Chapter 6: Set Theory

The first section of this chapter introduces additional terminology for sets and the concept of an
element argument to prove that one set is a subset of another. The aim of this section is to provide
a experience with a variety of types of sets and a basis for deriving the set properties discussed
in the remainder of the chapter. The second and third sections show how to prove and disprove
various proposed set properties of union, intersection, set difference and (general) complement using
element arguments, algebraic arguments, and counterexamples. Section 5.4 introduces the concept
of Boolean algebra, which generalizes both the algebra of sets with the operations of union and
intersection and the properties of a set of statements with the operations of or and and. The section
goes on to discuss Russell’s paradox and shows that reasoning similar to Russell’s can be used to
prove an important property of computer algorithms.

Section 6.1

3. ¢. Yes. Every element in T is in S because every integer that is divisible by 6 is also divisible
by 3. To see why this is so, suppose n is any integer that is divisible by 6. Then n = 6m for
some integer m. Since 6m = 3(2m) and since 2m is an integer (being a product of integers),
it follows that » = 3- (some integer), and, hence, that n is divisible by 3.

6. a. A ¢ B becausc 2 € A (because 2 = 5-0+ 2) but 2 ¢ B (because if 2 = 10b — 3 for some
integer b, then 10b = 5, so b = 1/2, which is not an integer).
b.BCA
Proof:
Suppose ¥y is a particular but arbitrarily chosen element of B.
[We must show that y is in A. By definition of A, this means that we must show that y
= 5-(some integer) + 2./
By definition of B, y = 10b — 3 for some integer b.

[Scratch work: Is there an integer, say a, such that y = 5a+27? If so, then Sa+2 = 106-3,
which implies that 5a = 10b — 5, or, equivalently, that a = 2b — 1. So give this value to a and
see if it works.]

Let a = 2b— 1. Then «a is an integer and 5a+2=5(2b—-1)+2=10-5+2=100—-3 =y.
Thus y is in A [as was to be shown/.
c. B=C
Proof:
Part 1, Proof That B C C:
Suppose y is a particular but arbitrarily chosen element of B.
[We must show that y is in C. By definition of C, this means that we must show that y
= 10-(some integer) + 7./
By definition of B, y = 10b — 3 for some integer b.

[Scratch work: Is there an integer, say ¢, such that y = 10c + 77 If so, then 10c+7 =
10b — 3, which implies that 10c = 10b — 10, or, equivalently, that ¢ =b— 1. So give this value
to ¢ and see if it works.]

Let c=b—1. Then cis an integer and 10c+7=10(b—-1)+7=100—-10+7=10b-3 =y.
Thus y is in C [as was to be shown/.
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88 Chapter 6: Set Theory
Part 2, Proof That C C B:

Suppose z is a particular but arbitrarily chosen element of C.

[We must show that z is in B. By definition of B, this means that we must show that z

= 10-(some integer) — 3./
By definition of C, z = 10c + 7 for some integer c.

[Scratch work: Is there an integer, say b, such that z = 10b — 3? If so, then 10b — 3 =
10c + 7, which implies that 10b = 10c + 10, or, equivalently, that b= c+ 1. So give this value

to b and see if it works./

9.bz¢d Aora¢ B ccx¢AorzeB

12.
a. AUB = {z€eR|-3<x<?2} b. ANB
c. A= {zeR|2z<-3orz>0} d. AuC
e. ANC =0
g. A°NB¢ =
i. (ANB) = {zeR|z<-lorz>0} j (AUB)°

{reR|-1<z<0}
{reR|-3<z<0or6<z<8}

f-B°={zxeR|z<-lorz>2}
{freR|z<-30rz>2} h AUB°= {zeR|z<-lorz>0}

={zeR|z<-3orz>2}

Note that (AN B)¢ = A°U B° and that (AU B)® = A°nN B°,

15. b. U

Q0

18. ¢. Yes, because {#} is the set that contains the one element §.

d. No, because @) has no elements and thus it cannot contain the element 0.

27. b. Yes. Every element in {p,q,u,v,w,z,y,2} is in one of the sets of the partition and no

element is in more than one set of the partition.
c. No. The number 4 is in both sets {5,4} and {1,3,4}.

e. Yes. Every element in {1,2,3,4,5,6,7,8} is in one of the sets of the partition and no

element is in more than one set of the partition.

30. Yes. By the quotient-remainder theorem, every integer can be represented in exactly one of the
following forms: 4k or 4k+1 or 4k+2 or 4k +3 for some integer k. Thus Z = AgUA, UA,U Aj,

A00A1=(D, AoﬂA2=m, AoﬂAgzﬂ, AlﬁA;;:@,AlﬂA;;:(O, and A; N Az = 0.

33. a. 2(0) = {0}
c. 2(2(2®) = {0,{0}, {{0}}. {0.{0}}}
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Section 6.2 89
Section 6.2

6. (2)a. € AN(BUC) b.or c.and d. AN(BUC) e. by definition of intersection,
z € Aand z € C. Since x € C, then, by definition of union, z € BUC. Hence x € A and z €
B UC., and so, by definition of intersection, z € AN (BUC).

(3)a. AN(BUC)=(ANB)U(ANC)

9. The proof that (A — B)U(C — B) C (AU C) ~ B is in Appendix B.
Proof that (AUC)— B C (A— B)U (C — B):
Suppose that x is any element in (AU C) — B. [We must show that = € (A — B)U(C - B).]
By definition of set difference, z € (AUC) and = ¢ B.
And, by definition of union, z € A or z € C, and in both cases, = ¢ B.

Case 1 (x € A and = ¢ B): Then, by definition of set difference, z € A — B, and so by
definition of union, z € (A — B)U (C' — B).

Case 2 (x € C and = ¢ B): Then, by definition of set difference, € C — B, and so by
definition of union, z € (A — B)U (C — B).
In both cases, x € (A — B)U (C — B) [as was to be shown).
So (AUC)-BC (A-B)u(C - B).
Because both subset containments have now been proved (one here and the other in Appendix
B), we conclude that (A — Byu(C - B) = (AuUC) - B.
15. Proof:
Suppose A and B are scts and A C B. Let x € B¢. [We must show that x € A°.]
By definition of complement, x ¢ B.

It follows that x ¢ A [because if = € A then x € B (since A C B), and this would contradict
the fact that « ¢ B].

Hence by definition of complement x € A°.
[ Thus B¢ C A° by definition of subset.]

21. The “proof” claims that because = ¢ A or x ¢ B, it follows that x ¢ AU B. But it is possible
for “z ¢ Aor x ¢ B” to be true and “z ¢ AU B” to be false. For example, let A = {1,2},
B = {2,3}, and = 3. Then since 3 ¢ {1,2}, the statement “z ¢ A or = ¢ B” is true. But
since AU B = {1,2,3} and 3 € {1,2,3}, the statement “z ¢ AU B" is false.

36. a. Proof:
Let A and B be any sets. [We will show that (A - B)U(B—-A)U(ANDB]|C AUB and that
AUBC(A-B)U(B-A)U(ANnB)./
Proof that (A— B)U(B—-—A)U(ANBC AU B):
Suppose z € (A — B)U (B — A)U (AN B). [We must show that z € AUB.]
By definition of union, € A—Borx € B—Aorz € ANB.

Case 1 (x € A — B): In this case, by definition of set difference, z € A and z ¢ B. In
particular, z € A. Then, by definition of union, z € AU B.

Case 2 (x € B — A): In this case, by definition of set difference, z € B and = ¢ A In
particular, z € B. Then, by definition of union, z € AU B.

Case 3 (x € AN B): In this case, by definition of intersection, x € A and « € B. Then, by
definition of union, z € AU B.

In all three cases, z € AU B [as was to be shown/.
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20 Chapter 6: Set Theory

Proof that AUBC (A—B)U(B—- A)U (AN B):
Suppose z € AU B. [We must show that x € (A— B)U (B - A)U(ANB)./
By definition of union, x € A or z € B.

Case 1 (x € A): In this case, either € B or z ¢ B. If z € B, then, since z is also
in A, x € AN B by definition of intersection. It follows by definition of union that = €
(A-B)U(B~-A)U(ANB). If z ¢ B, then, since z is also in A, z € A — B by definition of
set difference. It follows by definition of union that z € (A — B)U (B — A)U (AN B).

Case 2 (x € B): In this case, either z € Aor z ¢ A. If z € A, then, since z is also
in B, x € AN B by definition of intersection. It follows by definition of union that z €
(A-B)U(B-A)U(ANB). If z ¢ A, then, since z is also in B, z € B — A by definition of
set difference. It follows by definition of union that z € (A — B)U (B — A)U (AN B).

In both cases, z € (A — B)U (B — A) U(AN B) [as was to be shown).

[Since both subset containments have been proved, (A — B)U (B — A)U(ANB) = AUB by
definition of set equality.]

39. Proof:

n n
Let Ay, Az, ..., A, and B be any sets. (We will show that [ |(4; — B) = (ﬂAi) - B).]

i=1

i=1 i=1

Proof that ﬁ (A; — B) C (ﬁAi) - B:

Suppose z € [ )(A; — B). [Show that z € (ﬂAi) -BJ

i=1 i=1

By definition of general intersection, x € A; — B for all integers i = 1,2, ..., n.
And by definition of set difference, z € A; and = ¢ B for all integers i = 1,2,...,n.

n
It follows by definition of general intersection that z € ( ﬂ Ai) , and it is also the case that
z ¢ B.

i=1

Hence z € (nAi) — B by definition of set difference [as was to be shown)/.

i=1

Proof that (ﬁAi) -BC ﬁ (A; — B):

i=1 i=1

n n
Suppose z € (ﬂAi) — B. [Show that z € ﬂ(Ai - B).]
i=1 i=1
n
By definition of set difference, = € (ﬂ Ai) and z ¢ B.
i=1
And by definition of general intersection, ¢ € A; for all integers i = 1,2,...,n, and it is also
the case that = ¢ B.

Hence z € (A; — B) for all integers i = 1,2,...,7n.

n
Soz € ﬂ(A.i — B) by definition of general intersection fas was to be shown).

i=1

n n
[Since both subset containments have been proved, ﬂ(Ai —-B)= (nAi) — B by definition
i=1 i=1

of set equality.]
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Section 6.3

12. True. Proof: Let A, B, and C be any sets. [We must show that AN(B—C) = (ANB)—(ANC).]
Proof that AN(B—C) C (ANB)—(ANC):
Suppose € AN (B — C). [We must show that z € (ANB) — (ANC).]
By definition of intersection, z € A and z € (B — C), and so
z € A and, by definition of set difference, x € B and = ¢ C.
Now if z were in AN C, then £ would be in C, which it is not.
Thusz ¢ ANC,andsoz€ ANBandz ¢ ANC.
Hence z € (AN B) — (AN C) by definition of set difference fas was to be shown/.
[Therefore, AN (B—C)C (ANB) - (ANC).]
Proof that (ANB) — (ANC) C An(B - C):
Suppose x € (AN B) — (ANC). [We must show that z € AN(B—C)./
By definition of set difference, z € AN B and x ¢ ANC, and so,
by definition of intersection, z € A and z € B, and alsoz ¢ ANC.

Now if z were in C then z would be in both A and C, and so z would be in AN C which it is
not.

Thus z € A and z € B and z ¢ C, and hence
z € A and ¢ € B — C by definition of set difference.
Finally, by definition of intersection, x € AN (B — C) [as was to be shown).
[Therefore, (AN B) —(ANC)C AN(B-C)./
[Since both subset containments have been proved, AN(B—C) = (ANB)—(ANC) by definition
of set equality.]
15. True. Proof: Let A, B, and C be any sets such that ANC =BNC and AUC =BUC. [We
must show that A= B.]
Proof that AC B
Suppose z € A. [We must show that z € B.]
Eitherz € Corz ¢ C.

Case 1 (x € C): In this case, z € A and 2 € C, and so, by definition of intersection,
z€ ANC. But ANC = BN C by hypothesis, and hence z € BN C by definition of subset.
Thus, in particular, z € B [as was to be shown/.

Case 2 (x ¢ C): Since z € A, by definition of union, z € AU C. Now, by hypothesis,
AUC =BUC. So z € BUC, and, by definition of union, z € B or z € C. But in this case
2 ¢ C,and so z € B [as was to be shown/.

[Therefore, A C B by definition of subset.]

Proof that BC A

Suppose € B. [We must show that x € A.]

Eitherz € Corxz ¢ C.

Case 1 (x € C): In this case, z € B and z € C, and so, by definition of intersection,
z € BNC. But BNC = AN C by hypothesis, and hence £ € AN C by definition of subset.
Thus, in particular, € A [as was to be shown].

Case 2 (x ¢ C): Since x € B, by definition of union, x € B U C. Now, by hypothesis,
BUC =AUC. Soz € AUC, and, by definition of union, z € A or z € C. But in this case
xz ¢ C, and so = € A [as was to be shown].

T
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92 Chapter 6: Set Theory

[Therefore, B C A by definition of subset.]
[Since both subset containments have been proved, A = B by definition of set equality.]
21. False. The elements of 2?(A x B) are subsets of A x B, whereas the elements of #(A) x 2(B)

are ordered pairs whose first element is a subset of A and whose second element is a subset of
B.

Counterexample: Let A = B = {1}.
Then 2(4) = {0,{1}}, 2(B) = {0, {1}}, and Z(A)x2(B) = {(0,9), (@, {1}), ({1}.9), ({1}, {1})}.
On the other hand, A x B = {(1,1)}, and so £(A x B) = {0,{(1,1)}}.
By inspection £(A) x P(B) # P(A x B).

24. No. The sets S,, Sp, Sc, and Sy do not form a partition of £?(S) because they are not mutually
disjoint. For example, {a,b} € S, and {a,b} € S;.

33. Proof: Let A and B be any sets. Then

(A-B)Nn(ANB) (ANBYN(ANB) by the set difference law
AN[B°N(ANB)|] by the associative law for N
AN[(ANB)N B°] by the commutative law for N
AN[AN(BNB®)] by the associative law for N

T | O T |

AN{ANQ) by the complement law for N
= AnO by the identity law for N
= 0 by the identity law for N.

39. Proof: Let A and B be any sets. Then
(A-BYyu(B-A4)

(AN B°)uU(BnN A% by the set difference law (used twice)
(ANB°)UB|N[(ANB%)U A%)] by the distributive law
[BU(AN BN [A°U (AN B°)] by the commutative law for U (used twice)

[(BUA)N(BUBS)IN[(A°UA)N(A°UB®)| by the distributive law (used twice)
[(AUuB)N(BUB%)IN[(AUA°)N(A°UB°)] by the commutative law for U (used twice)

| | T | T T T |

[(AUB)NUIN[UN (AU B)) by the complement law for U (used twice)
[(AUB)NUIN[(A°UB°)NU] by the commutative law for N

(AuB)N (AU BY) by the identity law for N (used twice)
(AuB)N (AN B)® by De Morgan’s law

(AuUB)-(ANB) by the set difference law.

42. Let A and B be any sets. Then

(A-(AnB)N(B-(ANB))
(AN(ANB))N (BN (AN B)) by the set difference law (used twice)
AN((ANB)*N(BN (AN B)%)) by the associative law for N
AN(((ANnB)*NB)N (AN B)°) by the associative law for N
AN((BN(ANB)°) N (AN B)°) by the commutative law for N
AN(BN{{ANB)*N (AN B)°)) by the associative law for N

= AN(BN{AnNB)°) by the idempotent law for N
= (AnB)Nn(ANB)° by the associative law for N
= 0 by the complement law for N.

45. a. Proof: Let A, B, and C be any sets.
Proof that (A— B)U (B—-C) C (AUB) —(BNC): Suppose z € (A— B)U (B -C).
By definition of union, r€ A— Borz e B-C.

Case 1 (x € A— B): In this case, by definition of set difference, z € A and = ¢ B. Then since
z € A, by definition of union, z € AU B. Also, since = ¢ B, then z ¢ BN C (for otherwise, by
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Section 6.3 93

definition of intersection, z would be in B, which it is not). Thus s € AUB and z ¢ BN C,
and so, by definition of set difference, z € (AU B) — (BNC).

Case 2 (x € B— C): In this case, by definition of set difference, z € B and x ¢ C. Then since
z € B, by definition of union, £ € AU B. Also, since z ¢ C, then z ¢ BNC (for otherwise, by
definition of intersection, z would be in C, which it is not). Thusz € AUB and z ¢ BNC,
and so, by definition of set difference, z € (AU B) — (BN C).

Hence, in both cases, z € (AU B) — (BN C), and so, by definition of subset,

(A-B)U(B-C)C(AUB)—-(BnNCQC).

Proof that (AU B) —(BNC) C (A— B)U (B — C): Suppose z € (AUB) — (BN C).
By definition of set difference, z € AU B and z ¢ BN C. Note that either x € Bor z ¢ B.

Case 1 (z € B): In this case z ¢ C because otherwise  would be in both B and C, which
would contradict the fact that z ¢ B N C. Thus, in this case, z € B and ¢ ¢ C, and so
z € B — C by definition of set difference. Then z € (A — B) U (B — C) by definition of union.

Case 2 (x ¢ B): In this case, since z € AU B, then z € A. Hence z € A and z ¢ B, and so
z € A — B by definition of set difference. Then z € (A — B) U (B — C) by definition of union.

Hence, in both cases, z € (A — B) U (B — C), and so, by definition of subset,

(AUB)—(BNC)C (A-B)U(B-C).

Therefore, since both set containments have been proved, we conclude that
(A-B)u(B-C)=(AuB)-(BNCQC)

by definition of set equality.
b. Proof: Let A, B, and C be any sets. Then
(A-B)U(B-0C)

(ANBSYU(BNC") by the set difference law (used twice)
((ANnB°)UB)N((ANB°)UC*) by the distributive law
(BU(ANB¢))N((AN B%)UC°) by the commutative law for U
(BUAYN(BUB))N((ANB)UC®) by the distributive law
((BuA)NU)N (AN B)UuC°) by the complement law for U

(BUA)N((ANB°)UCe) by the identity law for N
(AUB)N((ANB%)UCT) by the commutative law for U
((AUB)N{ANB®))U((AUB)NC®) by the distributive law
((AuB)NAYN B)U((AUB)NC*) by the associative law for N
((AN(AuB))NB°)U((AuB)N Cc) by the commutative law for N
(ANB)U((AuB)NC°) by the absorption law
(AnB)uP)u((AuB)NC*) by the identity law for U
((An Bc) U(BNB%))U((AUB)NC®) by the complement law for N
((BENA)Vu(B°NB))U((AU B) N C®) by the commutative law for N

1 | | | 1 | I I

(B°N(AUB))U((AuB)NC*) by the distributive law
((AUB)N B®))U((AUB)NC®) by the commutative law for N
(AuB)N(B°UC®) by the distributive law
(AuB)YN(BNC)* by De Morgan’s law
(AUB)—-(BNCO) by the set difference law.

c. Although writing down every detail of the element proof is somewhat tedious, its basic idea
is not hard to see. In this case the element proof is probably easier than the algebraic proof.
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94 Chapter 6: Set Theory

51. Lemma: For any subsets A and B of a universal set U and for any element z,
(l)z€e AAB&w (zcAandz¢ B)or (r¢ Aand z € B)
Qz¢AABe(z¢Aandz¢ B)or (z€ Aand x € B).

Proof:
(1) Suppose A and B are any sets and z is any element. Then
r€EAAB & z€(A-B)U(B-A4) by definition of A

& z€A-BorxeB-4A by definition of U
< (r€Aandz¢B)or(reBandz ¢ A) by definition of set difference.

(2) Suppose A and B are any sets and z is any element.

Observe that there are only four mutually exclusive possibilities for the relationship of z to A
and B: (zr€ Aandx ¢ B)or(zre€ Bandz¢ A)or (r€ Aandz € B)or (z¢ Aand z ¢ B).

By part (1), the condition that z € A A B is equivalent to the first two possibilities. So the
condition that x ¢ A A B is equivalent to the second two possibilities.

In other words, 2 ¢ AAB & (x¢ Aand z ¢ B) or (z € A and z € B).
Theorem: For all subsets A, B, and C of a universal set U, if AAC = BAC then A = B.

Proof: Let A, B, and C be any subsets of a universal set U, and suppose that AAC = BAC.
[We will show that A= B.]

Proof that A C B: Suppose z € A. Eitherz € Corz ¢ C. fr € C,thenz € Aandz € C
and so by the lemma, z ¢ AAC. Bt AAC =BAC. Thus z ¢ BAC either. Hence, again
by the lemma, since z € C and z ¢ B A C, then z € B. On the other hand, if z ¢ C, then
by the lemma, since z € 4,2 € AAC. But AAC = BAC. So, again by the lemma, since
z ¢ C and z € BAC, then z € B. Hence in either case, z € B [as was to be shown/.

Proof that B C A: The proof is exactly the same as for A C B with the letters A and B
interchanged.

Since A C B and B C A, by definition of set equality A = B.

54. Proof:
Suppose A and B are any subsets of a universal set U.
By the universal bound law for N, BN = @, and so, by the commutative law for N, N B = §.
Take the union with A of both sides to obtain AU (N B) = AUP.

But the left-hand side of this equation is AU(@NB) = (AUB)N(AUB)=AN(AUB) by
the distributive law and the identity law for L.

And the right-hand side of the equation equals A by the by the identity law for U.
Hence AN (AU B) = A [as was to be shoun/.

Section 6.4

3. a. commutative law for - b. distributive law for - over +
c. idempotent law for - (exercise 1) d. identity law for -
e. distributive law for - over + f. commutative law for + g. identity law for -

Note that once Theorem 6.4.1(5b) has been proved (exercise 4), the proof of this property
(Theorem 6.4.1(7a)) can be streamlined as shown below.

Proof: For all elements a and b in B,

(@+bd)-a = (a+b) (a+0) by the identity law for +
= a+(b-0) by the distributive law for + over -
= a+0 by exercise 4
= a by the identity law for +.
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Section 6.4 95

6. b. Proof: By the uniqueness of the complement law, to show that T = 0, it suffices to show
that 1 +0 =1 and 10 = 0. But the first equation is true by the identity law for +, and the
second equation is true by exercise 4 (the universal bound law for -). Thus T =0.

9. Proof 1: By exercise 8, we know that for all 2 and y in B, T-% = T + 3. So suppose a and
b are any elements in B. Substitute @ and b in place of z and y in this equation to obtain

a-b=7+ b and since@ + b =a + b by the double complement law, we have @- b = a + b.
Hence by the uniqueness of the complement law, the complement of @ bisa+b. It follows
by definition of complement that

(@B +(@+b=1 and (@ b)-(a+b)=
By the commutative laws for + and -,
(@+b)+ @ b)=1 and (a+b)-(@-b)=0,

and thus by the uniqueness of the complement law, the complement of e + b is @ - b. In other
words, a + b =@ - b.

Proof 2: An alternative proof can be obtained by taking the proof for exercise 8 in Appendix
B and changing every + sign to a - sign and every - sign to a + sign.

12. To avoid unneeded parentheses, assume that - takes precedence over +.

Lemma 1: The universal bound laws for a Boolean algebra can be derived from the Boolean
algebra axioms without using the associative laws.

Proof: Suppose a is any element of a Boolean algebra B.

e+l = (a+1)-1 because 1 is an identity for -
= f{a+1)-(a+a) by the complement law for +
= a+l-a by the distributive law for 4 over -
= a+a-1 by the commutative law for -
= a++a because 1 is an identity for -
= 1 by the complement law for +.

The proof that a - 0 = 0 is obtained using the same sequence of steps but changing each - to
+ and each + to -.

Lemma 2: The absorption laws for a Boolean algebra can be derived from the Boolean algebra
axioms without using the associative laws.

Proof: Suppose @ and b are any elements of a Boolean algebra B.

ab+a = a-b+a-1 becausel is an identity for -
= a-(b+1) by the distributive law for - over +
= a-1 by the universal bound law for + (Lemma 1)
= a because 1 is an identity for -.

The proof that a - (a + b) = a is obtained using the same sequence of steps but changing each
- to + and each + to -.

