Readings and References
* Reading
Splay Trees > Sections 4.5-4.7
CSE 326
Data Structures
Lecture 8
Splay Trees - Lecture 8 2
Self adjustment for better
- Splay Trees
living
« Ordinary binary search trees have no balance » Splay trees are tree structures that:
conditions > Are not perfectly balanced all the time
> what you get from insertion order is it > Data most recently accessed is near the root.
» Balanced trees like AVL trees enforce a * The procedure:
balance condition when nodes change > After node X is accessed, perform “splaying”
> tree is always balanced after an insert or delete operations to bring X to the root of the tree.
« Self-adjusting trees get reorganized over time > bDOI this 'g away [t]hflit leaves the tree more
as nodes are accessed alanced as awhole
Splay Trees - Lecture 8 3 Splay Trees - Lecture 8 4
Splay Tree Terminology Zig-Zig and Zig-Zag
« Let X be a non-root node with = 2 ancestors. Parent and grandparent Parent and grandparent
 Pisits parent node. in same direction. in different directions.
* G is its grandparent node. Zig-zig

I~
G G G €y
o © ©
P P /\
X O O O
Splay Trees - Lecture 8 5 Splay Trees - Lecture 8 6

1
STUDENTS-HUB.com Uploaded By: anonymous

Splay Tree Operations Zig at depth 1

e “Zig"is just a single rotation, as in an AVL tree

1. Helpful if nodes contain a parent pointer.
¢ Let R be the node that was accessed (e.g. using

parent

element Find)
left right
2. When X is accessed, apply one of six rotation routines. R/ C ZigFromLeft AN O

« Single Rotations (X has a P (the root) but no G) [

ZigFromLeft, ZigFromRight / \

» Double Rotations (X has both a P and a G) . A B B C
ZigZigFromLeft, ZigZigFromRight * ZigFromLeft moves R to the top - faster access
ZigzZagFromLeft, ZigZagFromRight nexttime

Splay Trees - Lecture 8 7 Splay Trees - Lecture 8 8
Zig at depth 1 Zig-Zag operation
¢ Suppose Q is now accessed using Find e “Zig-Zag” consists of two rotations of the

opposite direction (assume R is the node that
was accessed)

P
C ZigFromRight A \ 3 (ZigFromLeft) /Q\ /P\

-— v D (ZigFromRight) /\R/
\ / A /(\c A B CD
A B B C B C A B
ZigZagFromLeft
¢ ZigFromRight moves Q back to the top
Splay Trees - Lecture 8 9 Splay Trees - Lecture 8 10
Zig-Zig operation Find Operation
. “Zf|gh-Z|g" conjllsts _of two §|ngle ro:jatlohns « Find operation
of the same dlrectlon (R is the node that > Do a normal find in the binary search tree
was accessed) RN > Splay the the node found to the root by a
6 ‘Z‘ \ series of zig-zig and zig-zag operations
D Ssemisplay h “‘7‘3\‘ Fullsplay A “79\" with an additional zig at the end if the
R C (zigFromLefy A B C D (ZigFromLeft) B /P\ length of the path to the node is odd.
A/ \B c D > If nothing found splay the last node visited
ZigZigFromLeft ~ to the root.
Splay Trees - Lecture 8 11 Splay Trees - Lecture 8 12

2
STUDENTS-HUB.com Uploaded By: anonymous

Decreasing depth - : :
. N Details of SplayFind
autobalance
Spl ayFi nd(p: node pointer,x: key): node pointer {
P P R r,s node pointer;
/\ /\ 9:1? / \ r = Find(p,x); //if x is not in the tree then
Q F Q F A Q T Q //the last node visited is returned
/\ \ 7/ \ /\ /\ while r.parent # null do {
R E E S P A S D P s := r.parent.parent;
N\ AA ANA case {
S D A S B R E F B C EF s =nil:
\ /\ /\ if r.parent.right = r then ZigFronRight(r.parent) ;
c B /R\ ¢ D e!se Zi gFronLefl(r:pafenl): .
A B ¢ D ' Slett feit = 1 zigzigrromel (9
(@) (b) © @ s.right.left = r: ZigZagFronRight(s);
. X s.left.right = r: ZigZagFronLeft(s);
Find(T) R Find(R) _ }
return r //r contains x if it is in the tree
Splay Trees - Lecture 8 13 } Splay Trees - Lecture 8 14
ZigFromLeft Try ZigZigFromLeft
s
i f : d i : H H H
e (Fe ot pornteny € + Design ZigZigFromLeft
c :=s.left;
s.left := c.right;
if s.left # null then s.left.parent :=s; Zi gZi gFromLeft (s: node pointer) {
c.parent := s.parent; 27?2
if c.parent # null then }
if c.parent.right = s then c.parent.right := c;
else c.parent.left := c;
s.parent := c;
c.right :=s;
}
Splay Trees - Lecture 8 15 Splay Trees - Lecture 8 16
Splay Tree Insert Example Insert
* Insert x e Inserting in order 1,2,3,...,8
> Insert x as normal then splay x to root. « Without self-adjustment
O(n?) time
Splay Trees - Lecture 8 17 Splay Trees - Lecture 8 18

3
STUDENTS-HUB.com Uploaded By: anonymous

With Self-Adjustment With Self-Adjustment

1 @ @
) . @/ \® ZigFromRight ®/®
) @ ZigFromRight @ ®/ > @/
e @ o
3 ZigFromRight @
®/@\® ®/®/ O(n) time!!

Splay Trees - Lecture 8

Splay Trees - Lecture 8

20

Splay Tree Deletion Example Deletion
« Delete @5 B _Seay ®

> Splay x to root and remove it. Two trees ® ©
remain, right subtree and left subtree. (5 ® @ (5 E@é (15)

> Splay the max in the left subtree to the root @3 o

> Attach its right subtree to the new root of ®) . splay l’em""e
the left subtree and return it. The @/) attach ®) 10
predecessor of x becomes the root. é é & é E@é 5

@ @0 @ @
Splay Trees - Lecture 8 21 Splay Trees - Lecture 8 22

Practice Delete Analysis of Splay Trees

@/ » Splay trees tend to be balanced
@ > M operations takes time O(M log N) for M > N
@s @ @ operations on N items.

> Amortized O(log n) time.

« Splay trees have good “locality” properties

> Recently accessed items are near the root of the
tree.

> Items near an accessed node are pulled toward
the root.

Splay Trees - Lecture 8 Splay Trees - Lecture 8

24

4

STUDENTS-HUB.com Uploaded By: anonymous

Solution to First Exercise

Zi gZigFroniLeft(s: node pointer) { S

c: node pointer;
c :=s.left;

Zi gFromieft (s);
Zi gFronieft (c);
}

Splay Trees - Lecture 8

Solution to Second Exercise

STUDENTS-HUB.com

(55/10
G;B@@@

Uploaded By: anonymous

5

