁻¹: the inverse of X

In Octave: pinv(X'*X)*X' *y

Gradient Descent Vs Normal Equation

m training examples, *n* features

Gradient Descent

- Needs to choose the learning rate (α)
- Needs many iterations
- Works well even when *n* is large

Normal Equation

- No need to choose (α)
- Don't need to iterate
- Need to compute (X^TX), which takes about O(*n*³)
- Slow if *n* is very large
- Some matrices (e.g., singular) are non-invertible

Recommendation: use the Normal Equation If the number of features in less than 1000, otherwise the Gradient Descent.

STUDENTS-HUB.com

Mustafa Jarrar: Lecture Notes on Linear Regression Machine Learning Birzeit University, 2018

Machine Learning Linear Regression

In this lecture:

- Part 1: Motivation (Regression Problems)
- Part 2: Linear Regression
- Part 3: The Cost Function
- Part 4: The Gradient Descent Algorithm
- Part 5: The Normal Equation
 - Part 6: Linear Algebra overview
- **Part 7: Using Octave**
- Part 8: Using R

STUDENTS-HUB.com

Matrix Vector Multiplication

$$\begin{bmatrix} 1 & 3 \\ 4 & 0 \\ 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 16 \\ 4 \\ 7 \end{bmatrix}$$

 $1 \times 1 + 3 \times 5 = 16$ $4 \times 1 + 0 \times 5 = 4$ $2 \times 1 + 1 \times 5 = 7$

Uploaded By: Jibreel Bor

STUDENTS-HUB.com

Matrix Matrix Multiplication

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 11 & 10 \\ 9 & 14 \end{bmatrix}$$

Multiple with the first column

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 11 \\ 9 \end{bmatrix}$$

Multiple with the second column $\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 10 \\ 14 \end{bmatrix}$

STUDENTS-HUB.com

Matrix Inverse

If A is an $m \times m$ matrix, and if it has an inverse, then

$$\mathbf{A} \times \mathbf{A}^{-1} = \mathbf{A}^{-1} \times \mathbf{A} = \mathbf{I}$$

The multiplication of a matrix with its inverse produce an identity matrix:

$$\begin{bmatrix} 3 & 4 \\ 2 & 16 \end{bmatrix} \times \begin{bmatrix} 0.4 & -0.1 \\ -0.05 & 0.075 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Some matrices do not have inverses e.g., if all cells are zeros For more, please review Linear Algebra

STUDENTS-HUB.com

Matrix Transpose

Example:
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 5 & 9 \end{bmatrix}$$
 $A^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 0 & 9 \end{bmatrix}$

Let A be an $m \times n$ matrix, and let $B = A^T$ Then B is an $n \times m$ matrix, and $B_{ij} = A_{ji}$

STUDENTS-HUB.com

Mustafa Jarrar: Lecture Notes on Linear Regression Machine Learning Birzeit University, 2018

Machine Learning Linear Regression

In this lecture:

- Part 1: Motivation (Regression Problems)
- Part 2: Linear Regression
- Part 3: The Cost Function
- Part 4: The Gradient Descent Algorithm
- Part 5: The Normal Equation
- Part 6: Linear Algebra overview
 - Part 7: Using Octave
- Part 8: Using R

STUDENTS-HUB.com

Octave

- Download from <u>https://www.gnu.org/software/octave/</u>
- High-level Scientific Programming Language
- Free alternatives to (and compatible with) Matlab
- helps in solving linear and nonlinear problems numerically

The Research of Control of Contro	
Normal 0 Normal distance I -	
1 - None - - None - - None - <	
4 decite 101 1	
Command Annual Descentights: 1 Miles - Annual China	

Online Tutorial https://www.youtube.com/playlist?list=PLnnr1080Wc6aAjSc50lzzPVWgjzucZsSD

STUDENTS-HUB.com

Compute the normal equation using Octave

Given
$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$
 $y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$
In Octave: load X.txt
load y.txt
 $C = pinv(X' * X) * X' * y$
Save θ .txt

$$\theta = \begin{bmatrix} 188.4 \\ 0.4 \\ -56 \\ -93 \\ -3.7 \end{bmatrix}$$

These are the values of θ s we need to use in our hypothesis function h(x) $h(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$ $h(x) = 188.4 + 0.4x - 56x^2 - 93x^3 - 3.7x^4$

STUDENTS-HUB.com

Jarrar © 2018

Mustafa Jarrar: Lecture Notes on Linear Regression Machine Learning Birzeit University, 2018

Machine Learning Linear Regression

In this lecture:

- Part 1: Motivation (Regression Problems)
- Part 2: Linear Regression
- Part 3: The Cost Function
- Part 4: The Gradient Descent Algorithm
- Part 5: The Normal Equation
- Part 6: Linear Algebra overview
- Part 7: Using Octave
- Part 8: Using R

R (programming language)

Free software environment for statistical computing and graphics that is supported by the R Foundation for Statistical Computing.

R comes with many functions that can do sophisticated stuff, and the ability to install additional packages to do much more.

Download R: https://cran.r-project.org/

A very good IDE for R is the RStudio: <u>https://www.rstudio.com/products/rstudio/download/</u>

R basics tutorial: https://www.youtube.com/playlist?list=PLjgj6kdf_snYBkIsWQYcYt UZiDpam7ygg

STUDENTS-HUB.com

Compute the normal equation using R

Given
$$X =$$
 $\begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$ $y =$ $\begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$

In R:

X = as.matrix(read.table("~/x.txt", header=F, sep=","))
Y = as.matrix(read.table("~/y.txt", header=F, sep=","))

```
thetas = solve( t(X) %*% X ) %*% t(X) %*% Y
```

t(*X*): is the transpose of matrix X. *solve*(*X*): is the inverse of matrix X.

STUDENTS-HUB.com

References

[1] Andrew Ng's course about Machine Learning https://www.youtube.com/channel/UCMoXOGX9mgrYNEwpcIQUcag

[2] Sami Ghawi, Mustafa Jarrar: Lecture Notes on Introduction to Machine Learning, Birzeit University, 2018

[3] Mustafa Jarrar: Lecture Notes on Decision Tree Machine Learning, Birzeit University, 2018

[4] Mustafa Jarrar: Lecture Notes on Linear Regression Machine Learning, Birzeit University, 2018