Note also that the proofs of the idempotent laws (Example 6.4.2 and the solution to exercise
1) use only the Boolean algebra axioms without the associative laws.

Theorem 1: The associative law for + can be derived from the other axioms in a Boolean
algebra.

Proof:
Part 1: We first prove that for all &, y, and z in B, (1) (z + (y + 2)) -z = z and (2)

((z+y)+2)-z==z
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96 Chapter 6: Set Theory

So suppose z, ¥, and z are any elements in B. It follows immediately from an absorption law
that
DE+y+2) =2

Also,

(z+y)+2) z-((x+y)+2) by the commutative law for -
z-(x+y)+2x-z by the distributive law for - over +

(z+y)-z+z-2z by the commutative law for -

= z+z-2 by an absorption law

= I-rx+zx-2 by the idempotent law for -

= z-(z+2) by the distributive law for - over +
= (z+2)z by the commutative law for -

= z by an absorption law.

Hence
2) ((z+y)+2)-a==z

Part 2: By the commutative law for + and equation (2), for all z, y, and z in B,
(z+y)+2) y=(y+z)+2) y=y.

And by the commutative law for + and equation (2), for all z, ¥, and z in B,
(z+y+2) y=(y+2)+2) y=y

Thus we have
@B ((z+y)+2)-y=y and (4) (z+(y+2) -y=y.

By similar reasoning we can also conclude that
) ((z+y)+2)-z2=2 and (6) (z+(y+2))-2==z.
Part 3: We next prove that for all a, b, and c in B,

(M ae+@+e)=((a+b)+c)-(a+(b+c)) and (8) (a+b)+c)=((a+b)+c)-(a+(b+¢)).

To prove (7), suppose a, b, and c are any elements in B. Then
((a+b)+c)-(a+(b+c¢)
((@+b)+c)-a+((a+b)+c)-(b+c)) by the distributive law for - over +

= a+((a+b)+c)-(b+c) by equation (2)
= a+[((a+b)+c)-b+({(a+d)+c)-c] by the distributive law for - over +
= a+(b+e) by equations (3) and (5).

Similarly, if a, b, and c are any elements in B. Then we can prove equation (8) as follows:
((a+b)+c)-(a+(b+c))

= (a+(+0) - ((a+b)+c) by the commutative law for -

= (a+@®+c)-(a+b)+(a+(b+c))-c by the distributive law for - over +
= (a+(b+c))-(a+b)+c by equation (6)

= [(e+(+c))-a+(a+(b+c))-b]+c by the distributive law for - over +
= (a+b+c by equations (1) and (4).

Therefore, since both a + (b+ c) and (@ + b) + c are equal to the same quantity, they are equal
to each other: a + (b+c¢) =(a+b) +c.

Theorem 2: The associative law for - can be derived from the other axioms in a Boolean
algebra.
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Section 6.4 97

Proof: Suppose a, b, and c are any elements in a Boolean algebra B. The proof that (a-b)-c =
a-(b-c) is obtained using the same sequence of steps as in the proof of Theorem 1 but changing
each - to + and each + to -.

Alternative (Shorter) Proof for Theorem 1 (based on the outline in Introduction
to Boolean Algebra by S. Givant and P. Halmos, Springer, 2010)

The Cancellation Law for -: For all elements p, ¢, and r in a Boolean algebra,
ifg-p=r-pandg-p=r-p, theng=r.

Lemma 3: The cancellation law for - can be derived from the other axioms in a Boolean algebra
without using the associative law.

Proof: Suppose p, ¢, and r are any elements in a Boolean algebra B such that
g-p=r-p and ¢-p=r-p. (1)

We will show that g = 1.

Now
g-p+qg-P = q-(p+P) by the distributive law for - over +
= gq-1 by the complement law for +
= gq by the identity law for 1.
Similarly,
r-p+r-p = r-(p+P) by the distributive law for - over +
= r-1 by the complement law for +
= r by the identity law for 1.

But, by substitution from (1),

Thus

Theorem 1: The associative law for + can be derived from the other axioms in a Boolean
algebra.

Proof: Suppose a, b, and ¢ are any elements in a Boolean algebra B.
Part 1: We first prove that (a+ (b+¢))-a=((a+bd)+¢)-a.

(a+(b+c))-a = a byan absorption law (Lemma 2).

In addition:

((a+b)+c)-a a-{{a+b)+¢c) by the commutative law for -
a-(a+b)+a-c by the distributive law for - over +

(a+bd)-a+a-c¢ by the commutative law for +

= a+a-c by an absorption law
= a-c+a by the commutative law for +
= a by an absorption law.

Since both quantities equal a, we conclude that

(a+(b+c))-a=({a+b)+c)-a.
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98 Chapter 6: Set Theory

Part 2: We next prove that (a+ (b+c))-@=((e+bd)+¢)-a

(a+(+e)-@a = a@-(a+(b+c) by the commutative law for -
= @-a+a-(b+c) Dby the distributive law for - over +
= 0+a-(b+c) by the complement law for -
= a-(b+c)+0 by the commutative law for +
= a-(b+c) because 0 is an identity for +.
In addition:
(a+bd)+c)-a = a-((e+bd)+0¢) by the commutative law for -
= a-(a+b)+a-c by the distributive law for - over +

(@-a+a@-b)+@-c by the distributive law for - over +
(a-a+a-b)+a-c by the commutative law for -
(0O+a-b)+a-c by the complement law for -

= (@ b+0)+a-c by the commutative law for +
= a@-b+a-c because 0 is an identity for +
= a-(b+o¢) by the distributive law for - over +.

Since both quantities equal @ - (b + c), we conclude that
(a+b+e)-a={a+b)+c)-a
Part 3: Parts (1) and (2) show that
(@a+(b+c))-a=((a+b)+c)-a and (a+(b+c))-a=((a+b)+c)-a.

Thus, by the cancellation law
a+(b+c)=(a+bd)+ec

15. This statement contradicts itself. If it were true, then because it declares itself to be a lie,
it would be false. Consequently, it is not true. On the other hand, if it were false, then it
would be false that “the sentence in this box is a lie,” and so the sentence would be true.
Consequently, the sentence is not false. Thus the sentence is neither true nor false, which
contradicts the definition of a statement. Hence the sentence is not a statement.

18. In order for an and statement to be true, both components must be true. So if the given
sentence is a true statement, the first component “this sentence is false” is true. But this
implies that the sentence is false. In other words, the sentence is not true. On the other hand,
if the sentence is false, then at least one component is false. But because the second component
“l +1 = 2" is true, the first component must be false. Thus it is false that “this sentence is
false,” and so the sentence is true. In other words, the sentence is not false. Thus the sentence
is neither true nor false, which contradicts the definition of a statement. Hence the sentence
is not a statement.

24. Because the total number of strings consisting of 11 or fewer English words is finite, the number
of such strings that describe integers must be also finite. Thus the number of integers described
by such strings must be finite, and hence there is a largest such integer, say m. Let n = m + 1.
Then n is “the smallest integer not describable in fewer than 12 English words.” But this
description of n contains only 11 words. So n is describable in fewer than 12 English words,
which is a contradiction. (Comment: This contradiction results from the self-reference in the
description of n.)
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Chapter 6 Review 99
Review Guide: Chapter 6

Definitions and Notation:

e How can you express the definition of subset formally as a universal conditional statement?
(p. 337)

What is a proper subset of a set? (p. 337)

How are the definitions of subset and equality of sets related? (p. 339)
What are Venn diagrams? (p. 340)

What are the union, intersection, and difference of sets? (p. 341)

e What is the complement of a set? (p. 341)

e What is the relation between sets and interval notation? (p. 342)

o How are unions and intersections defined for indexed collections of sets? (p. 343)
e What does it mean for two sets to be disjoint? (p. 344)

e What does it mean for a collection of sets to be mutually disjoint? (p. 345)
e What is a partition of a set? (p. 345)

o What is the power set of a set? (p. 346)

e What is an ordered n-tuple? (p. 346)

e What is the Cartesian product of n sets, where n > 2?7 (p. 847)

Set Theory

e How do you use an element argument to prove that one set is a subset of another set? (p.
337-338)

e What is the basic (two-step) method for showing that two sets are equal? (pp. 339 and 356)

o How are the procedural versions of set operations used to prove properties of sets? (p. 352-353)

e Are you familiar with the set properties in Theorems 6.2.1 and 6.2.2? (pp. 352 and 354)

e Why is the empty set a subset of every set? (p. 362)

e How is the element method used to show that a set equals the empty set? (p. 362)

e How do you find a counterexample for a proposed set identity? (p. 367)

e How do you find the number of subsets of a set with a finite number of elements? (p. 369)

e What is an “algebraic method” for proving that one set equals another set? (p. 370-371)

e What is a Boolean algebra? (p. 375)

¢ How do you deduce additional properties of a Boolean algebra from the properties that define
it? (p. 877)

e What is Russell’s paradox? (p. 378)

e What is the Halting Problem? (p. 379)
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Chapter 7: Functions

The aim of Section 7.1 is to promote a broad view of the function concept and to give you experience
with the wide variety of functions that arise in discrete mathematics. Representation of functions by
arrow diagrams is emphasized to prepare the way for the discussion of one-to-one and onto functions
in Section 7.2.

Section 7.2 focuses on function properties. As you are learning about one-to-one and onto
functions in this section, you may need to review the logical principles such as the negation of V, 3,
and if-then statements and the equivalence of a conditional statement and its contrapositive. These
logical principles are needed to understand the equivalence of the two forms of the definition of
one-to-one and what it means for a function not to be one-to-one or onto.

Sections 7.3 and 7.4 go together in the sense that the relations between one-to-one and onto
functions and composition of functions developed in Section 7.3 are used to prove the fundamental
theorem about cardinality in Section 7.4. The proofs that a composition of one-to-one functions is
one-to-one or that a composition of onto functions is onto (and the related exercises) will test the
degree to which you have learned to instantiate mathematical definitions in abstract contexts, apply
the method of generalizing from the generic particular in a sophisticated setting, develop mental
models of mathematical concepts that are both vivid and generic enough to reason with, and create
moderately complex chains of deductions.

When you read Section 7.4, try to see the connections that link Russell’s paradox, the halting
problem, and the Cantor diagonalization argument.

Section 7.1

3. b. False. The definition of function does not allow an element of the domain to be associated
to two different elements of the co-domain, but it does allow an element of the co-domain to be
the image of more than one element in the domain. For example, let X = {1,2} and Y = {a}
and define f: X — Y by specifying that f(1) = f(2) = a. Then f defines a function from X
to Y for which a has two unequal preimages.

6. b. Define F': Z"°""9 — R as follows: for each nonnegative integer n, F(n) = (—-1)"(2n).

9.d. S(5)=1+5=6
e. S(18) =14+2+3+6+9+18=239
f.8(21)=14+34+7+21=32
12. ¢. G(3,2) = ((2-3+1) mod 5,(3- 2 — 2) mod 5) = (7 mod 5,4 mod 5) = (2,4)
d. G(1,5) =((2: 1+ 1) mod 5,3-5— 2) mod 5) = (3 mod 5,13 mod 5) = (3,3)
18. b. log, 1024 = 10 because 21° = 1024
d. log, 1 = 0 because 2° = 1

e. logyg % = —1 because 10~! = il

f. logz3 =1 because 3! =3

g. log, 2% = k because the exponent to which 2 must be raised to obtain 2F is k
Alternative answer: log, 2F = k because 2% = 2%

24. Since log, y = 2, then b* = y. Now, by properties of exponents, (b?)! = y, and so logy=(y) = 1.

27. b. g(aba) = aba, g(bbab) = babb, g(b) = b The range of g is the set of all strings of a’s and b's,
100 Which equals S.
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Section 7.1 101
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36. Student D is correct. Note that in order for S to be a function, S(2) has to be that number y
in the co-domain Jy — {0} such that 2y mod 4 = 1. Now the only possible values for y are 1,
2, and 3, and

2-1mod4=2#1, 2-2modd=4mod4=0%#1, and 2-3mod4=6mod 4=2#1.

Thus there is no number y in the co-domain Jy — {0} such that S(2) = y, and hence S does
not satisfy property (1) of the definition of function.

39. a. ¢

—h

*on T e

d
o
e
.

b. g(A) = {a} 9(X) = {a,d} ¢7YC) = {123} gD =0 gN()=
{1,2,3,4} =X
42. The property is true.

Proof: Suppose y € F(AN B). [We must show that y € F(A)N F(B).] By definition of image
of a set, there exists an element x in AN B such that y = F(z). By definition of intersection,
z is in A and z is in B., and so, by definition of image of an element, F(z) € F(A) and
F(z) € F(B). Thus, by substitution, y € F(A) and y € F(B). It follows, by definition of
intersection, that y € F(A) N F(B) [as was to be shown/.

48. The statement is true.

Proof 1: Let F: X — Y be any function, and suppose that C C Y and D C Y. [We must
show that F~1(C — D)= F~Y(C) — F~1(D).]

Proof that F~'(C — D) C F~}(C) — F~Y(D):

Suppose z is any element in F~1(C — D). [We must show that z € F~}(C) — F~1(D).]
By definition of inverse image, F(z) € C — D, and so,

by definition of set difference, F(z) € C and F(z) € D.

Then, by definition of inverse image, z € F~!(C) and z ¢ F~!(D), and so

by definition of set difference, z € F~}(C) — F~1(D) [as was to be shown/.
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102 Chapter 7: Functions

Proof that F~1(C) — F~Y(D) C F~(C — D):

Suppose z is any element in F~1(C) — F~!(D). [We must show that z € F~}(C — D).]
By definition of set difference, F~1(C) and z ¢ F~!(D), and so,

by definition of inverse image, F(z) € C and F(z) ¢ D.

Then, by definition of set difference, F(z) € C — D, and so,

by definition of inverse image z € F~!(C — D) [as was to be shown/.

Conclusion: Since both subset containments have been proved, we conclude that F~!(C —
D) = F~Y(C) — F~Y(D) [as was to be shown/.

Proof 2:(This proof uses the logic of if-and-only-if statements.)

Let F: X — Y be any function, and suppose that C CY and D C Y. [We must show that
F-Y(C-D)=FYC)-FY(D)]

Suppose z is any element in X. Then, by definition of inverse image and set difference,
zeF Y (C-D)e F(z)eC-D

& F(z)eCand F(z) € D

&z e FYC)and z ¢ F1(D)

&z e F7Y(C) - F~ (D).

The preceding steps show that if z € F~!(C — D) then z € F~1(C) — F~!}(D) (which implies
that F-1(C — D) C F-1(C) — F-(D)), and if z € F-1(C) — F-1(D) then & € F-}(C - D)
(which implies that F~!(C) — F~}(D) C F~(C - D)).

Hence F~1(C - D) = F~Y(C) - F~Y(D).
51. d. ¢(12) =4 [because 1, 5, 7, and 11 have no common factors with 12 other than *1/
e. (11) = 10 fbecause 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 have no common factors with 11 other

than £1/
f. ¢(1) =1 [because 1 is the only positive integer which has no common factors with 1 other
than £1/ 7 o

e

/" / ’
/%ctlon 7.2
/

.~ 3. There are many counterexamples to the given statement. One is the function f = {(1,4),(2,4)}

/ e with domain {1,2} and co-domain {4}. Each element of the domain is related to exactly one

y /" element of the co-domain because 1 is related to 4 (and not to anything else), and 2 is related
/ ’ to 4 (and not to anything else). But f is not one-to-one because f(1) = f(2) and 1 # 2.

9. In each case below there are a number of correct answers.
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Section 7.2 103

12. a. (i) F is one-to-one: Suppose n; and ng are in Z and F(n,) = F(ng). [We must show that
n1 = ng./ By definition of F', 2 — 3n; = 2 — 3ny. Subtracting 2 from both sides and dividing
by —3 gives ny = ngy.

(ii). F is not onto: Let m = 0. Then m is in Z but m # F(n) for any integer n. [For if
m=F(n) then0=2—-3n, and s0 3n =2 and n=2/3. But2/3 isnotin Z.]

b. G is onto: Suppose y is any element of R. [We must show that there is an element T in
R such that G(z) = y./

[Scratch work: If such an z exists, then, by definition of G, y =2 — 3z and so 3z =2 —y, or,
equivalently, z = (2 — y)/3. Let’s check to see if this works.]

Let £ = (2 — y)/3. Then
2-y

(1)zeR and (2) G(a:)=G(2%y) =2—3(-3—) =2-(2-y)=2-24y=y.

[This is what was to be shown.|

18. f is one-to-one:

Proof: Let z; and z7 be any real numbers other than —1, and suppose that f(z,) = f(z2).
[We must show that x; = 9./ By definition of f,

z1+1 za+1
1131—1_11,'2—1.

Cross-multiplying gives
(z1+1)(z2—1) = (z2+1)(z1 —1) or, equivalently, z1Z2 -1 +z2—1=z1Z2—22+21— 1.

Adding 1 — z,z2 to both sides gives —z; + 12 = —z2+ 1z, or, equivalently, 2z; = 2z,. Dividing
both sides by 2 gives z; = 2 fas was to be shoun/.

24. a. N is not one-to-one: Let s; = a and s3 = ab. Then N(s1) = N(s2) =1 but s; # sa.

27. a. T is one-to-one: T(n) is the set of all the positive divisors of n. Observe that for all
positive integers n, the largest element of T(n) is n because n divides n and no integer larger
than n divides n.

So suppose n; and ng are positive integers and T'(n;) = T'(ng). [We must show that ny = ny./

Now T(n,) is the set of all the positive divisors of n; and T'(n2) is the set of all the positive
divisors of ns.

So since T(n1) = T'(ng), the largest element of T'(n;), namely ni, is the same as the largest
element of T'(ny), namely no.

Hence n; = ng [as was to be shown/.

b. T is not onto: The set {2} is a finite subset of positive integers, but there is no positive
integer n such that T'(n) = {2}. The reason is that the number 1 divides every positive integer,
and so 1 must be an element of T(n) for all positive integers n. But 1 ¢ {2}. (There are many
other examples that show T is not onto.)

30. a. J is one-to-one: Suppose (r1,s1) and (r2,s2) are in Q x Q and J(r,81) = J(ra, 82).
[We must show that (r1,s1) = (re,s2)./ By definition of J,

71+ V28 =710+ V2s2 and thus r, —ro = V2(s2 — 51).

Note that both r; —rs and s; — 3, are rational because they are differences of rational numbers
(exercise 17 of Section 4.2).

rl
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104 Chapter 7: Functions

Suppose s; — 87 # 0. Then \/5(32 — 81) is a product of a nonzero rational number and an
irrational number (1/2), and so it is irrational (exercise 11 of Section 4.6). As a consequence,
the rational number (r; — r3) equals the irrational number (v/2(s2 — 51)). Because this is
impossible, the supposition that s, — s; # 0 must be false, and therefore s; — s; = 0.

Thus, by substitution, r; — ro = v2(s3 — 81) = v2-0=0. So
rir—7o=0 and s3—s; =0 or, equivalently, r =12 and s =s;.

Hence (r1,81) = (r2, 82) [as was to be shown/.

b. J is not onto: We show that J is not onto by giving an example of a real number that is
not equal to J(r, s) for any rational numbers r and s. For example, consider the number v/3
and suppose there were rational numbers r and s such that

V3=r+V2s.

We will show that this supposition leads logically to a contradiction.]

Case 1 (s = 0): In this case, v/3 = r where r is a rational number, which contradicts the
fact that v/3 is irrational (exercise 16, Section 4.7).

Case 2 (s # 0): In this case,
V3-V2s=r

= 3+252—2sv6=1r2 by squaring both sides
= —23v6=12-3-25% by subtracting 3 + 252 from both sides
r? — 3 — 252

= Vo= —2s

by dividing both sides by —2s.

But both 2 —3—2s2 and —2s are rational numbers because products and differences of rational
numbers are rational (exercises 15 and 17, Section 4.2), and —2s is nonzero because it is a
product of —2 and s, which are both nonzero numbers (zero product property). Thus V6is a
quotient of a rational number and a nonzero rational number, which is rational (by the result
of exercise 16 in Section 4.2). But this contradicts the fact that v/6 is irrational (by the result
of exercise 22, Section 4.7).

Conclusion: Since a contradiction was obtained in both cases, we conclude that the supposi-
tion is false. That is, there are no rational numbers r and s such that /3 = r+1/2s. Therefore
J is not onto.

39. If f: R — R is onto and c is any nonzero real number, then c- f is also onto.
Proof: Suppose f: R — R is onto and c is any nonzero real number.
Let y be any element of R. [We must show that there exists an element z in R such that

cflz)=y .
Since ¢ # 0, y/c is a real number, and since f is onto, there is an z € R with f(z) = y/c.
Then y = ¢- f(z) = (¢- f)(z). So c- f is onto fas was to be shown].

48. By the result of exercise 12a, F' is not onto. Hence it is not a one-to-one correspondence.
51. Because D is not one-to-one, D is not a one-to-one correspondence.

54. By the result of exercise 17, f is one-to-one. f is also onto for the following reason. Given any

real number y other than 3, let z = . Then z is a real number (because y # 3) and

3z ) -1 3(3zx)-1 (3-— 3-(3—
f@) = =) = <;) = (_) - gy
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This calculation also shows that f~'(y) = for all real numbers y # 3.

1
3-y
57. Algorithm 7.2.1 Checking Whether a Function is One-to-One

[For a given function F with domain X = {a[l],a[2],...,a[n]}, this algorithm discovers
whether or not F is one-to-one. Initially, answer is set equal to “one-to-one”. Then the values
of F(ali]) and F(alj]) are systematically compared for indices i and j with1 <i< j<n. If
at any point it is found that F(ali]) = F(a[j]) and a[i] # a[j], then F is not one-to-one, and
s0 answer is set equal to “not one-to-one” and execution ceases. If after all possible values of
i and j have been examined, the value of answer is still “one-to-one”, then F is one-to-one.]

Input: n [a positive integer], a[l],a[2],...,a[n] [a one-dimensional array representing the set
X/, F [ a function with domain X/

Algorithm Body:

answer := “one-to-one”

t:=1

while (i <n — 1 and answer = “one-to-one”)
ji=1i+1

while (j < n and answer = “one-to-one”)
if (F(ali]) = F(alj]) and a[i] # a[j]) then answer := “not one-to-one”

j=j+1
end while
i =141

end while
Output: answer [a string/

Section 7.3

12. b. For all positive real numbers b and z, log, z is the exponent to which b must be raised to
obtain z. So if b is raised to this exponent, z is obtained. In other words, 6'°8: % = z,

15. b. z/2=1/2 e. f(z1) = f(zg)
18. f must be one-to-one.
Proof:
Suppose f: X - Y and g: Y — Z are functions and go f: X — Z is one-to-one.

To show that f is one-to-one, suppose z; and z2 are in X and f(z:) = f(z2). [We must show
that , = xz3.]

Then g(f(z1)) = g(f(x2)), and s0 (g © f)(z1) = (g 0 f)(z2).
But g o f is one-to-one. Hence z; = z2 fas was to be shown/.

24. go f: R — R is defined by (go f){z) = g(f(z)) =g(z +3) = —(z + 3) for all z € R.
Since z = —(z + 3) if, and only if, z = —2 — 3, (go f)~!: R — R is defined by (go f)~(z) =
—z—3for all z € R.
Since z = —y if, and only if, y = —z, g7!: R — R is defined by g !(2) = —z for all z € R.
Since y =z + 3 if, and only if, t =y — 3, f~!: R — R is defined by f~!(y) =y - 3.
f7log™l: R — Risdefined by (f'og™')(2) = f~1 (g7 (2)) = f~'(—2) = (-2)-3=—2-3
for all z € R.
By the above and the definition of equality of functions, (go f)~! = f~1og~L
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106 Chapter 7: Functions

27. The property is true.

Proof 1: Let X, Y, and Z be any sets, let f: X — Y and g : ¥ — Z be any functions, and
let C be any subset of Z.

Proof that ((go f)~*(C) C f~*(g~*(C)):
Suppose z € (go f)~1(C). [We must show that z € f~(g~}(C)).]
By definition of inverse image (for g o f), (g o f)(z) € C, and so,

by definition of composition of functions, g(f(z)) € C.

Then by definition of inverse image (for g), f(z) € g~!(C), and

by definition of inverse image (for f), z € f~*(g~1(C)).

So by definition of subset, (go f)~XC) C f~1(g~}(C)).

Proof that f~*(g7*(C)) C (go £)~1(C):

Suppose z € f~1(g~1(C)). [We must show that x € (go f)~}(C).]

By definition of inverse image (for f), f(z) € g~!(C), and so,

by definition of inverse image (for g), g(f(z)) € C.

So by definition of composition of functions, (g o f)(z) € C.

Then by definition of inverse image (for go f), z € (go f)~(C).

So by definition of subset, f~1(g~!(C)) C (go f)~}(OC).

Conclusion: Since each set is a subset of the other, the two sets are equal.
Proof 2 (using the logic of if-and-only-if statements)

Let X,Y, and Z be any sets, let f: X - Y and g : Y — Z be any functions, and let C be
any subset of Z.

Then z € (go f)~1(C)

& (go f)(z) € C [by definition of inverse image for go f]

& g(f(z)) € C [by definition of composition of functions/

& f(z) € g71(C) [by definition of inverse image for g/

& z e f 1 (g7HC)) [by definition of inverse image for f].

So both sets consist of the same elements, and thus, by definition of set equality, (go f)~}(C) =
g~ (©)).

Section 7.4

6. Part 1: The function I: 2Z — Z is defined as follows: I(n) = n for all even integers n. [ is
clearly one-to-one because if I(n,) = I(n2) then by definition of I, n; = ny. But I is not onto
because the range of I consists only of even integers. In other words, if m is any odd integer,
then I(n) 5 m for any even integer n.

Part 2: The function J: Z — 2Z is defined as follows J(n) = 2|n/2] for all integers n.
Then J is onto because for any even integer m, m = 2k for some integer k. Let n = 2k. Then
J(n) = J(2k) = 2|2k/2| = 2 |k] = 2k = m. But J is not one-to-one because, for example,
J(2)=2[2/2] =2-1=2and J(3) =2|3/2] =2-1=2, so J(2) = J(3) but 2 # 3.

(More generally, given any integer k, if m = 2k, then J(m) = 2 |m/2| =2 |2k/2] =2|k| =
J(m)and J(m+1) =2 |(m+1)/2] =2|(2k+1)/2) =2 |k + 1/2| = 2k. So J(m) = J(m+1)
but m # m +1.)
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9. Proof:
Define a function f: Z* — Z"°""€9 as follows: f(n) =n — 1 for all positive integers n.
Observe that if n > 1 then n — 1 > 0, so f is well-defined.
In addition, f is one-to-one because for all positive integers n;, and ng, if f(n1) = f(n2) then
n; — 1 =ng — 1 and hence n; = ny.
Moreover f is onto because if m is any nonnegative integer, then m + 1 is a positive integer
and f(m+1) = (m + 1) — 1 = m by definition of f.
Thus, because there is a function f: Zt — Z"°""¢9 that is one-to-one and onto, Z* has the
same cardinality as Z7°""e9,
It follows that Z™°""¢9 js countably infinite and hence countable.

12. Proof:
Define F': § — W by the rule F(z) = (b — a)z + a for all real numbers z in §.
Then F is well-defined because if 0 < < 1, thena < (b—a)r +a < b.
In addition, F is one-to-one because if z1 and 2 are in S and F(z,) = F(z2), then (b—a)z; +
a = (b— a)zs + a and so [by subtracting a and dividing by b — a] 1 = z.
Furthermore, F is onto because if y is any element in W, then @ < y < b and so 0 <
(y—a)/(b—a) <1.
Consequently, (y — a)/(b—a) € S and h((y — a)/(b—a)) = (b—a)[(y —a)/(b—0a)]| +a=1y.
Hence F is a one-to-one correspondence, and so S and W have the same cardinality.

15. Proof:
Let B be the set of all bit strings (strings of 0’s and 1’s).
Define a function F: Z+ — B as follows: F(1) =¢, F(2) =0, F(3) = 1, F(4) = 00, F(5) = 01,
F(6) =10, F(7) = 11, F(8) = 000, F(9) = 001, F(10) = 010, and so forth.
At each stage, all the strings of length k are counted before the strings of length k + 1, and the

strings of length & are counted in order of increasing magnitude when interpreted as binary
representations of integers.

Thus the set of all bit strings is countably infinite and hence countable.
Note: A more formal definition for F is the following:

F(n) = € ifn=1
™= the k-bit binary representation of n — 2* if n. > 1 and [logy | = k.

For example, F(7) = 11 because |log, 7| = 2 and the two-bit binary representation of 7 — 22
(=3)is 11.

18. No. For instance, both v/2 and —v/2 are irrational (by Theorem 4.7.1 and exercise 23 in Section
4.6), and yet their average is (v2 + (—v/2))/2 which equals 0 and is rational.

More generally: If r is any rational number and z is any irrational number, then both r+z and
T —z are irrational (by the result of exercise 12 in Section 4.6 or by the combination of Theorem
4.6.3 and exercise 9 in Section 4.6). Yet the average of these numbers is ((r+z)+(r—z))/2 = r,
which is rational.

n/2 if niseven
0 if nis odd
F is onto because given any integer m, m = F(2m). But F is not one-to-one because, for
instance, F(1) = F(3) = 0.

Define G: Z — Z by the rule G(n) = |n/2] for all integers n. Then G is onto because given
any integer m, m = |m| = |(2m)/2] = G(2m). But G is not one-to-one because, for instance,
G(2)=|2/2) =1and G(3) =|3/2] =1 and 2 # 3.

21. Two ezamples of many: Define F': Z — Z by the rule F(n) = { . Then

ST U D E N T;gz_ ﬁﬁ%nﬁ ﬁlﬂkights Reserved. May not be scanned, copied or duplicated, or posted to a publicly actj?slr 5e§1& é Holgvgpaén o) nym ous



108 Chapter 7: Functions

24. The proof given below is adapted from one in Foundations of Modern Analysis by Jean
Dieudonné, New York: Academic Press, 1969, page 14.
Proof: : Suppose (a,b) and (c,d) are in Z+ x Z* and (a,b) # (c,d).
Case 1, a + b # c + d: By interchanging (a,b) and (c,d) if necessary, we may assume that
a+b<c+d Then

+ (e+b)(a+b+1)

H(a,b) = b 5 by definition of H
= H(a,b) < a+b+ (a+b)(a2+b+1) because a > 0
= Ha,b) < (a+b+l)+(a+b)(a2+b+1) because a +b<a+b+1
= H(b) < 2(a+2b+1) + (a+b)(az+b+l)
= H(a,b) < (atb+ 1)2(a +o+2) by factoring out (a + b+ 1)
(c+d)(c+d+1) since a+b < c+dand g, b, c,
= H{ab) < 2 and d are integers,a +b+1<c+d
= H(a,b) < d+ (c+ d)(c2+ d+1) because d > 0
= Ha,b) < H(ed) by definition of H.

Therefore, H(a,b) # H(c,d).

Case 2, a + b = ¢+ d: First observe that in this case b # d. For if b = d, then subtracting
b from both sides of a + b = ¢ + d gives a = ¢, and so (a,b) = (¢,d), which contradicts our
assumption that (a,b) # (c,d). Hence,

(a+b)a+bd+1) b (c+d)(c+d+1)
=b+
2 2
and so H(a,b) # H(c,d).
Thus both in case 1 and in case 2, H(a,b) # H(c,d), and hence H is one-to-one.

(c+d)(c+d+1)

H(a,b)=b+ 5

£d+

= H(c,d),

30. Proof by contradiction:
Suppose not. That is, suppose the set of all irrational numbers were countable.

Then the set of all real numbers could be written as a union of two countably infinite sets: the
set of all rational numbers and the set of all irrational numbers.

By exercise 29 this union is countably infinite, and so the set of all real numbers would be
countably infinite and hence countable.

But this contradicts the fact that the set of all real numbers is uncountable (which follows
immediately from Theorems 7.4.2 and 7.4.3 or Corollary 7.4.4).

Hence the set of all irrational number is uncountable.

33. Proof:

First note that there are as many equations of the form z2 + bz + ¢ = 0 as there are pairs (b, ¢)
where b and c are in Z.

By exercise 32, the set of all such pairs is countably infinite, and so the set of equations of the
form z2 + bx + ¢ = 0 is countably infinite.

Next observe that, by the quadratic formula, each equation x2 + bz + ¢ = 0 has at most two
solutions (which may be complex numbers):

b+ VP b VE—Tc
_——'2 .

and z = 2
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Let
{ b+ VP2 —dc
R1= x|x=#

for some integers b and c} ,

—b—- Vvb? —4c
Ry = m|m=T

for some integers b and c} ,

and R = R, U Ry. Then R is the set of all solutions of equations of the form 22 + bz +¢c=0
where b and c are integers.

Define functions F; and F> from the set of equations of the form z2 + bz + ¢ = 0 to the sets
R, and R; as follows:

b+ Vb2 —4e

_ —b— VBT =
Fi(®>+bz+c=0)= 2 u

and Fy(z?+bz+c=0)= 3

Then F and F; are onto functions defined on countably infinite sets, and so, by exercise 27,
R; and R; are countable. Since any union of two countable sets is countable (exercise 31),
R = R; U R; is countable.

36. Proof:

Let B be the set of all functions from Z* to {0,1} and let D be the set of all functions from
Z+ t0 {0,1,2,3,4,5,6,7,8,9}.

Elements of B can be represented as infinite sequences of 0’s and 1's (for instance, 01101010110. .. )
and elements of D can be represented as infinite sequences of digits from 0 to 9 inclusive (for
instance, 20775931124...).

We define a function H: B — D as follows: For each function f in B, consider the represen-
tation of f as an infinite sequence of 0’s and 1’s.

Such a sequence is also an infinite sequence of digits chosen from 0 to 9 inclusive (one formed
without using 2,3,...,9), which represents a function in D. We define this function to be H(f).

More formally, for each f € B, let H(f) be the function in D defined by the rule H(f)(n) =
f(n)forallne Z+.

It is clear from the definition that H is one-to-one.

We define a function K': D — B as follows: For each function g in D, consider the represen-
tation of g as a sequence of digits from 0 to 9 inclusive.

Replace each of these digits by its 4-bit binary representation adding leading 0's if necessary
to make a full four bits. (For instance, 2 would be replaced by 0010.)

The result is an infinite sequence of 0’s and 1's, which represents a function in B. This function
is defined to be K(g).

Note that K is one-to-one because if g; # g2 then the sequences representing g; and g must
have different digits in some position m, and so the corresponding sequences of 0’s and 1’s will
differ in at least one of the positions 4m — 3,4m — 2,4m — 1, or 4m, which are the locations
of the 4-bit binary representations of the digits in position m.

It can be shown that whenever there are one-to-one functions from one set to a second and from
the second set back to the first, then the two sets have the same cardinality. This fact is known as the
Schréder-Bernstein theorem after its two discoverers. For a proof see, for example, Set Theory and
Metric Spaces by Irving Kaplansky, A Survey of Modern Algebra, Third Edition, by Garrett Birkhoff
and Saunders MacLane, Naive Set Theory by Paul Halinos, or Topology by James R. Munkres. The
above discussion shows that there are one-to-one functions from B to D and from D to B, and hence
by the Schroder-Bernstein theorem the two sets have the same cardinality.

ST U D E |\FF(§ Sr_Tlgj gmewgns Reserved. May not be d, copied or duplicated, or posted to a publicly nccﬁjbmbﬁeohévaievman 0 nym ous



110 Chapter 7: Functions
Review Guide: Chapter 7

Definitions: How are the following terms defined?

¢ function f from a set X to aset Y (p. 384)

o Let f be a function from a set X to a set Y.
— the domain, co-domain, and range of f (p. 884)
— the value of f at z, where 2 is in X (p. 384)
— the image of x under f, where z is in X (p. 384)
— the output of f for the input z, where z is in X (p. 384)
— the image of X under f (p. 384)
— an inverse image of y, where y isin Y (p. 884)
— the identity function on a set (p. 387)
— the image of A, where A C X (p. 392)
— the inverse image of B, where BCY (p. 392)

e logarithm with base b of a positive number z and the logarithmic function with base b (p. 388)

e Hamming distance function (p. 389)

Boolean function (p. 390)

one-to-one function (p. 397)

onto function (p. 402)

exponential function with base b (p. 405)

one-to-one correspondence (p. 408)

inverse function (p. 411)

composition of functions (p. 417)

cardinality (pp. 428-429)

countable and uncountable sets.(p. 431)

General Function Facts

e How do you draw an arrow diagram for a function defined on a finite set? (p. 384)

e Given a function defined by an arrow diagram or by a formula, how do you find values of the
function, the range of the function, and the inverse image of an element in its co-domain? (p.
385)

e How do you show that two functions are equal? (p. 386)
e What is the relation between a sequence and a function? (p. 387)

¢ Can you give an example of a function defined on a power set? a function defined on a Cartesian
product? (p. 387-388)

e What is an example of an encoding function? a decoding function? (p. 389)

e If the claim is made that a given formula defines a function from a set X to a set Y, how do
you determine that the “function” is not well-defined? (p. 891)

One-to-one and Onto

How do you show that a function is not one-to-one? (pp. 397-400)

How do you show that a function defined on an infinite set is one-to-one? (pp. 399-4{00)
How do you show that a function is not onto? (pp. 402-405)

How do you show that a function defined on an infinite set is onto? (pp. 403-405)

How do you determine if a given function has an inverse function? (p. 411)

e How do you find an inverse function if it exists? (pp. 411-4{13)
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Chapter 7 Review 111

Exponents and Logarithms

o What are the four laws of exponents? (p. 406)

e What are the properties of logarithms that correspond to the laws of exponents? (p. 406)

e How can you use the laws of exponents to derive properties of logarithms? (p. 407)

¢ How are the logarithmic function with base b and the exponential function with base b related?

(p- 411)

Composition of Functions

e How do you compute the composition of two functions? (pp. 417-{19)
e What is the composition of a function with its inverse? (p. 421)

e Why is a composition of one-to-one functions one-to-one? (pp. 421-422)
¢ Why is a composition of onto functions onto? (pp. 423-424)

Applications of Functions

o What is a Hash function? (p. 401)

e How do you show that one set has the same cardinality as another? (pp. 429-4/30)

¢ How do you show that a given set is countably infinite? countable? (p. 431)

e How do you show that the set of all positive rational numbers is countable? (p. 483)

e How is the Cantor diagonalization process used to show that the set of real numbers between
0 and 1 is uncountable? (pp. 433-435)

e How do you show that the set of all computer programs in a given computer language is
countable? (pp. 4{87-4{38)
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Chapter 8: Relations

The first section of this chapter focuses on understanding equivalent ways to specify and represent
relations, both finite and infinite. In Section 8.2 the reflexivity, symmetry, and transitivity properties
of binary relations are introduced and explored, and in Section 8.3 equivalence relations are discussed.
As you work on these sections, you will frequently use the fact that the same proof outlines are used
to prove and disprove universal conditional statements no matter what their mathematical context.

Section 8.4 deepens and extends the discussion of congruence relations in Sections 8.2 and 8.3
through applications to modular arithmetic and cryptography. The section is designed to make it
possible to give you meaningful practice with RSA cryptography without having to spend several
weeks on the topic. After a brief introduction to the idea of cryptography, the first part of the section
is devoted to helping you develop the facility with modular arithmetic that is needed to perform
the computations for RSA cryptography, especially finding least positive residues of integers raised
to large positive powers and using the Euclidean algorithm to compute positive inverses modulo a
number. Proofs of the underlying mathematical theory are left to the end of the section.

Section 8.5 introduces another type of binary relation that is especially important in computer
science: partial order relations

Section 8.1

3. ¢. One possible answer: 4, 7, 10, —2, =5
d. One possible answer: 5, 8, 11, -1, —4
e. Theorem:
1. All integers of the form 3k are related by T to 0.

2. All integers of the form 3k + 1 are related by T to 1.
3. All integers of the form 3k + 2 are related by T to 2.

Proof of (2): Let n be any integer of the form n = 3k + 1 for some integer k. By substitution,
n—1 = (3k + 1) — 1 = 3k, and so by definition of divisibility, 3 | (n — 1). Hence by definition
of T,nT1.

The proofs of (1) and (3) are identical to the proof of (2) with 0 and 2, respectively, substituted
in place of 1.

6. b. Yes, because {a,b} N {b,c} = {b} #0. c. Yes, because {a,b} N {a,b,c} = {a,b} # 0.

9. ¢. No, because the sum of the characters in 2212 is 7 and the sum of the characters in 2121 is
6, and 7 # 6.
d. Yes, because the sum of the characters in 1220 is 5 and the sum of the characters in 2111

is 5, and 5 = 5.

12. b. No. If F: X — Y is not one-to-one, then there exist £; and z2 in X and y in Y such that
(z1,y) € F and (z2,y) € F and z; # z2. But this implies that there exist z; and z2 in X and
y in Y such that (y,z;) € F~! and (y,z2) € F~! and z; # z,. Consequently, F~1 does not
satisfy property (2) of the definition of function.

112
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Section 8.2 113

18.

24, p. 466581 Mary Lazars
778400 Jamal Baskers

Section 8.2

18. @ is reflexive: Suppose z is any real number. [We must show that @ 2./ By definition of
Q, this means that « — x is rational. But this is true because z — z = 0, and 0 is rational since
0=0/1. [So z Q = as was to be shown.]

Q is symmetric: Suppose z and y are any real numbers such that  Q y. [We must show
that y Q z./ By definition of @, z — y is rational. Now y —z = —(z — y) and the negative of
any rational number is rational [by ezercise 13, Section 4.2]. Hence y — z is rational, and so
y Q z by definition of Q [as was to be shown/.

Q is transitive: Suppose z, y and z are any real numbers such that z Q y and y Q 2. [We
maust show that  Q z.] By definition of Q, z — y is rational and y — z is rational.

Then, since z—p = (z—y)+ (y — z), we have that £ — z is a sum of rational numbers, and hence
T — z is rational fby Theorem 4.2.2]. Thus, by definition of Q, z Q z [as was to be shown/.

21. For each set X, let N(X) be the number of elements in X.

L i3 not reflexive: L is reflexive & for all sets A € £2(X), A L A. By definition of L this
means that for all sets A in 22(X), N(A) < N(A). But this is false for every set in 2(X).
For instance, let A = §. Then N(A) = 0, and 0 is not less than 0.

L is not symmetric: For L to be symmetric would mean that for all sets A and B in £(X),
if AL B then B L A. By definition of L, this would mean that for all sets A and B in £(X),
if N(A) < N(B), then N(B) < N(A). But this is false for all sets A and B in 2(X). For
instance, take A = ) and B = {a}. Then N(A) = 0 and N(B) = 1. It follows that A is
related to B by L (since 0 < 1), but B is not related to A by L (since 1 £ 0).

L is transitive: To prove transitivity of L, we must show that for all sets A, B, and C in
P(X),if ALB and B L C then A L C. By definition of L this means that for all sets A, B,
and C in £(X), if N(A) < N(B) and N(B) < N(C), then N(A) < N(C). But this is true
by the transitivity property of order (Appendix A, T18).

24. U is not reflexive: U is reflexive & for all sets A in £2(X), A U A. By definition of U
this means that for all sets A in £(X), A # A. But this is false for every set in #(X). For
instance, let A = (. It is not true that @ # §.

U is symmetric: U is symmetric < for all sets A and B in £2(X), if A U B then B U A.
By definition of U, this means that for all sets A and B in #(X), if A # B, then B # A.
But this is true.
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U is not transitive: U is transitive < for all sets A, B, and C in £(X), if A U B and B
U C then A U C. By definition of U this means that for all sets A, B, and C in £(X), if A
# B and B # Z, then A # C. But this is false as the following counterexample shows. Since
X # 0, there exists an element z in X. Let A = {z}, B =0, and C = {z}. Then A # B and
B#Z,but A=C.

30. R is reflexive: R is reflexive < for all points p in A, p R p. By definition of R this means
that for all elements p in A, p and p both lie on the same half line emanating from the origin.
But this is true.

R is symmetric:: [We must show that for all points p1 and ps in A, if p1R pa then poR py.]
Suppose p; and p; are points in A such that p)R p,. By definition of R this means that p,
and p; lie on the same half line emanating from the origin. But this implies that p, and p, lie
on the same half line emanating from the origin. So by definition of R, p2R p;.

R is transitive: [We must show that for all points p1, p2 and p3 in A, if p1R p2 and p2R p3
then pyR p3.] Suppose p;, p2, and ps are points in A such that pyR p2 and poR p3. By
definition of R, this means that p; and p, lie on the same half line emanating from the origin
and p; and p; lie on the same half line emanating from the origin.

Since two points determine a line, it follows that both p; and ps lie on the same half line
determined by the origin and p;. Thus p; and p; lie on the same half line emanating from the
origin. So by definition of R, pi R ps.

33. R is not reflevive: R is reflexive < for all lines ! in A, ! R l. By definition of R this means
that for all lines ! in the plane, { is perpendicular to itself. But this is false for every line in
the plane.

R is symmetric: [We must show that for all lines iy and ly in A, if 1R I then 2R 1.}
Suppose I; and [, are lines in A such that [, R l;. By definition of R this means that l; is
perpendicular to l. But this implies that I; is perpendicular to ;. So by definition of R,
LRI

R is not transitive: R is transitive & for all lines I, I3, and I3 in A, if jR Is and [oR I3
then [; R l3. But this is false. As a counterexample, take l; and I3 to be the horizontal axis and
15 to be the vertical axis. Then [y R l; and [3R I3 because the horizontal axis is perpendicular
to the vertical axis and the vertical axis is perpendicular to the horizontal axis. But I; ﬁ I3
because the horizontal axis is not perpendicular to itself.

36. The statement is true.

Proof: Suppose R is a transitive relation on a set A. To show that R™! is transitive, we
suppose that z, y, and z are any elements of A such that z R™! y and y R~ z. [We must
show that  R~! z.] By definition of R™!, y Rz and z Ry, or /equwalently, z R yand y R
z. Since R is transitive, z R z. Thus, by definition of R‘ , 2 R‘ T /[ps was to be shown/.

39. RN S is transitive: Suppose R and S are transitive. [ To show that RN S is transitive, we
must show that Vz,y,2 € A, if (z,y) € RN S and (y,2) S R/‘uS then (z,2) € RNS.] So
suppose I, ¥, and z are elements of A such that (z,y) € RS and (y,2) € RNS. By definition
of intersection, (z,¥) € R, (z,y) € S, (y,2) € R, and (§,2) € S. It follows that (z,z) € R
because R is transitive and (z,y) € R and (y,z) € R. Also (z,z) € S because S is transitive
and (z,y) € S and (y,2) € S. Thus by definition of intersection (x,z) € RN S.

42. RU S is not necessarily transitive: As a counterexample, let R = {(0,1)} and S =
{(1,2)}. Then both R and S are transitive (by default), but RUS = {(0,1), (1,2)} is not tran-
sitive because (0,1) € RUS and (1,2) € RUS but (0,2) ¢ RUS. As another counterexample,
let R={(z,y) eRxR|z<y}andlet S={(z,y) e RxR|z > y}.

Then both R and S are transitive because of the transitivity of order for the real numbers.
But RUS = {(z,y) € R x R | = # y} is not transitive because, for instance, (1,2) € RUS
and (2,1) € RUS but (1,1) ¢ RUS.
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6. distinct equivalence classes: {0,3, -3}, {1,4, -2}, {2,5,-1, -4}
9. distinct equivalence classes: {0, {0}, {1,—1},{-1,0,1}}, {{1},{0,1}}, {{-1},{0,-1}}

12. [0] = {x € A | 5 divides (2% — 0)} = {0}
[1] ={x € A | 5 divides (z2 — 1)} = {x € A | 5 divides z — 1)(z + 1)} = {1,-1,4, -4}
[2] = {z € A | 5 divides (2% — 22)} = {x € A | 5 divides (z — 2)(z + 2)} = {2,-2,3, -3}

15. b. false c. true d. true

18. b. Let A; = {1,2}, A2 = {2,3},z =1, y =2, and z = 3. Then both z and y are in A; and
both y and z are in As, but x and 2z are not both in either A; or A,.

21. (1) Proof:

F is reflexive: Suppose m is any integer. Since m —m = 0 and 4 | 0, we have that 4 | (m —m).
Consequently, m F m by definition of F.

F is symmetric: Suppose m and n are any integers such that m F n. By definition of F this
means that 4 | (m — n), and so, by definition of divisibility, m — n = 4k for some integer k.
Now n — m = —(m — n). Hence by substitution, n — m = —(4k) = 4. (—k). It follows that
4 | n —m by definition of divisibility (since —k is an integer), and thus n F' m by definition of
F.

F is transitive: Suppose m, n and p are any integers such that m F' n and n F p. By definition
of F, this means that 4 | (n—n) and 4 | (n—p), and so, by definition of divisibility, m —n = 4k
for some integer k, and n —p = 4l for some integer {. Now m —p = (m —n)+ (n—p). Hence by
substitution, m —p = 4k + 41 = 4(k +1). It follows that 4 | (m — p) by definition of divisibility
(since & + ! is an integer), and thus m F' p by definition of F.

F is an equivalence relation because it is reflexive, symmetric, and transitive.

(2) Four distinct classes: {z € Z | « = 4k for some integer k}, {r € Z | z = 4k + 1 for some

integer k}, {x € Z | x = 4k + 2 for some integer k}, {z € Z | x = 4k + 3 for some integer k}
24. (1) Proof:

R is reflexive because for each identifier z in A, z has the same memory location as z.

R is symmetric because for all identifiers z and y in A, if = has the same memory location as
y then y has the same memory location as z.

R is transitive because for all identifiers x, ¥, and z in A, if £ has the same memory location
as y and y has the same memory location as z then z has the same memory location as z.

R is an equivalence relation because it is reflexive, symmetric, and transitive.

(2) There are as many distinct equivalence classes as there are distinct memory locations that
are used to store variables during execution of the program. Each equivalence class consists of
all variables that are stored in the same location.

27. (1) Proof:

R is reflexive: Suppose m is any integer. Since m? — m? = 0 and 4 | 0, we have that
4| (m? — m2). Consequently, m R m by definition of R.

R is symmetric: Suppose m and n are any integers such that m R n. By definition of R this
means that 4 | (m? — n?), and so, by definition of divisibility, m? — n? = 4k for some integer
k. Now n% —m? = —(m? — n?). Hence by substitution, n? — m? = —(4k) = 4- (=k). It follows
that 4 | (n? — m?2) by definition of divisibility (since —k is an integer), and thus n R m by
definition of R.
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R is transitive: Suppose m, n and p are any integers such that m R n and n R p. By
definition of R, this means that 4 | (m? — n?) and 4 | (n? — p?), and so, by definition of
divisibility, m2 — n? = 4k for some integer k, and n%? — p? = 4l for some integer I. Now
m? — p? = (m? — n?) + (n? — p?). Hence by substitution, m? — p?> =4k + 4l = 4(k +1). It
follows that 4 | (m? —p?) by definition of divisibility (since £+ is an integer), and thus m R p
by definition of R.

R is an equivalence relation because it is reflexive, symmetric, and transitive.

(2) If m is even, then m = 2a for some integer a, and so m? — 02 = (2a)? = 4a?, which is
divisible by 4. Hence m € [0].

If m is odd, then m = 2a+1 for some integer @, and so m?—12 = (2a+1)2—1 = 4a?+4a+1-1=
402 + 4a, which is divisible by 4. Hence m € [1].

Thus there are two distinct equivalence classes:

0j={meZ |miseven} and [1]={me€Z |misodd}.

30. (1) Proof:
Q is reflexive because each ordered pair has the same second element as itself.

Q is symmetric for the following reason: Suppose (w,x) and (y, z) are ordered pairs of real
numbers such that (w, z) Q (y, 2). Then, by definition of Q, x = z. By the symmetric property
of equality, this implies that z = z, and so, by definition of Q, (y, z) @ (w,z).

Q is transitive for the following reason: Suppose (u,v), (w,z), and (y, 2) are ordered pairs of
real numbers such that (u,v) Q (w,z) and (w,z) @ (y,2). Then, by definition of @, v = x
and z = z. By the transitive property of equality, this implies that v = 2, and so, by definition
of Q, (u,v)(y,2) Q (y,2).

Q is an equivalence relation because it is reflexive, symmetric, and transitive.

(2) There is one equivalence class for each real number. The distinct equivalence classes are
all the sets of the form {(z,y) € R x R | y = b} where b is a real number. Equivalently, the
distinct equivalence classes are all the vertical lines in the Cartesian plane.

33. The distinct equivalence classes can be identified with the points on a geometric figure, called
a torus, that has the shape of the surface of a doughnut.

Each point in the interior of the rectangle {(z,y) |0 < z < 1 and 0 < y < 1} is only equivalent
to itself.

Each point on the top edge of the rectangle is in the same equivalence class as the point
vertically below it on the bottom edge of the rectangle (so we can imagine identifying these
points by gluing them together — this gives us a cylinder).

In addition, each point on the left edge of the rectangle is in the same equivalence class as the
point horizontally across from it on the right edge of the rectangle (so we can also imagine
identifying these points by gluing them together — this brings the two ends of the cylinder
together to produce a torus).

39. Proof:
Suppose R is an equivalence relation on a set A4, a and b are in A, and [a] = [b].

Since R is reflexive, a R a, and so by definition of class, a € [a]. [Alternatively, one could
reference ezercise 36 here.]

Since [a] = [b], by definition of set equality, a € [b].

But then by definition of equivalence class, ¢ R b.
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42. a. Suppose (a,b) € A. By commutativity of multiplication for the real numbers, ab = ba. But
then by definition of R, (a,b)R(a,b), and so R is reflexive.
b. Suppose (a,bd), (¢,d) € A and (a,b)R(c,d). By definition of R, ad = be, and so by commu-
tativity of multiplication for the real numbers and symmetry of equality, cb = da. But then
by definition of R, (c,d)R(a,b), and so R is symmetric.

d. For example, (2,5), (4,10), (-2,-5), and (6,15} are all in [(2,5)].

45. The given argument assumes that from the fact that the statement “Vz in A, if z R y then
y R x” is true, it follows that given any element z in R, there must exist an element y in
R such that z R y and y R z. This is false. For instance, consider the following relation R
defined on A = {1,2} : R = {(1,1)}. This relation is symmetric and transitive, but it is not
reflexive. Given 2 € A, there is no element y in A such that (2,y) € R. Thus we cannot go on
to use symmetry to say that (y,2) € R and transitivity to conclude that (2,2) € R.

Section 8.4

6. Proof:

Given any integer n > 1 and any integer a with 0 < a < n, the notation [a] denotes the
equivalence class of a for the relation of congruence modulo n.

We first show that given any integer m, m is in one of the classes (0], [1],[2],...,[n — 1].

The reason is that, by the quotient-remainder theorem, m = nk+a, where k and a are integers
and 0 € a < n, and so, by Theorem 8.4.1, m = a (mod n). It follows by Lemma 8.3.2 that

[m] = [a].

Next we use an argument by contradiction to show that all the equivalence classes (0], [1],[2],...,[n—
1] are distinct.

For suppose not. That is, suppose a and b are integers with 0 <a<nand 0 <b<n, a#b,
and [a] = [b]. Without loss of generality, we may assume that a > b > 0, which implies that
—a < —b < 0. Adding a to all parts of the inequality gives 0 < @ — b £ a. By Exercise 8.3.39,
[a] = [b] implies that @ = b (mod n). Hence, by Theorem 8.4.1, n | (a — b), and so, by Theorem
431, n<a—-b.. Buta<n. Thus n < a-b < a < n, which is contradictory. Therefore the
supposition is false, and we conclude that all the equivalence classes [0], [1], [2],...,[n — 1] are
distinct.

9. b. Proof:
Suppose a, b, ¢, d, and n are integers with n > 1, a = ¢ (mod n), and b = d (mod n). [We must
show that a — b= (c—d) (modn)./

By definition, a — ¢ = nr and b — d = ns for some integers r and s. Then
(a=by—(c—d)=(a—c)— (b—d) =nr —ns=n(r—s).
But » — s is an integer, and so, by definition, a — b = (¢ — d) (mod n).

12. b. Proof:

Suppose a is a positive integer. Then a = Y _ dx 10*, for some nonnegative integer n and
integers dy where 0 < dj < 10 for all £ =1,2,...,n. By Theorem 8.4.3,

a= idklok = Zn:dk 1 = Xn:dk(modg)
k=0 k=0 k=0

because, by part (a), each 10 = 1 (mod9). Hence, by Theorem 8.4.1, both a and > j_, di
have the same remainder upon division by 9, and thus if either one is divisible by 9, so is the
other.
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18. 48! mod 713 =48
482 mod 713 = 165
48* mod 713 = 1652 mod 713 = 131
488 mod 713 = 1312 mod 713 = 49
486 mod 713 = 492 mod 713 = 262
4832 mod 713 = 262% mod 713 = 196
4854 mod 713 = 1962 mod 713 = 627
48'28 mod 713 = 6272 mod 713 = 266
48%56 mod 713 = 2662 mod 713 = 169
Hence, by Theorem 8.4.3,

48307 — 4g256+32+16+2+1 _ 4g256483281648248! = 169- 196- 262- 165- 48 = 12(mod 713),
and thus 48397 mod 713 = 12.

21. The letters in EXCELLENT translate numerically into 05, 24, 03, 05,12, 12, 05, 14, 20. The
solutions for exercises 19 (in Appendix B) and 20 (above) show that E, L, and C are encrypted
as 15, 23, and 27, respectively. To encrypt X, we compute 242 mod 55 = 19, to encrypt N, we
compute 143 mod 55 = 49, and to encrypt T, we compute 203 mod 55 = 25. So the ciphertext
is 15 19 27 15 23 23 15 49 25.

24. By Example 8.4.10, the decryption key is 27. Thus the residues modulo 55 for 5127, 1427,
49?7 and 1527 must be found and then translated into letters of the alphabet. Because
27 =16 + 8 + 2 + 1, we first perform the following computations:

51! = 51 (mod 55) 14! = 14 (mod 55) 49! = 49 (mod 55)

512 = 16 (mod 55) 142 = 31 (mod 55) 49? = 36 (mod 55)

514 = 162 = 36 (mod 55)  14? = 312 = 26 (mod 55)  49* = 362 = 31 (mod 55)

518 = 36% = 31 (mod55) 148 = 26% = 16 (mod 55)  49% = 312 = 26 (mod 55)

5116 = 312 = 26 (mod 55) 14!6 = 162 = 36 (mod 55) 49'¢ = 262 = 16 (mod 55)

Then

5127 mod 55 = (26- 31- 16- 51) mod 55 = 6,

14%7 mod 55 = (36- 16- 31- 14) mod 55 =9,

49%7 mod 55 = (16 26- 36- 49) mod 55 = 14.

In addition, we know from the solution to exercise 23 above that 1527 mod 55 = 5. But 6, 9,

14, and 5 translate into letters as F, I, N, and E. So the message is FINE.
27. Step 1: 4158 = 1568- 2 + 1022, and so 1022 = 4158 — 1568- 2

Step 2: 1568 = 1022 1 + 546, and so 546 = 1568 — 1022

Step 3: 1022 = 546- 1 4 476, and so 476 = 1022 — 546

Step 4: 546 = 476- 1 4 70, and so 70 = 546 — 476

Step 5: 476 = 70- 6 4 56, and so 56 = 476 — 70- 6

Step 6: 70 =56-1+ 14, and so 14 = 70 — 56

Step 7: 56 = 14-4 4+ 0, and so gecd(4158, 1568) = 14,

which is the remainder obtained just before the final division.

Substitute back through steps 6-1:

14 =70—-56 = 70 — (476 — 70- 6) = 70- 7 — 476
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= (546 — 476)- 7 — 476 = T7- 546 — 8- 476

= 7546 — 8- (1022 — 546) = 15- 546 — 8- 1022

= 15- (1568 — 1022) — 8- 1022 = 15- 1568 — 23- 1022

= 15- 1568 — 23. (4158 — 1568 2) = 61- 1568 — 23- 4158
(It is always a good idea to verify that no mistake has been made by verifying that the final
expression really does equal the greatest common divisor. In this case, a computation shows
that the answer is correct.)

30. Proof:

Suppose a and b are positive integers, S = {2 | z is a positive integer and z = as + bt for some
integers s and t}, and c is the least element of S. We will show that ¢ | b.

By the quotient-remainder theorem, b = ¢g + r (*) for some integers g and r with 0 < r <e¢.

Now because c is in S, ¢ = as + bt for some integers s and ¢t. Thus, by substitution into
equation (*),

r=b—cqg=0b-(as+ bt)g = a(—sq) + b(1 — tq).
Hence, by definition of S, either r=0or r € S.

But if r € S, then r > ¢ because ¢ is the least element of S, and thus both r < cand r > ¢
would be true, which would be a contradiction.

Therefore, © ¢ S, and thus by elimination, we conclude that r = 0.

It follows that b — eq = 0, or, equivalently, b = cq, and so ¢ | b fas was to be shown/.

33. Proof:

Suppose a, b, and ¢ are integers such that ged(a,b) =1, a | ¢, and b | ¢. We will show that
ab|ec.

By Corollary 8.4.6 (or by Theorem 8.4.5), there exist integers s and ¢ such that as 4+ bt = 1.

Also, by definition of divisibility, ¢ = au = bv, for some integers u and v. Hence, by substitu-
tion,
¢ = asc + btc = as(bv) + bt(au) = ab(sv + tu).

But sv + tu is an integer, and so, by definition of divisibility, ab | ¢ fas was to be shown/.

42. b. When ¢ =8 and p = 11,

aP~! = 810 = 1073741824 = 1(mod 11) because 1073741824 — 1 = 11- 97612893.

Section 8.5

3. R is not antisymmetric.
Counterexample: Let s=0and £ =1. Then s Rt and t R s because I(s) < I(t) and I(t) < I(s),
since both {(s) and {(t) equal 1, but s # t.
6. R is a partial order relation.
Proof:
R is reflexive: Suppose r € P. Then r = r, and so by definition of R, r R r.
R is antisymmetric: Suppose r,s € Pand r R s and s R r. [We must show that r = s./

By definition of R, either r is an ancestor of s or r = s and either s is an ancestor of r or s = 7.

© 2012 Cengage Leaming. All Rights Reserved. May not be d, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

STUDENTS-HUB.com Uploaded By: anonymous




120 Chapter 8: Relations

Now it is impossible for both r to be an ancestor of s and s to be an ancestor of . Hence one
of these conditions must be false, and so r = s [as was to be shown/.

R is transitive: Suppose r,3,t € P and r R s and s R ¢t. [We must show that r R t.]

By definition of R, either 7 is an ancestor of s or 7 = s and either s is an ancestor of ¢ or s = ¢.
In case 7 is an ancestor of s and s is an ancestor of ¢, then r is an ancestor of t, and so r R ¢.
In case r is an ancestor of s and s = ¢, then r is an ancestor of ¢, and so r R .

In case r = s and s is an ancestor of £, then r is an ancestor of ¢, and so r R .

In case r = s and s = ¢, then r = t, and so r R t. Thus in all four possible cases, r R t [as was
to be shown/.

Conclusion: Since R is reflexive, antisymmetric, and transitive, R is a partial order relation.

9. R is not a partial order relation because R is not antisymmetric.
Counterexample: Let £ = 2 and y = —2. Then z R y because (—2)? < 22, and y R z because
22 < (—2)%. But T # y because 2 # —2.

12. Proof:

= 13 reflexive: Suppose s isin S. If s = ¢, then s < 5 by (3). If s # ¢, then s < s by (1).
Hence in either case, s < s.

< is antisymmetric: Suppose s and ¢t are in S and s <t and ¢t % 5. [We must show that
s=t.]

By definition of S, either s = ¢ or s = ayas3...a,, and either t = ¢ or t = byb;...b, for some
positive integers m and n and elements a;,as,...,a, and by, b, ..., by in A.

It is impossible to have s =< t by virtue of condition (2) because in that case there is no
circumstance that would give t < s.

[For suppose s < t by virtue of condition (2). Then for some integer k with k < m, k < n,
andk>1,a;=0b; foralli=1,2,...,k—1, and ai R by and ay # by.. In this situation, it is
clearly impossible for t < s by virtue either of condition (1) or (3), and so, if t X s, then it
maust be by virtue of condition (2). But in that case, since ay # by, it must follow that by R ay.,
and so, since R is a partial order relation, a = by. However, this contradicts the fact that
ay, # bi. Hence it cannot be the case that s <t by virtue of condition (2).]

Similarly, it is impossible for ¢ < s by virtue of condition (2).
Hence s <t and ¢ < s by virtue either of condition (1) or of condition (3).

In case s < t by virtue of condition (1), then neither s nor ¢ is the null string and so t < s by
virtue of condition (1). Then by (1) m <nand a; =b; foralli=1,2,...,m and n < m and
b;=a; foralli=1,2,...,m, and so, in this case, s = 1.

In case s < t by virtue of condition (3), then s = ¢, and so since ¢t =X s, ¢ < €. But the only
situation that can give this result is condition (3) with ¢ = e. Hence in this case, s=t =e.

Thus in all possible cases, if s <t and t < s, then s =1t [as was to be shown/.

= is transitive: Suppose s and t are any elements of S such that s <t and ¢ < u. [We must
show that s < u.]

By definition of S, either s = ¢ or s = ajas...a,, either t = € or t = bybs...b,, and either
U = €0r u = C|C2...Cp for some positive integers m, n, and p and elements a,,as,...,an,
bi,b2,...,by, and c1,¢2,...,¢p in A.

Case 1 (s = €): In this case, s R u by (3).
Case 2 (8 # €): In this case, since s Rt,t # ¢, and sincet Ru, u# e
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Subcase a (s R t by condition (1) and t R u by condition (1)): Then m < n and
n<panda; =b; foralli=12,....mand b; =¢; forall j =1,2,...,n. It follows that
a;=c;foralli=1,2,...,m, and so by (1), s R u.

Subcase b (s Rt by condition (1) and t R u by condition (2)): Then m < n and
a; =b; forall t=1,2,...,m, and for some integer k with k <n, k <p,and k > 1, b; = ¢; for
all=1,2,...,k— 1, by R ¢, and by # cy.

If k < m, then s and u satisfy condition (2) [fbecause a; = b; for alli = 1,2,...,m and so
k<m,k<p,k>1l,a;=b=¢; foralli=1,2,...,k—1, ar R ¢, and ax # cx/.

If k > m, then s and u satisfy condition (1) fbecause a; = b; = ¢; for alli=1,2,...,m]. Thus
in either case s R u.

Subcase ¢ (s Rt by condition (2) and t R u by condition (1)): Then for some integer
kwithk<m, k<n,k>1l,a;,=bforalli=1,2,...,k~1,ar R bg,and ap # by, and n <p
and b; = ¢; for all j = 4,2,...,n. Then s and u satisfy condition (2) [because k < n, k <p
(sincek <nand n<p), k=21, a=b=c forali=12,....k—1 (since k-1 < n),
ax Rey (since by = ¢y, because k < n), and ay # ¢ (since by = ¢ and aj # bi)]. Thus s R u.
Subcase d (s R t by condition (2) and t R u by condition (2)): Then for some integer
kwithk<m, k<n k>1,a; =0bforali=12,...,k—1, ap R by, and ax # by, and
for some integer { with ! <n,l <p,and{ > 1,b; =¢; forall j =1,2,....,1 -1, 4 R ¢, and
bz 75 Ci.

Ifk <l thena; =b; =¢; foralli=1,2,...,k—1, ax R by, by = ¢; (in which case a; R c;),
and ay # ¢k (since ag # by). Thus if, k <, then s < u by condition (2).

If k =1, then bx R ¢ (in which case a;. R ¢ by transitivity of R) and by, # ci. It follows that
ax # cx [for if ax = ck, then ar R by and by R ax, which implies that ax = by (since R is a
partial order) and contradicts the fact that ai # byJ. Thus if k =, then s < u by condition
(2).

Ifk >l thena, =b;=c foralli=1,2,...,1-1, a; R ¢; (because b R ¢; and a; = b;), a; # ¢
(because by # ¢; and a; = b;). Thus if k > I, then s < u by condition (2).

Hence, regardless of whether k < [, k =, or k > [, we conclude that s < u.

The above arguments show that in all possible situations, if s < ¢ and ¢ < u then s <X u fas
was to be shown]. Hence < is transitive.

Conclusion: Since < is reflexive, antisymmetric, and transitive, < is a partial order relation.

15. Proof:

Suppose R is a relation on a set A and R is reflexive, symmetric, transitive, and anti-symmetric.
We will show that R is the identity relation on A.

First note that for all z and y in A, if z R y then, because R is symmetric, y R z. But then,
because R is also anti-symmetric £ = y. Thus for all z and y in A, if z R y then z = y.

This argument, however, does not prove that R is the identity relation on A because the
conclusion would also follow from the hypothesis (by default) in the case where A # § and
R=0.

But when A # @, it is impossible for R to equal @ because R is reflexive, which means that
z R z for every z in A.

Thus every element in A is related by R to itself, and no element in A is related to anything
other than itself. It follows that R is the identity relation on A.
27. greatest element: (1,1} least element: (0,0)

maximal elements: (1,1) minimal elements: (0,0)
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122 Chapter 8: Relations

30. c. no greatest element and no least element

d. greatest element: 9 least element: 1
33. A is not totally ordered by the given relation because 9112 and 1219.
36. {2, 4, 12, 24} or {3, 6, 12, 24}
45. One such total order is 3, 9, 2, 6, 18, 4, 12, 8.

48. One such total order is 0, {a}, {b}, {c}, {d}, {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {e,d},
{a,b,c},{a,b,d}, {a,c,d}, {b,c,d},{a,b,c,d}.

51. a. 33 hours

S T U D E N T gz_o %.Iﬁai%All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publielyffﬁsita: glalé 'ﬂwgcy}r:in grh 0 ny mous



Chapter 8 Review 123

Review Guide: Chapter 8

Definitions: How are the following terms defined?
e congruence modulo 2 relation (p. 443)
inverse of a relation from a set A to a set B (p. 444)
relation on a set (p. 446)
directed graph of a relation on a set (p. 446)
n-ary relation (and binary, ternary, quaternary relations) (p. 447)
reflexive, symmetric, and transitive properties of a relation on a set (p. 450)
congruence modulo 3 relation (p. 455)
transitive closure of a relation on a set (p. 457)
equivalence relation on a set (p. 462)
equivalence class (p. 465)
congruence modulo n relation (p. 473)
representative of an equivalence class (p. {72)
m is congruent to n modulo d (p. 478)
plaintext and cyphertext (p. 478)
residue of a modulo n (p. 481)
complete set of residues modulo n (p. 481)
d is a linear combination of a and b (p. 486)
a and b are relatively prime; ay,a,...,a, are pairwise relatively prime (p. 488)
an inverse of a modulo n (p. 489)
antisymmetric relation (p. 499)
partial order relation (p. 500)
lexicographic order (p. 502)
Hasse diagram (p. 503)
a and b are comparable (p. 505)
poset (p. 506)
total order relation (p. 506)
chain, length of a chain (p. 506)
maximal element, greatest element, minimal element, least element (p. 507)
topological sorting (p. 507)
compatible partial order relations (p. 508)
PERT and CPM (p. 510}
critical path (p. 512)

® @ & & ¢ 6 ¢ & O & & O & 6 O 0 O 0 0 O & 0 O & o o O o & 0 o

Properties of Relations on Sets and Equivalence Relations
e How do you show that a relation on a finite set is reflexive? symmetric? transitive? (pp.
450-452)
e How do you show that a relation on an infinite set is reflexive? symmetric? transitive? (pp.
458-456)
¢ How do you show that a relation on a set is not reflexive? not symmetric? not transitive? (pp.
451-454)
e How do you find the transitive closure of a relation? (p. 457)
e What is the relation induced by a partition of a set? (p. 460)
e Given an equivalence relation on a set A, what is the relationship between the distinct equiv-
alence classes of the relation and subsets of the set A? (p. 469)
e Given an equivalence relation on a set A and an element a in A, how do you find the equivalence
class of a? (pp. 465-467, 470-472)
o In what way are rational numbers equivalence classes? (pp. 473-474)
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124 Chapter 8: Relations

Cryptography

e How does the Caesar cipher work? (p. 478)

e If a, b, and n are integers with n > 1, what are some different ways of expressing the fact that
n|(a—"5)? (p. 480)

e How do you reduce a number modulo n? (p. 481)

o If n is an integer with n > 1, is congruence modulo n an equivalence relation on the set of all
integers? (p. 481)

e How do you add, subtract, and multiply integers modulo an integer n > 1?7 (p. 482)

e What is an efficient way to compute a* where a is an integer with @ > 1 and k is a large
integer? (pp. 484-485)

o How do you express the greatest common divisor of two integers as a linear combination of
the integers? (p. 487)

¢ When can you find an inverse modulo = for a positive integer a, and how do you find it? (pp.
488-489)

e How do you encrypt and decrypt messages using RSA cryptography? (pp. 491-492)

o What is Euclid’s lemma? How is it proved? (p. 492)

e What is Fermat’s little theorem? How is it proved? (p. 494)

o Why does the RSA cipher work? (pp. 494-496)

Partial Order Relations

e How do you show that a relation on a set is or is not antisymmetric? (pp. 499-500)

e If A is a set with a partial order relation R, S is a set of strings over A, and a and b are in S,
how do you show that a < b, where < denotes the lexicographic ordering of S? (p. 502)
How do you construct the Hasse diagram for a partial order relation? (p. 503)

How do you find a chain in a partially ordered set? (p. 506)

Given a set with a partial order, how do you construct a topological sorting for the elements
of the set? (p. 508)

Given a job scheduling problem consisting of a number of tasks, some of which must be
completed before others can be begun, how can you use a partial order relation to determine
the minimum time needed to complete the job? (pp. §11-512)
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Chapter 9: Counting and Probability

The primary aim of this chapter is to foster intuitive understanding for fundamental principles of
counting and probability and an ability to apply them in a wide variety of situations. It is helpful
to get into the habit of beginning a counting problem by listing (or at least imagining) some of the
objects you are trying to count. If you see that all the objects to be counted can be matched up
with the integers from m to n inclusive, then the total is n —m+1 (Section 9.1). If you see that all
the objects can be produced by a multi-step process, then the total can be found by counting the
distinct paths from root to leaves in a possibility tree that shows the outcomes of each successive
step (Section 9.2). And if each step of the process can be performed in a fixed number of ways
(regardless of how the previous steps were performed), then the total can be calculated by applying
the multiplication rule (Section 9.2).

If the objects to be counted can be separated into disjoint categories, then the total is just the
sum of the subtotals for each category (Section 9.3). And if the categories are not disjoint, the total
can be counted using the inclusion/exclusion rule (Section 9.3). If the objects to be counted can
be represented as all the subsets of size r of a set with n elements, then the total is (7) for which
there is a computational formula (Section 9.5). Finally if the objects can be represented as all the
multisets of size 7 of a set with n elements, then the total is ("*7~') (Section 9.6).

Section 9.4 introduces the pigeonhole principle, which provides a way to answer questions about
how many of a certain object are needed to guarantee certain results and is used to show that certain
results are guaranteed if a certain number of objects are present. The section includes the reasoning
for why every rational number has a decimal expansion that either terminates or repeats.

Pascal’s formula and the binomial theorem are discussed in Section 9.7. Each is proved both al-
gebraically and combinatorially. Pascal’s formula and the binomial theorem are discussed in Section
9.7. Each is proved both algebraically and combinatorially. Exercise 28 of Section 9.7 is intended to
help you see how Pascal’s formula is applied in the algebraic proof of the binomial theorem.

Sections 9.8 and 9.9 develop the axiomatic theory of probability through the concepts of expected
value, conditional probability, independence, and Bayes’ theorem. Exercise 20 of Section 9.1 can
be solved directly by reasoning about the sample space, but it can also be solved using conditional
probability, which is discussed in Section 9.9.

Section 9.1

6. {2, 3%, 4%, 20,30,40,20,30,40,24,34,. 446}  Probability = 12/52 = 3/13 = 23.1%

12. b. (ii) {GGB,GBG, BGG,GGG} Probability = 4/8 = 1/2 = 50%
(iii) {BBB} Probability = 1/8 = 12.5%

15. The methods used to compute the probabilities in exercises 12, 13, and 14 are exactly the same
as those in exercise 11. The only difference in the solutions are the symbols used to denote the
outcomes; the probabilities are identical. These exercises illustrate the fact that computing
various probabilities that arise in connection with tossing a coin is mathematically identical
to computing probabilities in other, more realistic situations. So if the coin tossing model is
completely understood, many other probabilities can be computed without difficulty.

27. Let k be the 62nd element in the array. By Theorem 9.1.1, k—294+1 =62,s0k = 62429—1 =
90. Thus the 62nd element in the array is B[90].

3. 1 2 3 4 5 6 ... 998 999 1000 1001
! ! ! ! !
2.1 2.2 23 2- 499 2. 500

The diagram above shows that there are as many even integers between 1 and 1001 as there
are integers from 1 to 500 inclusive. There are 500 such integers.

125
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126 Chapter 9: Counting and Probability

33. Proof (by mathematical induction): Let the property P(n) be the sentence

The number of integers from m to n inclusive is n —m + 1. «— P(n)

We will prove by mathematical induction that the property is true for all integers n > m.

Show that P(m) is true: P(m) is true because there is just one integer, namely m, from
m to m inclusive. Substituting m in place of n in the formula n —m 41 gives m —m+1 = 1,
which is correct.

Show that for all integers k > m, if P(k) is true then P(k + 1) is true: Let k be
any integer with £ > m and suppose that

P(k)

The number of integers from m to k inclusive is & — m + 1. . . .
inductive hypothesis
We must show that
The number of integers from m to & + 1 inclusive is (k+ 1) —m + 1. — P(k+1)

Consider the sequence of integers from m to k + 1 inclusive:

an m+1, m+2, A} ’Er (k+1)

k-m+1

By inductive hypothesis there are £k — m + 1 integers from m to k inclusive. So there are
(k —m+1) + 1 integers from m to k + 1 inclusive. But (k—m+1)+1=(k+1)—m+1. So
there are (k+ 1) — m + 1 integers from m to k + 1 inclusive fas was to be shown/.

Section 9.2

12. b. Think of creating a string of hexadecimal digits that satisfies the given requirements as a
6-step process.

Step 1: Choose the first hexadecimal digit. It can be any hexadecimal digit from 4 through D
(which equals 13). There are 13 — 4 + 1 = 10 of these.

Steps 2-5: Choose the second through the fifth hexadecimal digits. Each can be any one of
the 16 hexadecimal digits.

Step 6: Choose the last hexadecimal digit. It can be any hexadecimal digit from 2 through E
(which equals 14). There are 14 — 2 + 1 = 13 of these.

So the total number of the specified hexadecimal numbers is 10- 16- 16- 16- 16- 13 = 8, 519, 680.
15. Think of creating combinations that satisfy the given requirements as multi-step processes in
which each of steps 1-3 is to choose a number from 1 to 30, inclusive.

a. Because there are 30 choices of numbers in each of steps 1-3, there are 30* = 27, 000 possible
combinations for the lock.

b. In this case we are given that no number may be repeated. So there are 30 choices for step
1, 29 for step 2, and 28 for step 3. Thus there are 30- 29. 28 = 24, 360 possible combinations
for the lock.
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Section 9.2 127

18. b. Constructing a PIN that is obtainable by the same keystroke sequence as 5031 can be
thought of as the following four-step process:

Step 1: Choose either the digit 5 or one of the three letters on the same key as the digit 5.
Step 2: Choose the digit 0.

Step 8: Choose the digit 3 or one of the three letters on the same key as the digit 3.

Step 4: Choose either the digit 1 or one of the two letters on the same key as the digit 1.

There are four ways to perform steps 1 and 3, one way to perform step 2, and three ways to
perform step 4. So by the multiplication rule there are 4. 1- 4- 3 = 48 different PINs that are
keyed the same as 5031.

c. Constructing a numeric PIN with no repeated digit can be thought of as the following
four-step process. Steps 1-4 are to choose the digits in position 1-4 (counting from the left).
Because no digit may be repeated, there are 10 ways to perform step one, 9 ways to perform
step two, 8 ways to perform step three, and 7 ways to perform step four. Thus the number of
numeric PINs with no repeated digit is 10- 9- 8- 7 = 5040.

21. a. There are 2" relations from A to B because a relation from A to B is any subset of A x B,
A x B is a set with mn elements (since A has m elements and B has n elements), and the
number of subsets of a set with mn elements is 2™" (by Theorem 6.3.1).

b. In order to define a function from A to B we must specify exactly one image in B for each
of the m elements in A. So we can think of constructing a function from A to B as an m-step
process, where step i is to choose an image for the ith element of A (for i = 1,2,...,m).
Because there are n choices of image for each of the m elements, by the multiplication rule,
the total number of functions is n-n-n..-n=n".

—_——

m factors

m m
c. The fraction of relations from A to B that are functions is ;‘—m = (22")

30. a. Call one of the integers » and the other s. Since r and s have no common factors, if p; is a
factor of r, then p; is not a factor of s.

So for each i = 1,2, ..., m, either p;* is a factor of r or p;* is a factor of s.

Thus, constructing r can be thought of as an m-step process in which step i is to decide
whether p;¥ is a factor of 7 or not.

There are two ways to perform each step, and so the number of different possible r’s is 2™.
Observe that once 7 is specified, s is completely determined because s = n/r.

Hence the number of ways n can be written as a product of two positive integers rs which
have no common factors is 2™. Note that this analysis assumes that order matters because,
for instance, r = 1 and s = n will be counted separately from r =n and s = 1.

b. Each time that we can write n as rs, where r and s have no common factors, we can also
write n = sr. So if order matters, there are twice as many ways to write n as a product of two
integers with no common factors as there are if order does not matter. Thus if order does not
matter, there are 2™ /2 = 2™~! ways to write n as a product of two integers with no common
factors.

33. a. The number of ways the 6 people can be seated equals the number or permutations of a set
of 6 elements, namely, 6! = 720.

b. Assuming that the row is bounded by two aisles, arranging the people in the row can be
regarded as the following 2-step process:

Step 1: Choose the aisle seat for the doctor. [There are 2 ways to do this.]
Step 2: Choose an ordering for the remaining people. [There are 5! ways to do this.]
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128 Chapter 9: Counting and Probability

Thus, by the multiplication rule, the answer is 2- 5! = 240.

(If it is assumed that one end of the row is against a wall, then there is only one aisle seat and
the answer is 5! = 120.)

¢. Each married couple can be regarded as a single item, so the number of ways to order the
3 couples is 3! = 6.
36. stu,stv,sut,suv,svt,svu,tsu,tsv, tus, tuy, tus, tou, ust, usv, uts, utv, uvs, uvt, vst, vsu, vts, viu, vus, vut
39. b. P(9,6)=9!/(9—-6)! =9!/3!=9-8-7-6-5-4= 60,480
d P(1,4)=7/(T—-4=7/31=7-6-5-4 =840
42, Proof 1: Let n be any integer such that n > 3. By the first version of the formula in Theorem
9.2.3,
Pn+1,3)—Pn,3) = (m+Dnn-1)—nn-1)(n-2)

= nn-1)[(n+1)-(n-2)]
= nn—1)(n+l-n+2)
= 3n(n—1)

= 3P(n,2).

Proof 2: Let n be any integer such that n > 3. By the second version of the formula in
Theorem 9.2.3,

Pt 8= ped) = ((n(z Jlr)lz!s)! T - 3)!
_ (n+1) n!
T (-2 (-3
(n+1)-n! (n-2)-n!

n-2! (-2) (n-23)!

al((n+1) - (n—2))
(n—2)!

n!
=2 3

= 3P(n,2).
45. Proof (by mathematical induction): Let the property P(n) be the sentence

The number of permutations of a set with n elements is n!l. — P(n)

We will prove by mathematical induction that the property is true for all integers n > 1.

Show that P(1) is true: P(1) is true because if a set consists of one element there is just
one way to order it, and 1! = 1.

Show that for all integers k > 1, if P(k) is true then P(k + 1) s true: Let k be
any integer with k£ > 1 and suppose that

_ P(K)

The number of permutations of a set with k elements is k!. . . )
inductive hypothesis

‘We must show that

number of permutations of a set with k elements is (k + 1)!. — P(k+1)
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Section 9.3 129

Let X be a set with & + 1 elements. The process of forming a permutation of the elements of
X can be considered a two-step operation as follows:

Step 1: Choose the element to write first.
Step 2: Write the remaining elements of X in some order.

Since X has k+ 1 elements, there are k+ 1 ways to perform step 1, and by inductive hypothesis
there are k! ways to perform step 2. Hence by the multiplication rule there are (k + 1)k! =
(k + 1)! ways to form a permutation of the elements of X. But this means that there are
(k + 1)! permutations of X f[as was to be shown].

Section 9.3

. a. For simplicity, start by assuming that a blank plate is allowed. Then the number of ways
to construct a license plate can be thought of as a 2-step process, where step 1 is to choose
the letters for the initial portion of the plate and Step 2 is to choose the digits for the second
portion of the plate. Because anywhere from 0 to 3 letters may be chosen for the initial portion
of the plate, by the addition rule, the number of ways to choose the letters for the initial portion
of the plate is

the number the number the number the number
of choices of | + | of choices of | + | of choices of | + | of choices of
of 0 letters of 1 letter of 2 letters of 3 letters

Because there are 26 letters in the alphabet, there is only one way to choose 0 letters, and
26 ways to choose one letter. The number of ways to choose two or three letters is computed
using the multiplication rule. For example, choosing three letters can be thought of as a 3-step
process: step 1 is to fill in the first letter, step 2 is to fill in the second letter, and step 3 is
to fill in the third letter. Thus the number of ways to choose three letters is 26%. Similarly,
the number of ways to choose two letters is 262. It follows that the number of ways to choose
from O to 3 letters is
1+ 26 + 26° + 26°.

The same kind of reasoning can be applied to compute the number of ways to choose the digits
for the second portion of the license plate, namely

the number the number the number the number the number
of choices of | + | of choices of | + [ of choices of | + | of choices of | + | of choices of
of 0 digits of 1 digit of 2 digits of 3 digits of 4 digits

Because there are ten digits, there is only one way to choose 0 digits, and 10 ways to choose
one digit. The number of ways to choose two, three, or four digits is computed using the
multiplication rule. For example, choosing three digits can be thought of as a 3-step process:
step 1 is to fill in the first digit, step 2 is to fill in the second digit, and step 3 is to fill in the
third digit. Thus the number of ways to choose three digits is 26%. Similarly, the number of
ways to choose two digits is 262, and the number of ways to choose four digits is 26%. It follows
that the number of ways to choaose from 0 to 4 digits is

1+ 10+ 102 + 103 + 10*.

Since each choice of from 0 to 3 letters can be paired with each choice of from 0 to 4 digits, by
the multiplication rule, the number of ways to choose from 0 to 3 letters to place in the initial
portion of the license plate and from 0 to 4 digits to place in the final portion of the license
plate is the product

(1 + 26 + 262 + 26%)(1 + 10 + 102 + 10° + 10*) = 203, 097, 969.

However, this number includes the blank plate, which is not allowed. So, by the difference
rule, the total number of license plates is 203,097, 969 — 1 = 203, 097, 968.
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130 Chapter 9: Counting and Probability

9. b. On the ith iteration of the outer loop, there are ¢ iterations of the inner loop, and this
is true for each i = 1,2,...,n. Therefore, the total number of iterations of the inner loop is
1424+3+--+n=n(n+1)/ 2

12. a. The number of ways to arrange the 6 letters of the word THEORY in a row is 6! = 720

b. When the TH in the word THEORY are treated as an ordered unit, there are only 5
items to arrange, TH, E, O, R, and Y. and so there are 5! orderings. Similarly, there are 5!
orderings for the symbols HT, E, O, R, and Y. Thus, by the addition rule, the total number
of orderings is 5! + 5! = 120 + 120 = 240.

15. The set of all possible identifiers may be divided into 30 non-overlapping subsets depending
on the number of characters in the identifier. Constructing one of the identifiers in the kth
subset can be regarded as a k-step process, where each step consists in choosing a symbol for
one of the characters (say, going from left to right). Because the first character must be a
letter, there are 26 choices for step 1, and because subsequent letters can be letters or digits
or underscores there are 37 choices for each subsequent step. By the addition rule, we add
up the number of identifiers in each subset to obtain a total. But because 82 of the resulting
strings cannot be used as identifiers, by the difference rule, we subtract 82 from the total to
obtain the final answer. Thus we have

(26 +26- 37 +26- 372 + - - + 26- 372%) — 82 = 26(1 + 37+ 372 + ... + 37%) — 82

<N 3730 _1 "
=26-) 37" -82=26( ——— ) -82=8. o,
> " — 8 6( o ) 82 2 8,030 x 10

18. b. Proof: Let A and B be events in a sample space S. By the inclusion/exclusion rule (Theorem

b.
9.3.3), N(AU B) = N(A) + N(B) — N(AN B). So by the equally likely probability formula,

_ N(AUB) _N(4)+N(B)-N(ANB) _N(4) . N(B) N(ANB)
PAVB) = =55 - N(S) =NE TNG) T NG

= P(A) + P(B) — P(AN B).

21. Call the employees U, V, W, X, Y, and Z, and suppose that U and V are the married couple.
Let A be the event that U and V' have adjacent desks. Since the desks of U/ and V can be
adjacent either in the order UV or in the order VU, the number of desk assignments with U
and V adjacent is the same as the sum of the number of permutations of the symbols ,
W, X, Y, Z plus the number of permutations of the symbols , W, X,Y, Z. By the
multiplication rule each of these is 5!, and so by the addition rule the sum is 2- 5!. Since the
total number of permutations of U, V, W, X, Y, Z is 6!,

51 2 1
PA=25=5"3
Hence by the formula for the probability of the complement of an event,

P(A°)=1—P(A)=l—%=§.

So the probability that the married couple have nonadjacent desks is 2/3.

24. a. Let A and B be the sets of all integers from 1 through 1,000 that are multiples of 2 and 9
respectively. Then N(A) = 500 and N(B) = 111 (because 9 = 9- 1 is the smallest integer in B
and 999 = 9-111 is the largest). Also AN B is the set of all integers from 1 through 1,000 that
are multiples of 18, and N(A N B) = 55 (because 18 = 18- 1 is the smallest integer in AN B
and 990 = 18. 55 is the largest). It follows from the inclusion/exclusion rule that the number
of integers from 1 through 1,000 that are multiples of 2 or 9 equals

N(AUB) = N(A) + N(B) — N(AU B) = 500 + 111 — 55 = 556.
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b. The probability is 556/1000 = 55.6%.
c. 1000 — 556 = 444

27. a. Let k be an integer with & > 3. The set of bit strings of length & that do not contain
the pattern 101 can be partitioned into k + 1 subsets: the subset of strings that start with 0
and continue with any bit string of length & — 1 not containing 101 [there are ax—1 of these],
the subset of strings that start with 100 and continue with any bit string of length & — 3
not containing 101 fthere are ax_3 of these/, the subset of strings that start with 1100 and
continue with any bit string of length ¥ — 4 not containing 101 fthere are ax—4 of these],
the subset of strings that start with 11100 and continue with any bit string of length & — 5
not containing 101 fthere are ar_s of these/, until the following subset of strings is obtained:
{11...1001,11...1000} fthere are 2 of these and a, equals 2/. In addition, the three single-

k-3 1's k-3 1's

element sets {11...100}, {11...10}, and {11...11} are in the partition, and since ap = 1
k-2 Vs k-1 1s k-1 1's

(because the only bit string of length zero that satisfies the condition is €), 3 = ag + 2. Thus
by the addition rule,

ar = Qg1 +0ox_3+ax_q+---+a;+ag+2

b. By part (a), if & > 4,

ar = Gg-1+ar-3+akr—q4+---+a1+ap+2
g1 = Qr_g+ar_a+ax_s5+---+a;+ag+2.

Subtracting the second equation from the first gives

ag — k-1 = Og-1+ ax—3 — Ak—2
= ar = 2ap—;+ ap_3— ap—2. (Call this equation (*).)

Note that a; = 4 (because all four bit strings of length 2 satisfy the condition) and a3 = 7
(because all eight bit strings of length 3 satisfy the condition except 101). Thus equation (*)
is also satisfied when k = 3 because in that case the right-hand side of the equation becomes
2as +ag —a; = 2-4+1—2 =7, which equals the left-hand side of the equation.

30. To get a sense of the problem, we compute s4 directly. If there are four seats in the row, there
can be a single student in any one of the four seats or there can be a pair of students in seats
1&3, 1&4, or 2&4. No other arrangements are possible because with more than two students,
two would have to sit next to each other. Thus s4 =4+ 3 = 7. In general, if there are & chairs
in a row, then

8k = Sg—1 (the number of ways a nonempty set of students can sit
in the row with no two students adjacent and chair & empty)

+8k—2 (the number of ways students can sit in the row with chair &
occupied, chair k£ — 1 empty, and chairs 1 through
k — 2 occupied by a nonempty set of students in such a
way that no two students are adjacent)

+1 (for the seating in which chair & is occupied
and all the other chairs are empty

= Sg_1 + Sk—2 + 1 for all integers k& > 3.
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132 Chapter 9: Counting and Probability

33. ¢

Sample of Students

el f.17

36. a. by the double complement law and the difference rule b. by De Morgan’s law
c. by the inclusion/exclusion rule
39. Imagine each integer from 1 through 999,999 as a string of six digits with leading 0’s included.

For each i = 1,2, 3, let A; be the set of all integers from 1 through 999,999 that do not contain
the digit 7. We want to compute N(A;°N A3° N A3°). By De Morgan’s law,

A°NAFNA = (Al U Ag)° N A3¢ = (Al UAds U Ag)c =U - (Al U Ag UA3),
and so, by the difference rule,
N(AlcﬂAzangc) = N(U) —N(A1 UA2UA3).

By the inclusion/exclusion rule,
N(A;UA2UA3) = N(A1)+N(A2)+N(A3)—N(A1NA3) - N(A1NA3)— N(A2NAs) + N (A1 NAaNA3).

Now N(A;) = N(A2) = N(A3) = 9° because in each case any of nine digits may be chosen
for each character in the string (for A; these are all the ten digits except ¢). Also each
N(A; N A;) = 8% because in each case any of eight digits may be chosen for each character of
the string (for A;NA; these are all the ten digits except i and j). Similarly, N(A;NA2NA;3) = 78
because any digit except 1, 2, and 3 may be chosen for each character in the string. Thus

N(AUAyU Az) =3-95 —3.85 4 76,
and so, by the difference rule,

N(A1°N A2° N Az°) = N(U) — N(A; U As U A3) = 108 — (3. 9% — 3. 8% + 76) = 74, 460.

42. a. g3=1, g4=1, g5s=2 (LWLLL and WWLLL)
b. ge =4 (WWWLLL, WLWLLL, LWWLLL, LLWLLL)

¢. If ¥ > 6, then any sequence of k£ games must begin with exactly one of the possibilities: W,
LW, or LLW. The number of sequences of k£ games that begin with W is gx_; because the
succeeding k& — 1 games can consist of any sequence of wins and losses except that the first
sequence of three consecutive losses occurs at the end. Similarly, the number of sequences of
k games that begin with LW is gi_» and the number of sequences of £ games that begin with
LLW is gi—3. Therefore, gr = gx—1 + gr—2 + gx—3 for all integers k > 6.

45. Proof (by mathematical induction): Let the property P(k) be the sentence

If a finite set A equals the union of & distinct mutually
disjoint subsets subsets A;, As,..., Ax, then — P(k)
N(A)=N(A1) + N(A2) + -+ N(Ag).
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We will prove by mathematical induction that P(k) is true for all integers k > 1.
Show that P(1) is true: P(1) is true because if a finite set A equals the “union” of one
subset A;, then A = A;, and so N(A) = N(4;).

Show that for all integers i > 1, if P(i) is true then P(i + 1) is true: Let i be any
integer with ¢ > 1 and suppose that

If a finite set A equals the union of ¢ distinct mutually
disjoint subsets subsets A;, Ao, ..., A;, then
N(A) = N(A1)+ N(Az) +--- + N(A).

P(i)
inductive hypothesis

‘We must show that

If a finite set A equals the union of 7 + 1 distinct mutually
disjoint subsets subsets A;, Az, ..., Aiy1, then — P(i+1)
N(A) = N(A1) + N(Az2) + -+ N(Ait1).

Let A be a finite set that equals the union of i + 1 distinct mutually disjoint subsets
Ay, Ao, ..., Ajxy. Then A = AJUAU---U A4 and A; N A; = @ for all integers ¢ and
jwithi#j.

Let B be theset AfUAsU---UA;. Then A= BUA;;; and BnAg, = 0.

[For if x € BN Aiy1, then z € AyUAU---UA; and = € Ayyy, which implies that x € Aj,
for some jwith 1 < j <4, and z € Aj41. But A; and A; are disjoint. Thus no such z ezists.]

Hence A is the union of the two mutually disjoint sets B and A;;,. Since B and A;y; have
no elements in common, the total number of elements in B U A;4; can be obtained by first
counting the elements in B, next counting the elements in A;y1, and then adding the two
numbers together.

It follows that N(BU A;4+1) = N(B) + N(A;1+1) which equals N(A,) + N(Az) +---+ N(A;) +
N(Ai41) by inductive hypothesis. Hence P(i + 1) is true [as was to be shown/.

48. Proof (by mathematical induction): Let the property P(n) be the general inclusion/exclusion
rule. We will prove by mathematical induction that P(n) is true for all integers n > 2.
Show that P(2) is true: P(2) was proved in one way in the text preceding Theorem 9.3.3
and in another way in the solution to exercise 46.
Show that for all integers r > 2, if P(r) is true then P(r + 1) is true: Let r be
any integer with r > 2 and suppose that the general inclusion/exclusion rule holds for any
collection of r finite sets. (This is the inductive hypothesis.) Let A;, As,..., Ar4; be finite

sets. Then
N(AjUAU---UA4,)
= N(AU(A2UA3U---UA41)) by the associative law for U

= N(A1)+N(A2UA3U"'UAT+1) - N(A, ﬂ(AzUA3U“'UAr+1))
by the inclusion/exclusion rule for two sets

= N(Al) +N(A2UA3U"'UA,-+1) - N((Al nAz)U(A] nA3)U'-'U(A1 nAr.*.l))
by the generalized distributive law for sets
(exercise 37, Section 6.2)

= N(Al) + (22Si5r+l N(Ai) - Z25i<j$r+l N(Ai N Aj)
+ Cacicicngrrt NAN AN A) =+ (17 IN(A2 N As -2 N Arya))
- (Z25i5r+1 N(AINA;) = Yocicicrin N(A1NA) N (AL NAG)) + -

H(=1)™N((A N A2) N (A1 N Az)N---N (4 N A,H)))
by inductive hypothesis
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134 Chapter 9: Counting and Probability

N(A1) + (Z25i5r+l N(A:) = Yacicicret N(AiN 4;j)
+ D ocicjckgrit V(AN A NAL) — -+ (-1)"F'N(A3 N A3N---N Ar+1))

- (Z?SiSr+l N(Al n Ai) e Z2$i<jsr+1 N(Al NA;N Aj) +
+(=1)""N(A1 N AN A3 -0 A,H))

= Yicicrar NA) = Xicicicrn NAi NV A5) + 3 cicjcncrin N(Ai N A; N Ak)
— (—1)'+2N(A1 NAsN---NA41).

[This is what was to be proved.]

Section 9.4

6. a. Yes.

Solution 1: There are 6 possible remainders that can be obtained when an integer is divided
by 7, namely 0, 1, 2, 3, 4, 5. Apply the pigeonhole principle, thinking of the 7 integers as the
pigeons and the possible remainders as the pigeonholes. Each pigeon flies into the pigeonhole
that is the remainder obtained when it is divided by 6. Since 7 > 6, the pigeonhole principle
says that at least two pigeons must fly into the same pigeonhole. So at least two of the numbers
must have the same remainder when divided by 6.

Solution 2: Let X be the set of seven integers and Y the set of all possible remainders obtained
through division by 6, and consider the function R from X (the pigeons) to Y (the pigeonholes)
defined by the rule: R(n) = n mod 6 (= the remainder obtained by the integer division of
n by 6). Now X has 7 elements and Y has 6 elements (0, 1, 2, 3, 4, and 5). Hence by the
pigeonhole principle, R is not one-to-one: R(n;) = R(ny) for some integers n; and ny with
ny # nz. But this means that n; and ny have the same remainder when divided by 6.

b. No. Consider the set {1,2,3,4,5,6,7}. This set has seven elements no two of which have
the same remainder when divided by 8.

15. There are n + 1 even integers from 0 to 2n inclusive:
0(=2-0), 2(=2-1), 4(=2-2),..., 2n(=2-n).

So a maximum of n+ 1 even integers can be chosen. Thus if at least n + 2 integers are chosen,
one is sure to be odd. Similarly, there are n odd integers from 0 to 2n inclusive, namely

1(=2-1-1), 3(=2-2-1),..., 2n—1(=2-n—1).

It follows that if at least n + 1 integers are chosen, one is sure to be even.

(An alternative way to reach the second conclusion is to note that there are 2n + 1 inte-
gers from 0 to 2n inclusive. Because n 4 1 of them are even, the number of odd integers is
@Cn+1)—(n+1)=mn.)

18. There are 15 distinct remainders that can be obtained through integer division by 15 (0, 1, 2,
..., 14). Hence at least 16 integers must be chosen in order to be sure that at least two have
the same remainder when divided by 15.

21. The length of the repeating section of the decimal representation of 683/1493 is less than or
equal to 1,492. The reason is that there are 1,492 nonzero remainders that can be obtained
when a number is divided by 1,493. Thus, in the long-division process of dividing 683.0000. ..
by 1,493, either some remainder is 0 and the decimal expansion terminates (in which case the
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length of the repeating section is 0) or, only nonzero remainders are obtained and at some
point within the first 1,492 successive divisions, a nonzero remainder is repeated. At that
point the digits in the developing decimal expansion begin to repeat because the sequence of
successive remainders repeats those previously obtained.

27. Yes. Let X be the set of 2,000 people (the pigeons) and Y the set of all 366 possible birthdays
(the pigeonholes). Define a function B: X — Y by specifying that B(z) = z’s birthday. Now
2000 > 4 - 366 = 1464, and so by the generalized pigeonhole principle, there must be some
birthday y such that B~!(y) has at least 4 + 1 = 5 elements. Hence at least 5 people must
share the same birthday.

30. Consider the maximum number of pennies that can be chosen without getting at least five
from the same year. This maximum, which is 12, is obtained when four pennies are chosen
from each of the three years. Hence at least thirteen pennies must be chosen to be sure of
getting at least five from the same year.

33. Proof: Suppose A is a set of six positive integers each of which is less than 15. By Theorem
6.3.1, (A), the power set of A, has 26 = 64 elements, and so A has 63 nonempty subsets.
Let k& be the smallest number in the set A.

Given any nonempty subset of A, the sum of all the elements in the subset lies in the range
from k through k + 10 + 11 + 12 + 13 4+ 14 = k + 60, and, by Theorem 9.1.1, there are
(k + 60) — k + 1 = 61 integers in this range. Let S be the set of all possible sums of the
elements that are in a nonempty subset of A. Then S has at most 61 elements.

Define a function F from the set of nonempty subsets of A to S as follows: For each nonempty
subset X in A, let F(X) be the sum of the elements of X. Because A has 63 nonempty subsets
and S has 61 elements, the pigeonhole principle guarantees that F is not one-to-one. Thus
there exist distinct nonempty subsets A, and Az of A such that F(A;) = F(A3z), which implies
that the elements of A; add up to the same sum as the elements of As.

Note: In fact, it can be shown that it is always possible to find disjoint subsets of A with the
same sum. To see why this is true, consider again the sets A; and Az found in the preceding
proof. Then A; # As and F(A4,) = F(A). By definition of F, F(A; — A;) + F(A1 N Ag) =
the sum of the elements in A; — Ay plus the sum of the elements in A; N As. But A; — As
and A; N A, are disjoint and their union is A;. So F(A; — A2) + F(A4; N Ay) = F(4,;). By
the same reasoning, F(A; — A,) + F(A1 N Ag) = F(A3). Since F(A;) = F(Az), we have that
F(Al - A2) = F(A]) - F(A[ n Ag) = F(Ag) - F(Al N A2) = F(A2 - Al) Hence the elements
in A; — A add up to the same sum as the elements in A; — A;. But A; — A and As — A, are
disjoint because A; — A; contains no elements of Ay and A; — A; contains no elements of A;.

36. Proof: Suppose that 101 integers are chosen from 1 to 200 inclusive. Call them z;, z2,...,Z101.
Represent each of these integers in the form z; = 2¥¢a; where a; is the uniquely determined odd
integer obtained by dividing x; by the highest possible power of 2. Because each z; satisfies
the condition 1 < z; < 200, each a; satisfies the condition 1 < a; < 199. Define a function F
from X = {z1,z2,...,Z101} to the set Y of all odd integers from 1 to 199 inclusive by the rule
F(z;) = that odd integer a; such that z; equals 2ki.g;. Now X has 101 elements and Y has

100 elements, namely

1=21-1,3=22-1,5=23-1,..., 199 =2-100 — 1.

Hence by the pigeonhole principle, F is not one-to-one: there exist integers z; and z; such
that F(z;) = F(z;) and z; # z;.

But z; = 2%i-q; and x; = 9k; -a; and F(z;) = a; and F(z;) = a;. Thus z; = 2ki .q; and
z; = 2% .q;. If kj > ki, then

z; = P ‘a; = ok =k -2""-a,~ = oki—k: T3,
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and so z; is divisible by z;. Similarly, if k; < k;, z; is divisible by z;. Hence, in either case,
one of the numbers is divisible by another.

39. Let S be any set consisting entirely of integers from 1 through 100, and suppose that no integer
in S divides any other integer in S. Factor out the highest power of 2 to write each integer in
S as 2¢.m, where m is an odd integer.

Now consider any two such integers in S, say 27-a and 2°-b. Observe that a # b. The reason
is that if a = b, then whichever integer contains the fewer number of factors of 2 divides the
other integer. (For example, 223 | 2¢.3.)

Thus there can be no more integers in S than there are distinct odd integers from 1 through
100, namely 50.

Furthermore, it is possible to find a set T" of 50 integers from 1 through 100 no one of which
divides any other. For instance, T = 51,52, 53,...,99,100.

Hence the largest number of elements that a set of integers from 1 through 100 can have so
that no one element in the set is divisible by any other is 50.

Section 9.5

9. a. The number of committees of six that can be formed from the 40 members of the club is

( 460) = 3, 838, 380.

12. The sum of two integers is even if, and only if, either both integers are even or both are odd
[see Ezample 4.2.3]. Because 2 = 2.1 and 100 = 2- 50, there are 50 even integers and thus 51
odd integers froml to 101 inclusive. Hence the number of distinct pairs is the number of ways
to choose two even integers from the 50 plus the number of ways to choose two odd integers

from the 51:
( 520) 4 ( 5;) = 1225 + 1275 = 2500.

18. An ordering for the letters in MISSISSIPPI can be created as follows:
Step 1: Choose a subset of one position for the M
Step 2: Choose a subset of four positions for the I'’s
Step 3: Choose a subset of four positions for the S’s
Step 4: Choose a subset of two positions for the P’s
Thus the total number of distinguishable orderings is

11 10 6 2 11! 10! 6! 21 11!
( 1)( 4)(4)(2) I TR T A VY T TR TR T TR TR b

which agrees with the result in Example 9.5.10.

21. The number of symbols that can be represented in the Morse code using n dots and dashes
is 2”. Therefore, the number of symbols that can be represented in the Morse code using at
most seven dots and dashes is

27-1

2+22+23+24+25+26+27=2(1+2+22+23+24+25+26)=2(2—_1-) = 254.
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24. a. Because 210 = 2-3- 5. 7, the distinct factorizations of 210 are 1- 210, 2- 105, 3- 70, 5- 42,
7-30, 6- 35, 10- 21, and 14- 15. So there are 8 distinct factorizations of 210.

c. As in the answer to part (b), there are two different ways to look at the solution to this
problem.

Solution 1: Separate the factorizations into categories: one category consists only of the
factorization in which one factor is 1 and the other factor is the product of all five prime
factors [there is 1 = (g) such factorization], a second category consists of those factorizations
in which one factor is a single prime and the other factor is the product of the four other
primes fthere are (?) such factorizations/, and the third category contains those factorizations
in which one factor is a product of two of the primes and the other factor is the product
of the other three primes [there are (g) such factorizations]. All possible factorizations are

included among these categories, and so, by the addition rule, the answer is (g) + (?) + (g)
=1+5+10=16.

Solution 2: Let S = {p1,P2,P3,P4,P5}, let p1p2pspaps = P, and let f fo be any factorization
of P. The product of the numbers in any subset A C S can be used for f;, with the product of
the numbers in A€ being f2.. Thus there are as many ways to write f) f2 as there are subsets
of S, namely 2° = 32 (by Theorem 6.3.1). But given any factors f; and f, we have that
f1f2 = fof1- Thus counting the number of ways to write f fo counts each factorization twice.
So the answer is 5 = 16.

Note: In Section 9.7 we will show that (7:) = (nn 'r) whenever n > r > 0. Thus, for

example, the answer can be written as

(6)+ )+ C)=3((0)+ 0+ () + )+ () + ()

In Section 9.7 we will also show that for all integers n > 0,

@*@+@+"'+(n7—l2)+(ni1)+(z)=2n’

and so, in particular,

{0+ Q)0+ ()+ ()] -2

These facts illustrate the relationship between the two solutions to part (c) of this exercise.

d. Because the second solution given in parts (b) and (c) is the simplest, we give a gen-
eral version of it as the answer to this part of the exercise. Let S = {p1,p2,03,---,Pn}, let
P1p2ps -+ - Ppn = P, and let fi fa be any factorization of P. The product of the numbers in any
subset A C S can be used for fi, with the product of the numbers in A€ being fo. Thus there
are as many ways to write f; f> as there are subsets of S, namely 2" (by Theorem 6.3.1). But
given any factors f, and fa, we have that f)fo = fafi, and so counting the number of ways
to write fi fo counts each factorization twice. Hence the answer is 2%, =2n1,

27. b. A reflexive relation must contain (e,a) for all eight elements a in A. Any subset of the
remaining 56 elements of A x A (which has a total of 64 elements) can be combined with these
eight to produce a reflexive relation. Therefore, there are as many reflexive binary relations as
there are subsets of a set of 56 elements, namely 256.

d. Form a relation that is both reflexive and symmetric by a two-step process: (1) pick all
eight elements of the form (z,z) where z € A, (2) pick a set of (distinct) pairs of elements
of the form (a,b) and (b,a). There is just one way to perform step 1, and, as explained in
the answer to part (c), there are 2% ways to perform step 2. Therefore, there are 228 binary
relations on A that are reflexive and symmetric.
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30. The error is that the “solution” overcounts the number of poker hands with two pairs. In fact,
it counts every such hand twice. For instance, consider the poker hand {4, 4,J0,Jé, 9%}
If the steps outlined in the false solution in the exercise statement are followed, this hand is
first counted when the denomination 4 is chosen in step one, the cards 4& and 4¢> are chosen in
step two, the denomination J is chosen in step three, the cards J © and J# are chosen in step
four, and 9 is chosen in step five. The hand is counted a second time when the denomination
J is chosen in step one, the cards JO and J & are chosen in step two, the denomination 4 is
chosen in step three, the cards 4& and 4¢> are chosen in step four, and 9% is chosen in step
five.

Section 9.6

6. <5+g‘1) - (";4) _ (n+4)(n+31(27;+2)(n+1)n

9. The number of iterations of the inner loop is the same as the number of integer triples (¢, j, k)
where 1 < k < j <i<n. Asin Example 9.6.3,such triples can be represented as a string of
n — 1 vertical bars and three crosses indicating which three integers from 1 to n are included
in the triple. Thus the number of such triples is the same as the number of strings of (n — 1)

|'s and 3 x’s, which is
n+2\ _ n(r+1)(n+2)
3 ) 6 '
12. Think of the number 30 as divided into 30 individual units and the variables (yi, y2,¥3, 1) as
four categories into which these units are placed. The number of units in category y; indicates

the value of y; in a solution of the equation. By Theorem 9.6.1, the number of ways to place
30 objects into four categories is

30+4-1 33
(04571 o (%) = o

So there are 5456 nonnegative integral solutions of the equation.

15. Any number from 1 through 99,999 whose digits add up to 9 can be thought of as a 5-digit
number with leading zeroes included. Imagine that the 5 digits are categories into which we

place 9 crosses. (For instance, xx | | X x x x x| x | xx corresponds to the number
20512.) By Theorem 9.6.1, there are (9+3_1) = (1:) = 715 ways to place the crosses into the
categories.

18. a. Think of the 4 kinds of coins as the n categories and the 30 coins to be chosen as the r
objects. Each choice of 30 coins is represented by a string of 4—1 = 3 vertical bars (to separate
the categories) and 30 crosses (to represent the chosen coins). The total number of choices of
30 coins of the 4 different kinds is the number of strings of 33 symbols (3 vertical bars and 30

crosses), namely, (30 +33 B 1) = (gg) = 5,456.

b. Let T be the set of selections of 30 coins for which the coin’s type is unrestricted, Q<5 the
set of selections containing at most 15 quarters, and Q>16 the set of selections containing at
least 16 quarters. Then

T=Q«15UQ>16 and Q<ci5NQ>16=0 andso N(T)=N(Q<«is)+ N(Q>1)-

To compute N(@>15), we reason as follows: If at least 16 quarters are included, we can choose
the 30 coins by first selecting 16 quarters and then choosing the remaining 14 coins from the
four different types. The number of ways to do this is

N(Qx16) = (14 +1:11 B 1) = GD = 680.
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Then N(T) = 5,456 [by part (a)] and N(Q>16) = 680. Therefore, the number of selections
containing at most 15 quarters is

N(Q<i5) = N(T) — N(Q>16) = 5,456 — 680 = 4, 776.

c. Let T be the set of selections of 30 coins for which the coin’s type is unrestricted, D<o
the set of selections containing at most 20 dimes, and D>2; the set of selections containing at
least 21 dimes. Then

T= DSQO U D221 and D<o N D22l =@ andso N(T) = N(Dszo) + N(ngl).

To compute N(D»21), we reason as follows: If at least 21 dimes are included, we can choose
the 30 coins by first selecting 21 dimes and then choosing the remaining nine coins from the
four different types. The number of ways to do this is

N(Dsz1) = (9 + 3 - 1) = (192) = 220.

Then N(T) = 5,456 [by part (a)] and N(D»21) = 220. Therefore, the number of selections
containing at most 20 dimes is

N(D<g0) = N(T) — N(D321) = 5,456 — 220 = 5, 236.

d. As in parts (b) and (c), let T be the set of selections of 30 coins for which the coin’s
type is unrestricted, @>16 the set of selections containing at least 16 quarters, Q<5 the set
of selections containing at most 15 quarters, D>2; the set of selections containing at least 21
dimes, and D<2g the set of selections containing at most 20 dimes. If the pile has at most 15
quarters and at most 20 dimes, then the number of combinations of coins that can be chosen
is N(Q<15 N D<20), and, by the difference rule,

N(Q<15 N D<20) = N(T) — N(Qz16 U D).

In order to find N(Q>16 U D32:), we first compute N(Q>16 N D>21), which is the number of
selections of coins containing at least 16 quarters and at least 21 dimes. However, 16 quarters
plus 21 dimes would give a total of more than 30 coins. So there are no selections of this type.
Thus

N(Q<15 N D<ao) = N(T) — N(Q@>16 U D321) = 5,456 — 0 = 5, 456.

Then, by the inclusion/exclusion rule,
N(QZIG U D221) = N(sz) + N(DZQI) - N(Q216 N DZ?ZI) = 680 + 220 — 0 = 900.
Therefore the answer to the question is

N(Q<15 N D<z0) = N(T) — N(@516 U D321) = 5,456 — 900 = 4, 556.

21. Consider those columns of a trace table corresponding to an arbitrary value of k. The values
of j go from 1 to k, and for each value of j, the values of 7 go from 1 to j.

k| k
il1]2 3 . |k
i|1]1 2|1 2 3. 11 2 3 . . . &

So for each value of &, there are 1 +2 + 3 4 - - - + k columns of the table. Since k goes from 1
to n, the total number of columns in the table is

1+(1+2)+(1+2+3)+---+(1+24+3+--+mn)
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1 2 n—1 n
= D k+) k+-+> k+) k
k=1 =1 =1 k=1
1.2 2.3 (n—-1)n n-(n+1)
= Sttt
1

= 5[1-2+2«3+---+(n—1)-n+n- (n+1)]

1 (n(n+1)(n+2)
2 3
n{n + 1)n + 2)

6 b
which agrees with the result of Example 9.6.4.

by exercise 13 of Section 5.2

Section 9.7

9. ( 2(n2-: 1)) _ ( 271,2: 2)
(2n+2)!

2n)!((2n + 2) — 2n)!

(2n + 2)(2n + 1)(2n)!
(2n)!2!

(2n +2)(2n + 1)
2
2(n+1)(2n+1)
2
= (n+1)(2n+1)

(323)«("7)

()= ()= (23 + (7))
- ()= (1) (1)

(2= (a)) o2 () = (G 20) = ((2)+ ()
(o) (o 20) o (L 20)+(7)

15. Proof (by mathematical induction): Let r be a fixed nonnegative integer, and let the property

P(n) be the formula
= (i n+1
Z(r)_(r+1)' - Pn)

i=r

Show that P(r) is true: To prove that P(r) is true, we must show that
Zr: i\ [r+1
“\r T \r+1/)
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1
But the left-hand side of this equation is (:) = 1, and the right-hand side is (:I 1) , which

also equals 1. So P(r) is true.

Show that for all integers k > r, if P(k) is true then P(k 4 1) is true: Let &k be
any integer with & > r and suppose that

Z’“: i\ _(k+1) _ Pk
r) \r+1/) inductive hypothesis

i=r

)= (407 = e

i=r

We must show that

The left-hand side of P(k + 1) is

k+1 . k .
1 k+1
Z (;) = Z (;) + ( —: ) by writing the last term separately

i=r i=r
k+1 k+1
= ( + ) + ( + ) by inductive hypothesis
r+1 T
k+1 1
= (( +1)+ ) by Pascal’s formula,
r+1

and this is the right-hand side of P(k + 1) [as was to be shown/.
18. Proof (by mathematical induction): Let the property P(n) be the equation

(6)+ (") + (") e e (M) - (M0)

We will show by mathematical induction that the property is true for all integers n > 0.
m+0 + 1) _ (m+1

Show that P(0) is true: P(0) is the equation (73) = ( 0 0

because by exercise 1 both sides equal 1.

Show that for all integers k > 0, if P(k) is true then P(k + 1) is true: Let k be
any integer with k¥ > 0 and suppose that

m m+1 m+2 m+k\ _ (m+k+1 P(k)
(O)+( 1 )+( 2 )+.”+( k >_( k ) - inductive hypothesis

We must show that

(0)+ (") + (") e (M) = (™)

or, equivalently,

m m+1 m+ 2 m+k+1 m+k+2
(0)+( : )+( ] )+.-.+( e )_( T ) o P(b+1)
But

m m+1 m+ 2 m+k+1 m+k+1 m+k+1
(0)« (") () () = () ()
by inductive hypothesis
_ m+k+2
B k+1

by Pascal’s formula (m +k+ 1 in
place of n and k + 1 in place of 7).
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142 Chapter 9: Counting and Probability

[This is what was to be shown.]
24. Solution I: (u? — 3v)* = ( g) (u?)*(-3v)° + ( ‘11) (u?)3(—3v)! + ( ;) (u?)?(—3v)?

4
+((3) s+ ( ) wee-s
= u® — 12u8v + 54utv? — 108u?v® + 8104

Solution 2: An alternative solution is to first expand and simplify the expression (a + b)* and
then substitute 42 in place of a and (—3v) in place of b and further simplify the result. Using
this approach, we first apply the binomial theorem with n = 4 to obtain

o (o (o0 (G G (9
= a* + 4a3b + 6a%b? + 4ab’ + b*.
Substituting 42 in place of a and (—3v) in place of b gives
(w? - 30)* = (u? + (=3v))* = (u?)* + 4(u?)*(=3v) + 6(2®)*(=3v)® + 4(u®)(=3v)* + (-3v)*
= ud — 12u%v + 54u?v? — 108u?v? + 81v4.

27. (3:2 - %)5
e (e (-2« Qe Qe ()

1
=20 — 55" +10z* — 10z + % -—
x T
. 10 703 . . 10! 7 93
30. Term is 3 (2z)3°. Coefficient is 3 7|-2 -3 =120- 128- 27 = 414, 720.

39. Proof: Let n be an integer with n > 0. Apply the binomial theorem withe =3 and b= —1 to
obtain

2 @+ (=))"

(3)3"(—1)0 + (71’)3"“(—1)1 ot (';)3""'(—1)‘ +eee (:) 3MH(=1)"
S (7

=0

42. Proof (by mathematical induction): Let the property P(n) be the sentence

For any set S with n elements, S has 2"~! subsets with an even — P(n)
number of elements and 2"~! subsets with an odd number of elements.

We will prove by mathematical induction that the property is true for all integers n > 1.

Show that P(1) is true: P(1) is true because any set S with just 1 element, say z, has two
subsets: @, which has 0 elements, and {z}, which has 1 element. Since 0 is even and 1 is odd,
the number of subsets of § with an even number of elements equals the number of subsets of
S with an odd number of elements, namely, 1, and 1 = 20 = 211,
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Show that for all integers k > 1, if P(k) is true then P(k + 1) is true: Let k be
any integer with k > 1 and suppose that

) . P(k
For any set S with & elements, S has 2~! subsets with an even - inguzztive
number of elements and 2¥~! subsets with an odd number of elements. hypothesis

We must show that

For any set S with k + 1 elements, S has 2(*+1)=1 subsets with an even
number of elements and 2(*+1)=1 gubsets with an odd number of elements.

or, equivalently,

For any set S with k + 1 elements, S has 2* subsets with an even — P(k+1)
number of elements and 2¥ subsets with an odd number of elements.

Call the elements of S = {z,zs,...,Tk, Tx+1}. By inductive hypothesis, {z1,z2,...,zx} has
2k-1 subsets with an even number of elements and 2¥~! subsets with an odd number of
elements. Now every subset of {z;, 2, ..., 2} is also a subset of S, and the only other subsets
of S are obtained by taking the union of a subset of {zy,xs,...,zx} with {zx+1}. Moreover,
if a subset of {z1,z2,...,2x} has an even number of elements, then the union of that subset
with {zt+1} has an odd number of elements. So 2¥~! of the subsets of S that are obtained by
taking the union of a subset of {z,,z2,...,Zx} with {41} have an even number of elements
and 25! have an odd number of elements. Thus the total number of subsets of S with an
even number of elements is

2k-—1 + 2k—1 = 2. 2k—1 — 21+(k—1) — 2k'
Similarly, the total number of subsets of S with an odd number of elements is also
2k—l + 2k—1 = 2k

[as was to be shoun].

Alternative justification for the identity in exercise 36: Let n be any positive integer, let E be
the largest even integer less than or equal to n, and let O be the largest odd integer less than
or equal to n. Let S be any set with n elements. Then the number of subsets of § with an

even number of elements is (8) + (n) + (n) +---+ (n)’ and the number of subsets of S

2 4 E
. . (n n n n
with an odd number of elements is (1) + ( 3) + (5) + oo ( O)' But there are as many

subsets with an even number of elements as there are subsets with an odd number of elements,
so if we subtract the second of these quantities from the first we obtain 0:

@)+ )+ () B -G+ () + G) =+ (0)]
5)-()+G)-G) v ()

500 - £

r=0 r=0

0

by the laws of exponents and because 1 raised to any power is 1
= (1+z?)"
by the binomial theorem with @ = 1 and b = z°.
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52. Let n be an integer with n > 0. Then

Zn: (:) 32n—2k22k (:’) (32)n—k(22)k
k=0 :
by the laws of exponents

>(3)
— 9n—k4k
k=0 k

because 32= 9 and 22= 4

>

k=0

= (9+4)"
by the binomial theorem with @ =9 and b= 4
= 13"

Section 9.8

3. a. P(AUB)=04+02=0.6
b. By the formula for the probability of a general union and because § = AUBUC,

P(S)=((AUB)UC)=P(AUB)+ P(C) - P((AUB)NC).
Suppose P(C) = 0.2. Then, since P(S) =1,
1=06+02-P(AUB)NC)=08—-P((AUB)NC).

Solving for P({AUB)NC) gives P((AUB)NC) = —0.2, which is impossible. Hence P(C) # 0.2.

6. First note that we can apply the formula for the probability of the complement of an event to
obtain 0.3 = P(U¢) = 1 — P(U). Solving for P(U) gives P(U) = 0.7. Second, observe that by
De Morgan’s law U¢U V¢ = (U N V)¢. Thus

0.4=PUUV)=P((UNV))=1-PUNV).
Solving for P(U NV) gives P(U N V) = 0.6. So, by the formula for the union of two events,
PUULV)=PU)+P(V)-PUNV)=0.74+06-0.6=0.7.

9. b. By part (a), P(AU B) = 0.7. So, since C = (AU B)*, by the formula for the probability of
the complement of an event,

P(C)=1-P(AUB)=1-0.7=0.3.
c. By the formula for the probability of the complement of an event,
P(A°)=1-P(A)=1-04=0.6.

e. By De Morgan’s law A° U B¢ = (AN B)°. Thus, the formula for the probability of the
complement of an event,

P(A°UB°) = P((ANnB)*)=1-P(ANB)=1-02=0.8.
f. Solution 1: Because C = S — (AU B), we have that C = (AU B)°. Then

BnC BN (AUB)® by substitution

B°N (A°N B by De Morgan’s law

(B°N A°) N B by the associative law for N
(AN B¢)N B°® by the commutative law for N

A°N (BN B€) by the associative law for N

A¢nN B¢ by the idempotent law for N
(Au B)© by De Morgan’s law
C by substitution.
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Hence, by part (b), P(BcNC) = P(C)=0.3.

Solution 2: Because C = S — (AU B), we have that C = (AU B)°. Thus by De Morgan’s law,
C = A°N B¢. Now A°N B¢ C B [by Theorem 9.2.1(1)b] and hence B°NC = C [by Theorem
9.2.3a]. Therefore P(B°NC) = P(C) =0.3.

12. Proof 1: Suppose S is any sample space and U and V are any events in S. First note that by
the set difference, distributive, universal bound, and identity laws,

(VAU)U(V =U)=(VNU)U(VNU)=VNUUuU)=VNnS=V.

Next, observe that if z € (VNU)N(V —U), then, by definition of intersection, x € (VNU) and
z € (V = U), and so, by definition of intersection and set difference, z € V,z € U, z € V,
and z ¢ U, and hence, in particular, z € U and = ¢ U, which is impossible. It follows that
(VNU)N(V ~U) = 0. Thus, by substitution and by probability axiom 3 (the formula for the
probability of mutually disjoint events),

PWV)=P(VNUYU(V-U))=PVnU)+ PV -U)
Solving for P(V — U) gives
PV-U)=PV)-PUNV).

Proof 2: Suppose S is any sample space and U and V are any events in S. First note that by
the set difference, distributive, universal bound, and identity laws,

Uu(V-U)=Uu{VnU)=UuV)nUuU)=UuV)nS=UUV.

Also by the set difference law, and the associative, commutative, and universal bound laws for
n,
UnNnV-0)y=U0n{iVnU)=0nUnV)=UnU YNV =0nV =0.

Thus, by probability axiom 3 (the formula for the probability of mutually disjoint events),
PUUWV)=PUU(V-U))=PU)+ PV -U).
But also by the formula for the probability of a general union,
PUULUV)=PU)+PV)-PUNV).
Equating the two expressions for P(U U V) gives
PU)+ PV -U)=PU)+PV)—-PUNY).

Subtracting P(U) from both sides gives

PV -U)=PV)-PUNYV).

15. Solution 1: The net gain for the first prize winner is $10, 000,000 — $0.60 = $9, 999, 999.40,
that for the second prize winner is $1, 000,000 — $0.60 = $999, 999.40, and that for the third
prize winner is $50, 000 — $0.60 = $49,999.40. Each of the other 29,999,997 million people who
mail back an entry form has a net loss of $0.60. Because all of the 30 million entry forms have
an equal chance of winning the prizes, the expected gain or loss is

1 1 1 29999997
$9999999.40. 30000000 + $999999.40- 30000000 + $49999.40- 30000000 $0.60- m) = —§0.23,

or an expected loss of about 23 cents per person.

Solution 2: The total amount spent by the 30 million people who return entry forms is
30, 000, 0600- $0.60 = $18, 000, 000. The total amount of prize money awarded is $10, 0600, 000 +
$1,000,000+ $50,000 = $11,050,000. Thus the net loss is $18,000,000 — $11,050,000 =

$6, 950,000, and so the expected loss per person is 6950000/30000000 = —8$0.23, or about 23
cents per person.

ST U D E N %2_(’9]%3}8% Hl]Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly an@ﬁt ﬁ:a:ﬂ é\ﬂoIBrV .paan 0 nym ous



146 Chapter 9: Counting and Probability

18. Let 2; and 2; denote the two balls with the number 2, let 8; and 8, denote the two balls with
the number 8, and let 1 denote the other ball. There are g = 10 subsets of 3 balls that can

be chosen from the urn. The following table shows the sums of the numbers on the balls in
each set and the corresponding probabilities:

Subset [ Sum s | Probability of s
{1,21,2} 5 1/10
{1’21381]”{1$22381}7{1’2l)82}’{11 22,82} 11 4/10
1r21122a 81}:{21122, 82} 12 2/10
{1,81,8:} 17 1/10
{21, 81,82}, {22,81,82} 18 2/10
4 2 1 2 126
Thus the expected value is 5 - ﬁ +11. 10 +12. 0 +17. 10 +18. T=10 = 12.6.

21. When a coin is tossed 4 times, there are 2* = 16 possible outcomes and there are (;) ways to
obtain exactly h heads (as shown by the technique illustrated in Example 9.5.9). The following
table shows the possible outcomes of the tosses, the amount gained or lost for each outcome,
the number of ways the outcomes can occur, and the probabilities of the outcomes.

Number of Heads | Net Gain (or Loss) | Number of Ways | Probability
0 ~$3 (5) -1 1/16
1 —$2 () =4 4/16
2 -$1 (3) = 6/16
3 $2 (g) —4 4/16
4 $3 (j) =1 1/16
Thus the expected value is (—$3)- +(— $2) +( -$1). —+$2 —+$3-—— = —$-16—6 = —$0.375.

So this game has an expected loss of 37.5 cents

Section 9.9

3. Of the students who received A’s on the first test, the percent who also received A’s on the
second test is

the percent of students who received A’s on both tests  15%
the percent of students who received A’s on the first test  25%

= 0.6 = 60%.

Thus the probability that a person who has the condition tests positive for it is 99%.

9. Proof: Suppose that a sample space S is a union of two disjoint events B; and Bs, that A is
an event in S with P(A) # 0, and that P(B;) # 0 for k = 1 and & = 2. Because B; and B;
are disjoint, the same reasoning as in Example 9.9.5 establishes that

= (AnBl)U(Ant) and (AnBl)ﬂ(AnBz) =0.
Thus
P(A) = P(AN By) + P(AN By).

ST U D E N T gaﬂplﬁ%e léaBiPﬁAll Rights Reserved. May not be scanned, copied or duplicated, or posted to a publiclytj;bsibg gﬁtéldwlgevm 5nn o) nym ous



12.

15.

Section 9.9 147

Moreover, for each & = 1 or 2, by definition of conditional probability, we have both

P(BsnA) _ P(AN By)
P(A) —  P(4)

P(Bi| A) = and P(A n Bk) = P(A | Bk)P(Bk).

Putting these results together gives that for each k=1 or 2,

P(ANBy) _ _ P(A|B)P(By)  _ P(A| Bi)P(By)
P(A)  P(ANB)+P(ANB,)  P(A|B)P(B)) + P(A| B)P(By)’

P(Bi| A) =

which is Bayes’ theorem for n = 2.

a. Let B; be the event that the first urn is chosen, B, the event that the second urn is chosen,
and A the event that the chosen ball is blue. Then

4 10

P(A|B))=5; and  P(A|By) =g

P(ANBy) = P(A|B)P(B)) = o= 2 = —

Yo DB =502 T 10

Also o 5

P(ANBy) = P(A| B)P(By) = 15" 5 = 15°

Now A is the disjoint union of AN B; and AN B;. So

P(A) = P(ANBy) + P(ANBy) = = + > = 89 ~ 3539
- ' =10 19" 190 O

Thus the probability that the chosen ball is blue is approximately 36.3%.

b. Solution 1 (using Bayes’ theorem): Given that the chosen ball is blue, the probability that
it came from the first urn is P(B; | A). By Bayes’ theorem and the computations in part (a),

P(A| B))P(B1) 1 _ 19,
P(A|B))P(B)) + P(A|B2)P(B2) L+ = 69
Solution 2 (without explicit use of Bayes’ theorem): Given that the chosen ball is blue, the
probability that it came from the first urn is P(B; | A). By the results of part (a),

1

PANB) _ s _Dogrs

1
P(A) — 5 T 69

P(B,|A) =

P(B, | A) =

Let B; be the event that the part came from the first factory, B> the event that the part
came from the second factory, and A the event that a part chosen at random from the 180 is
defective.

a. The probability that a part chosen at random from the 180 is from the first factory is
P(By) = %.
b. The probability that a part chosen at random from the 180 is from the second factory is
P(B;) = %.
¢. The probability that a part chosen at random from the 180 is defective is P(A). Because 2%
of the parts from the first factory and 5% of the parts from the second factory are defective,

P(A| By) = % and P(A | Bp) = %O By definition of conditional probability,

2 100 1
5 80 2
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Now because B; and B, are disjoint and because their union is the entire sample space, A is
the disjoint union of AN By and AN B,. Thus the probability that

1 2 3
P(A)=P(ANB;)+P(ANB,) = 50 90" )
d. Solution 1 (using Bayes’ theorem): Given that the chosen part is defective, the probability
that it came from the first factory is P(B; | A). By Bayes’ theorem and the computations in
part (a),

=~ 3.3%.

= 33.3%.

L
P(B]lA)—_— P(AIBI)P(BI) = — 902 =.1.
P(A|B\)P(B1) + P(A|B2)P(B2)  g5+4 3
Solution 2 (without explicit use of Bayes’ theorem): Given that the chosen ball is green, the
probability that it came from the first urn is P(B; | A). By the results of part (a),

1
P(B,|A)=P(£(—r:§‘)=9—i°=lg33.3%.

18. Proof: Suppose A and B are events in a sample space S, and P(ANB) = P(A) P(B), P(A) # 0,
and P(B) # 0. Applying the hypothesis to the definition of conditional probability gives
_ P(AnB) P(A)P(B)

P(A|B) = P(B) - P(B) = P(4)

and
P(ANnB) _P(A)P(B)

P(BlA) = P(4)  P(A)

= P(B).

21. If A and B are events in a sample space and ANB = @ and A and B are independent, then (by
definition of independence) P(A N B) = P(A)P(B), and (because AN B = @) P(AN B) = 0.
Hence P(A) P(B) =0, and so (by the zero product property) either P(A) =0 or P(B) = 0.

24. Let A be the event that a randomly chosen error is missed by proofreader X, and let B be the
event that the error is missed by proofreader Y. Then P(A) = 0.12 and P(B) = 0.15.

a. Because the proofreaders work independently, P(ANB) = P(A) P(B). Hence the probability
that the error is missed by both proofreaders is

P(AN B) = P(A) P(B) = (0.12)(0.15) = 0.018 = 1.8%.

b. Assuming that the manuscript contains 1000 typographical errors, the expected number of
missed errors is 1000- 0.018% = 18.

27. Solution: The family could have two boys, two girls, or one boy and one girl.

Let the subscript 1 denote the firstborn child (understanding that in the case of twins this
might be by only a few moments), and let the subscript 2 denote the secondborn child.

Then we can let (B G2, B;) denote the outcome that the firstborn child is a boy, the secondborn
is a girl, and the child you meet is the boy.

Similarly, we can let (B, Bz, B2) denote the outcome that both the firstborn and the secondborn
are boys and the child you meet is the secondborn boy.

When this notational scheme is used for the entire set of possible outcomes for the genders
of the children and the gender of the child you meet, all outcomes are equally likely and the
sample space is denoted by

{(B1By, By), (B1Ba, B2), (B1G2, By), (BiG2, Ga), (G182, G1), (G1By, Bo), (G1G3, G1), (G1G2 G2)}.
The event that you meet one of the children and it is a boy is
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Section 9.9 149

{(B1B2, B1),(B1 Bz, B), (B1G2, B1), (G1 B2, B2) }-
The probability of this event is 4/8 = 1/2.

Discussion: An intuitive way to see this conclusion is to realize that the fact that you happen
to meet one of the children and see that it is a boy gives you no information about the gender
of the other child. Because each of the children is equally likely to be a boy, the probability
that the other child is a boy is 1/2.

Consider the following situation in which the probabilities are identical to the situation de-
scribed in the exercise. A person tosses two fair coins and immediately covers them so that
you cannot see which faces are up. The person then reveals one of the coins, and you see that
it is heads. This action on the person’s part has given you no information about the other
coin; the probability that the other coin has also landed heads up is 1/2.

the number of ways 0 false false 0 not a false \\'°
30. a. P(0 false positives) = | positives can be obtained (P ( .. )) (P( ora ))
. positive positive
over a ten-year period

- (100) 0.96'° = 1-0.96'° = 0.665 = 66.5%

the number of ways 2 false fals 2 not a false \\®

¢. P(2 false positives) = | positives can be obtained <P ( °. )) (P ( ot 8 ))

. positive positive
over a ten-year period

= (120) 0.04%- 0.96% = 45- 0.042. 0.96% = 0.05194 = 5.2%

d. Let T be the event that a woman'’s test result is positive one year, and let C be the event
that the woman has breast cancer.
(i) By Bayes’ formula, the probability of C given T is
P(T|C)P(C)
P(T|C)P(C) + P(T|C)P(C*)

PC|T) =

(0.98)(0.0002)
(0.98)(0.0002) + (0.04)(0.9998)

IR

0.00488 = 4.88%.

(ii) The event that a woman’s test result is negative one year is 7°. By Bayes formula, the
probability of C given T° is

P(T°|C)P(C)
P(Te|C)P(C) + P(T¢| C)P(C*)

P(C|T¢) =

(0.02)(0.0002)
(0.02)(0.0002) + (0.96)(0.9998)

= 0.000004 = 0.0004%.

33. Suppose a gambler starts with $k. Rolling a fair die leads to one of two disjoint outcomes:
winning $1 or losing $1. Let A be the event that the gambler is ruined when he has $%. Then
Ay is the disjoint union of the following two events: Cj and Dy, where

C), is the event that the gambler has $k, wins the next roll, and eventually gets ruined
and D is the event that the gambler has Sk, loses the next roll, and eventually gets ruined.
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150 Chapter 9: Counting and Probability

Now P is the probability that the gambler eventually gets ruined when he has $k. By proba-
bility axiom 3,
P, = P(Cy) + P(Dy).

Let W be the event that the gambler wins on any given roll. Then
1 5

For each integer & with 1 < k < 300, the definition of conditional probability can be used to
find P(Ck) and P(Dk):

P(C) = P(AnW)
by definition of Cy, Ag, and W
= P(Ax|W)P(W)

by definition of conditional probability

1
= P(Aen)

because if the gambler wins on a roll when he has $&
then on the next roll he has $(k + 1)

1
= Pey1-=.
k+1 6
Similarly,
P(Dx) = P(AxNWE®)
by definition of Cy, Ag, and W
= P(A|We)P(W?)
by definition of conditional probability
5
= P(Ac)
because if the gambler loses on a roll when he has $k
then on the next roll he has $(k — 1)
_ p .5
= k—1 6 .
Thus, .
1 5
P = P(Cy) + P(Dy) =Pk+l'g + Pe-1- 5
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Chapter 9 Review 151
Review Guide: Chapter 9

Probability

e What is the sample space of an experiment? (p. 518)
e What is an event in the sample space? (p. 518)
o What is the probability of an event when all the outcomes are equally likely? (p. 518)

Counting

e If m and n are integers with m < n, how many integers are there from m to n inclusive? (p.
521)

e How do you construct a possibility tree? (p. 525)

What are the multiplication rule, the addition rule, and the difference rule? (pp. 527, 540,

541)

What is the inclusion/exclusion rule? (p. 545 and exercise 48 on p. 553)

What is a permutation? an r-permutation? (pp. 531, 583)

What is P(n,r)? (p. 533)

How does the multiplication rule give rise to P(n,7r)? (pp. 533-534)

When should you use the multiplication rule and when should you use the addition rule? (p.

577)

What are some situations where both the multiplication and the addition or difference rule

must be used? (pp. 540-545)

What is the formula for the probability of the complement of an event? (p. 543)

How are IP addresses created? (p. 544)

How is the inclusion/exclusion rule used? (pp. 546-549)

What is an r-combination? (p. 566)

What is an unordered selection of elements from a set? (p. 566)

What is complete enumeration? (p. 567)

¢ What formulas are used to compute (:L) by hand? (p. 568)

e o ¢ & o o

e What are some situations where both r-combinations and the addition or difference rule must
be used? (pp. 569-571)

e What are some situations where r-combinations, the multiplication rule, and the addition rule
are all needed? ? (pp. 573-574)

e How can r-combinations be used to count the number of permutations of a set with repeated
elements? (pp. 575-576)

e What are some formulas for the number of permutations of a set of objects when some of the
objects are indistinguishable from each other? (p. 577)

e What are Stirling numbers of the second kind? How do you find a recurrence relation for the
number of ways a set of size n can be partitioned into r subsets? (pp. 578-580)

e What is an r-combination with repetition allowed (or a multiset of size 7)? (p. 584)

e How many r-combinations with repetition allowed can be selected from a set of n elements?
(p- 586)

The Pigeonhole Principle

e What is the pigeonhole principle? (p. 554)
e How is the pigeonhole principle used to show that rational numbers have terminating or re-
peating decimal expansions? (pp. 557-559)

hiiel 1N}
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152 Chapter 9: Counting and Probability

o What is the generalized pigeonhole principle? (p. §59)

e What is the relation between one-to-one and onto for a function defined from one finite set to
another of the same size? (p. 562)

Pascal’s Formula and the Binomial Theorem

o What is Pascal’s formula? Can you apply it in various situations? (p. 593)

e What is the algebraic proof of Pascal’s formula? (p. 595)

e What is the combinatorial proof of Pascal’s formula? (pp. 595-596)

e What is the binomial theorem? Can you apply it in various situations? (p. 598)
e What is the algebraic proof of the binomial theorem? (p. 598-600)

e What is the combinatorial proof of the binomial theorem? (pp. 600-601)

Probability Axioms and Expected Value

e What is the range of values for the probability of an event? (p. 605)

e What is the probability of an entire sample space? (p. 605)

e What is the probability of the empty set? (p. 605)

e If A and B are disjoint events in a sample space S, what is P(AU B)? (p. 605)
e If A is an event in a sample space S, what is P(A®)? (p. 605)

o If A and B are any events in a sample space S, what is P(AU B)? (p. 606)

¢ How do you compute the expected value of a random experiment or process, if the possible
outcomes are all real numbers and you know the probability of each outcome? (p. 608)

e What is the conditional probability of one event given another event? (p. 612)

e What is Bayes’ theorem? (p. 616)

o What does it mean for two events to be independent? (p. 618)

e What is the probability of an intersection of two independent events? (p. 618)

o What does it mean for events to be mutually independent? (p. 620)

e What is the probability of an intersection of mutually independent events? (p. 621)
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Chapter 10: Graphs and Trees

The first section of this chapter introduces the terminology of graph theory, illustrating it in a variety
of different instances. Several exercises are designed to clarify the distinction between a graph and a
drawing of a graph. You might point out to students the advantage of the formal definition over the
informal drawing for computer representation of graphs. Other exercises explore the use of graphs
to solve problems of various sorts. In some cases, students may be able to solve the given problems,
such as the wolf, the goat, the cabbage and the ferryman, more easily without using graphs than
using them. The point to make is that such problems can be solved using graphs and that for more
complex problems involving, say, hundreds of possible states, a graphical representation coupled with
a computer path-finding algorithm makes it possible find a solution that could not be discovered by
trial-and-error alone. The variety of solutions for exercise 33, on the number of edges of a complete
graph illustrates the relations among different branches of discrete mathematics. The rest of the
exercises in this section are intended to give you practice in applying the theorem that relates the
total degree of a graph to the number of its edges, especially for exploring properties of simple
graphs, complete graphs, and bipartite graphs.

In Section 10.2 the general topic of trails, paths and circuits is discussed, including the notion
of connectedness and Euler and Hamiltonian circuits. As in the rest of the chapter, an attempt is
made to balance the presentation of theory and application.

Section 10.3 introduces the concept of the adjacency matrix of a graph. The main theorem of
the section states that the gjth entry of the kth power of the adjacency matrix equals the number
of walks of length & from the ith to the jth vertices in the graph. Matrix multiplication is defined
and explored in this section in a way that is intended to be adequate even if you have never seen
the definition before.

The concept of graph isomorphism is discussed in Section 10.4. In this section the main theorem
gives a list of isomorphic invariants that can be used to determine the non-isomorphism of two
graphs.

The last three sections of the chapter deal with the subject of trees. Section 10.5 focuses on basic
definitions, examples, and theorems giving necessary and sufficient conditions for graphs to be trees,
and Section 10.6 contains the definition of rooted tree, binary tree, and the theorems that relate the
number of internal to the number of terminal vertices of a full binary tree and the maximum height
of a binary tree to the number of its terminal vertices. Section 10.7 on spanning trees and shortest
paths contains Kruskal’s, Prim’s, and Dijkstra’s algorithms and proofs of their correctness, as well
as applications of minimum spanning trees and shortest paths.

Section 10.1

6.
¢
UK 4 9V,
V,

153
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154 Chapter 10: Graphs and Trees

9. (i) e1, eg, e are incident on e;.

(i1) v1 and v, are adjacent to vg.
(iii) e2 and ey are adjacent to e;.
(iv) ey and e3 are loops.
(v) e4 and es are parallel.
(vi) 4 is an isolated vertex.
(vii) degree of vz =2
(viii) total degree of the graph = 14

27. b. Yes. Each could be friends with all three others.

30. Let ¢ be the total degree of the graph. Since the degree of each vertex is at least dp,;, and at
most dmax, Amin* ¥ < t < dmax- v. But by Theorem 10.1.1, t equals twice the number of edges.
So by substitution, dpin- v < 2e < dpax- v. Dividing each part of the inequality by 2 produces
the required result:

1 1
'2-dmin'v <e < §dmax'v-

33. b. Proof 1: Suppose n is an integer with n > 1 and K, is a complete graph on n vertices. If
n = 1, then K, has one vertex and 0 edges and ﬂn—;—lz = 1—(12;12 =0, and so K, has @
edges. If n > 2, then since each pair of distinct vertices of K, is connected by exactly one
edge, there are as many edges in K, as there are subsets of size two of the set of n vertices.

By Theorem 9.5.1, there are ('2') such sets. But

(Z) - 2!(nni 2~ n(nz_ 2.

Hence there are @ edges in K,,.
Proof 2 (by mathematical induction: Let the property P(n) be the sentence

(n—1)
2

A complete graph on n vertices has n edges. « P(n)

We will prove that P(n) is true for all integers n > 1.

Show that P(1) is true: P(i) is true because a complete graph on one vertex has 0 edges
and the quantity ﬂnz—_ll = -I-Q;—ll = 0 also.

Show that for all integers m > 1, if P(m) is true then P(m + 1) is true: Let m be
any integer with m > 1, and suppose

P(m)

inductive hypothesis

(m—1)
2

A complete graph on m vertices has m edges.

‘We must show that

(m+1)((m+1)-1)
2

A complete graph on m + 1 vertices has edges,

or, equivalently,
m(m + 1)
2

Let K41 be a complete graph on m + 1 vertices. Temporarily remove one vertex, v, together
with all the edges joining this vertex to the other vertices of the graph. In the graph thus

A complete graph on m + 1 vertices has edges. «— P(m+1)
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Section 10.1 155

obtained, each vertex is connected to each other vertex by exactly one edge, and so the graph
is a complete graph on m vertices. By inductive hypothesis this graph has M edges.
Connecting v to each of the m other vertices adds another m edges. Hence the total number
of edges of K41 is

m(m — 1) me mim—1) 2m _m?—m+2m _m{m+1)

2 m 2 27 2 2

[as was to be shown/.

Proof 3: Suppose n is an integer with n > 1 and K, is a complete graph on n vertices. Because
each vertex of K, is connected by exactly one edge to each of the other n — 1 vertices of K,
the degree of each vertex of K,, is n — 1. Thus the total degree of K, equals the number of
vertices times the degree of each vertex, or n(n — 1). Let e be the number of edges of K.
By Theorem 10.1.1, the total degree of K, equals 2¢, and so n(n — 1) = 2e. Equivalently,
e=n(n—1)/2 [as was to be shown/.

36. b. K3
o'
v, ow,
W3

c. K34
V] Wl
kel

V2

W3
V3 wy

d. If n # m, the vertices of K, , are divided into two groups: one of size m and the other of
size n. Every vertex in the group of size m has degree n because each is connected to every
vertex in the group of size n. So K, , has n vertices of degree m. Similarly, every vertex in
the group of size n has degree m because each is connected to every vertex in the group of size
m. So K, » has n vertices of degree m. Note that if n = m, then all n+m = 2n vertices have
the same degree, namely n.

e. The total degree of K, , is 2mn because K, , has m vertices of degree n (which contribute
mn to its total degree) and n vertices of degree m (which contribute another mn to its total
degree)

f- The number of edges of K,,, = mn. The reason is that the total degree of Ky, is
2mn, and so, by Theorem 10.1.1, K, , has 2mn/2 = mn edges. Another way to reach this
conclusion is to say that K, , has n edges coming out of each of the group of m vertices (each
leading to a vertex in the group of n vertices) for a total of mn edges. Equivalently, Ky, » has
m edges coming out of each of the group of n vertices (each leading to a vertex in the group
of m vertices) for a total of mn edges.
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156 Chapter 10: Graphs and Trees

39. b.

Vy V3

42. The graph obtained by taking all the vertices and edges of G together with all the edges of G’
is K. Therefore, by exercise 33b, the number of edges of G plus the number of edges of G’
equals n(n — 1)/2.

45. Yes. Suppose that in a group of two or more people, each person is acquainted with a different
number of people. Then the acquaintance graph representing the situation is a simple graph
in which all the vertices have different degrees. But by exercise 44(c) such a graph does not
exist. Hence the supposition is false, and so in a group of two or more people there must be
at least two people who are acquainted with the same number of people within the group.

48. In the following graph each course number is represented as a vertex. Vertices are joined if,
and only if, the corresponding courses have a student in common.

Vertex 135 has maximal degree, so use color #1 for it. All vertices share edges with vertex
135, and so color #1 cannot be used on any other vertex.

From the remaining uncolored vertices, only vertex 120 has maximal degree. So use color #2
for it. Because vertex 100 does not share an edge with vertex 120, color #2 may also be used
for it.

From the remaining uncolored vertices, all of 101, 102, 110, and 130 have maximal degree.
Choose any one of them, say vertex 101, and use color #3 for it. Neither vertex 102 nor
vertex 110 shares an edge with vertex 101, but they do share an edge with each other. So
color #3 may be used for only one of them. If color #3 is used for vertex 110, then, since the
remaining vertices 130 and 102 are connected, two additional colors would be needed for them
to have different colors. On the other hand, if color #3 is used for vertex 102, then, since the
remaining vertices, 110 and 130, are not connected to each other, color 4 may be used for both.
Therefore, to minimize the number of colors, color #3 should be used for vertex 102 and color
#4 for vertices 110 and 130. The result is indicated in the annotations on the graph.

To use the results for scheduling exams, let color n correspond to exam time n. Then
Time 1: MCS135

Time 2: MCS 100 and MCS120

Time 3: MCS101 and MCS102

Time 4: MCS110 and MCS130

Note that because, for example, MSC135, MSC102, MSC110, and MSC 120 are all connected
to each other, they must all be given different colors, and so the schedule for the seven exams
must use at least four time periods.
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Section 10.2 157

Section 10.2

3. b. No, because ees could refer either to vyejvaeav; or to vee vie2v2.

{UT: 1”8}: {‘U] a‘”?}a {'Ug, 'U4}

{va,vs}, {ve,ve}, {v7.v8}. {vo,v10}

o
&

o

9. b. Yes, by Theorem 10.2.3 since G is connected and every vertex has even degree.

¢. Not necessarily. It is not specified that G is connected. For instance, the following graph
satisfies the given conditions but does not have an Euler circuit:

a c d

/

V,

15. One Euler circuit is the following: stuvwzyzrsuwyuzs.

18. Yes. One Euler circuit is ABDEACDA.
21. One Euler path from u to w is up1vov3uteU7Ve U3V Ve WU V4 W.

24. One Hamiltonian circuit is balkjedcfihgb. The only other one traverses this circuit in the
opposite direction.

27. Call the given graph G and suppose G has a Hamiltonian circuit. Then G has a subgraph H
that satisfies conditions (1) - (4) of Proposition 10.2.6. Since the degree of B in G is five and
every vertex in H has degree two, three edges incident on B must be removed from G to create
H. Edge {B,C} cannot be removed because doing so would result in vertex C having degree
less than two in H. Similar reasoning shows that edges {B, E'}, {B, F'}, and {B, A} cannot be
removed either. It follows that the degree of B in H must be at least four, which contradicts
the condition that every vertex in H has degree two in H. Hence no such subgraph H can
exist, and so G does not have a Hamiltonian circuit.

30. One Hamiltonian circuit is vov)v504070602030p.
33. Other such graphs are those shown in exercises 17, 21, 23, 24, 29 and 30.

36. It is clear from the map that only a few routes have a chance of minimizing the distance. For
instance, one must go to either Diisseldorf or Luxembourg just after leaving Brussels or just
before returning to Brussels, and one must either travel from Berlin directly to Munich or the
reverse. The possible minimizing routes are those shown below plus the same routes traveled
in the reverse direction.

Route Total Distance (in km)

Bru-Lux-Diiss-Ber-Mun-Par-Bru = 219 + 224 + 564 + 585 -+ 832 4 308 = 2732
Bru-Diiss-Ber-Mun-Par-Lux-Bru 223 + 564 + 585 + 832 + 375 4 219 = 2798
Bru-Diiss-Lux-Ber-Mun-Par-Bru 223 + 224 + 764 + 585 + 832 + 308 = 2936
Bru-Diiss-Ber-Mun-Lux-Par-Bru 223 + 564 + 585 + 517 4 375 + 308 = 2572

The routes thal minimize distance, therefore, are the bottom route shown in the table and
that same route traveled in the reverse direction.
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158 Chapter 10: Graphs and Trees
39. Proof:

Suppose vertices v and w are part of a circuit in a graph G and one edge e is removed from
the circuit. Without loss of generality, we may assume the v occurs before the w in the circuit,
and we may denote the circuit by vpejvies. .. ep—1v_1€0vp with v; = v, v; =w, i < j, and
€ = €.

In case either £ < ¢ or & > j, then v = viei1 1041 ... vj_1€;u; = w is a trail in G from v to w
that does not include e.

In case i < k < j, then v = v;e;v;_1€i-1 ... v1€1V0CLV,_} ... €j412; = w is a trail in G from v
to w that does not include e.

These possibilities are illustrated by examples (1) and (2) in the diagram below. In both cases
there is a trail in G from » to w that does not include e.

1 -
(1) v, V=
— @
// \\
e AN
i "/ N ‘3
/ i i=3,j=6. ¢ isdeleted
;V \“
/ |
!
/ \ trail from vtow :
vy Q\ LR E
\, /
AN / vy e vy, = w
\ / 34756
A /
\:é\.\ /'/.l
y ) =W
/ 6
@
V7
(2)
v2 Vi=vy
- N
s N
v, .~ AN
! & \. 4 ) . .
/ | i=3,j=6, e isdeleted
\
" V‘ e
/ \
\\
!
! \ : f B
vo® o trail from v to w .
0 N\ 7 5
\ /
/ VS VIV Va0 eVl = W
\\ //
\)8‘\. /" \,6 =W
T
vz

48. a. Let m and n be positive integers and let K, , be a complete bipartite graph on (m,n)
vertices. Since K, n is connected, by Theorem 10.2.4 it has an Euler circuit if, and only if,
every vertex has even degree. But K,, , has m vertices of degree n and n vertices of degree

m. So K, has an Euler circuit if, and only if, both m and n are even.

b. Let m and n be positive integers, let K, ,, be a complete bipartite graph on (m, n) vertices,
and suppose Vi = {vi,v2,...,vm} and Vo = {wy,wo,...,w,} are the disjoint sets of vertices
such that each vertex in V is joined by an edge to each vertex in V5 and no vertex within V; or
V2 is joined by an edge to any other vertex within the same set. If m = n > 2, then K, , has

or in
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Section 10.3 159

the following Hamiltonian circuit: v;wjvews ... vpwmty. If K n has a Hamiltonian circuit,
then m = n because the vertices in any Hamiltonian circuit must alternate between V; and
Vz (since no edges connect vertices within cither set) and because no vertex, except the first
and last, appears twice in a Hamiltonian circuit. If m = n = 1, then K., , does not have a
Hamiltonian circuit because K| ; contains just one edge joining two vertices. Therefore, K, »
has a Hamiltonian circuit if, and only if, m =n > 2.

Section 10.3

Any labels may be applied to the edges because the adjacency matrix does not determine edge
labels.

6. b. The graph is not connected; the matrix shows that there are no edges joining the vertices
from the set {v1,v2} to those in the set {v3, v4}.

9. b.
0 8
-5 4

c.

-2 -3
4 6

18. Proof (by mathematical induction: Let the property P(n) be the sentence

A" is symmetric, — P(n)

We will prove that P(n) is true for all integers n > 1.
Show that P(1) is true: P(1) is true because by assumption A is a symmetric matrix.
Show that for all integers k > 1, if P(k) is true then P(k + 1) is true: Let k be

any integer with & > 1, and suppose

P(k)

A% is symmetric. — . .
inductive hypothesis

We must show that
Al is symmetric. — P(k+1)
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160 Chapter 10: Graphs and Trees

Let AF = (b;;). Then for all ¢,j = 1,2,...,m,

the ijth entry of A¥*1 = the ijth entry of AA* by definition of matrix power
m
= Zairb,-j by definition of matrix multiplication
r;l
_ Za b because Ais symmetric by hypothesis and
- . T A¥is symmetric by inductive hypothesis
r=

m PR TS .
_ Z b because multiplication of real numbers
. Jrere is commutative
r—

=  the jith entry of AXA by definition of matrix multiplication
the jith entry of AA* by exercise 17
= the jith entry of Ak+1 by definition of matrix power.

Therefore, A*+! is symmetric fas was to be shown/.

21. Proof (by mathematical induction: Let the property P(n) be the sentence

All the entries along the main diagonal of A" are equal to each other

and all the entries off the main diagonal are also equal to each other. — P(n)

We will prove that P(n) is true for all integers n > 1.
Show that P(1) is true: P(1) is true because

0 1
Al=A=|10
11

O~
-

which is the adjacency matrix for K3, and all the entries along the main diagonal of A are 0
[because K3 has no loops] and all the entries off the main diagonal are 1 fbecause each pair of
vertices is connected by ezactly one edge/.

Show that for all integers m > 1, if P(m) is true then P(m 4+ 1) is true: Let m be
any integer with m > 1, and suppose

All the entries along the main diagonal of A™ are equal to each other - P((im)t .
and all the entries off the main diagonal are also equal to each other. mauctive
hypothesis
We must show that
: . . - ] m+1
All the entries along the main diagonal of A are equal to each other — P(m+1)

and all the entries off the main diagonal are also equal to each other.

By inductive hypothesis,

b ¢ ¢
A= |c b ¢ for some integers b and c.
c c b
It follows that
01 1][b ¢ ¢ 2c b+c b+ec
A" = AA™ =1 0 1| |ec b ¢|=|b+c 2 b+c
1 1 0f[|ec ¢ b b+c b+ec 2¢

As can be seen, all the entries of A™*! along the main diagonal are equal to each other and all
the entries off the main diagonal are equal to each other. So the property is true for n = m+1.
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Section 10.4 161

Section 10.4

3. The graphs are isomorphic. One way to define to isomorphism is as follows.

15. Of all nonisomorphic simple graphs with four vertices, there is one with 0 edges, one with 1
edge, two with 2 edges, three with 3 edges, two with 4 edges, one with 5 edges, and one with
6 edges. These eleven graphs are shown below.

- =
I 7

18. There are three nonisomorphic graphs with four vertices and three edges in which all 3 edges
are loops, five in which 2 edges are loops and 1 is not a loop, six in which 1 edge is a loop and
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162 Chapter 10: Graphs and Trees

2 edges are not loops, and six in which none of the 3 edges is a loop. These twenty graphs are
shown below.

L J [ ] . L] 0 [ J ®

. | &0 W 0

A

00| b ol

5
Al

24. Proof:

Suppose G and G’ are isomorphic graphs and suppose G has a simple circuit C of length k,
where k is a nonnegative integer. By definition of graph isomorphism, there are one-to-one
correspondences g: V(G) — V(G') and h: E(G) — E(G’) that preserve the edge-endpoint
functions in the sense that for all » in V(G) and e in E(G), v is an endpoint of e < g(v) is an
endpoint of i{e).

Let C be vwe viez ... exvr(= vo), and let C’ be g(vo)h(e)g(vi)h(es) ... h(ex)g(vi)(= g(vo)).
By the same reasoning as in the solution to exercise 23 in Appendix B, C’ is a circuit of length

kin G'.
Suppose C' is not a simple circuit. Then C” has a repeated vertex, say g(v;) = g(v;) for some
4,7 =0,1,2,...,k =1 with 4 # j. But since g is a one-to-one correspondence this implies that

v; = vj, which is impossible because C' is a simple circuit. Hence the supposition is false, and
so we conclude that C’ is a simple circuit. Thercfore G’ has a simple circuit of length k.

27. Proof:

Suppose G and G’ are isomorphic graphs and suppose G is connected. By definition of graph
isomorphism, there are one-to-one correspondences g: V(G) — V(G’) and h: E(G) — E(G’)
that preserve the edge-endpoint functions in the sense that for all v in V(G) and e in E(G),
v is an endpoint of e & g(v) is an endpoint of h(e). Suppose w and z are any two vertices
of G'. Then u = g7!'(w) and v = g~'(z) are distinct vertices in G (because g is a one-
to-one correspondence). Since G is connected, there is a walk in G connecting » and w.
Say this walk is uejviegvs...e,v. Because g and ! preserve the edge-endpoint functions,
w = g(u)h(er)g{vi)h(e2)g{ve) ... h{ey)g(v) = x is a walk in G’/ connecting w and .

30. Suppose that G and G’ are isomorphic via one-to-one correspondences g: V(G) — V(G’) and
h: E(G) — E(G'), where g and h preserve the edge-endpoint functions. Now wg has degree
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Section 10.5 163

one in G’, and so by the argument given in Example 10.4.4, wg must correspond to one of the
vertices of degree one in G: either g(v1) = wg or g{vg) = we. Similarly, since ws has degree
three in G’, ws must correspond to one of the vertices of degree three in G: either g(vs) = ws
or g(v4) = ws. Because g and / preserve the edge-endpoint functions, edge fg with endpoints
ws and wg must correspond to an edge in G with endpoints v; and v3, or v, and vy, or vg and
v3, or vg and v4. But this contradicts the fact that none of these pairs of vertices are connected
by edges in G. Hence the supposition is false, and G and G’ are not isomorphic.

Section 10.5

3. By Theorem 10.5.2, a tree with n vertices (where n > 1) has n — 1 edges, and so by Theorem
10.1.1, its total degree is twice the number of edges, or 2(n — 1) = 2n — 2.

6. Define an infinite graph G as follows: V(G) = {w; | i € Z} = {...,v—=2,v_1,%0,¥1,%2,...},
E(G)={e;|i€Z}={...,e_2,e_1,eg.€1.€2,...}, and the edge-endpoint function is defined
by the rule f(e;) = {vi—1,v;} for all ¢ € Z. Then G is circuit-free, but each vertex has degree
two. G is illustrated below.

Vg v, v, Y Y Vs
e L L L @ L

€, e, e 0 ] 2
15. One circuit-free graph with seven vertices and four edges is shown below.
v, v

5 vz

Y V3

N

18. Any tree with five vertices has four edges. By Theorem 10.1.1, the total degree of such a graph
is eight, not ten. Hence there is no tree with five vertices and total degree ten.

21. Any tree with ten vertices has nine edges. By Theorem 10.1.1, the total degree of such a tree
is 18, not 24. Hence there is no such graph.

24. Yes. Given any two vertices v and w of G’, then u and w are vertices of G neither equal to v.
Since G is connected, there is a walk in G from u to w, and so by Lemma 10.2.1, there is a
path in G from u to w. This path does not include edge e or vertex v because a path does not
have a repeated edge, and e is the unique edge incident on v. [If a path from u to w leads into
v, then it must do so via e. But then it cannot emerge from v to continue on to w because no
edge other than e is incident on v.] Thus this path is a path in G’. It follows that any two
vertices of G’ are connected by a walk in G’, and so G’ is connected.

30. A tree with five vertices must have four edges and, therefore, a total degree of 8. Since at least
two vertices have degree 1 and no vertex has degree greater than 4, the possible degrees of
the five vertices are as follows: 1,1,1,1,4; 1,1,1.2,3; and 1,1,2,2,2. The corresponding trees are
shown below.

—e @ —e—o—0o—
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164 Chapter 10: Graphs and Trees

Section 10.6

3. b

12. There is no tree with the given properties because any full binary tree with eight internal
vertices has nine terminal vertices, not seven.

15. There is no tree with the given properties because a full binary tree with five internal vertices
has 2- 5 + 1 or eleven vertices in all, not nine.

18. There is no full binary tree with sixteen vertices because a full binary tree has 2k + 1 vertices,
where k is the number of internal vertices, and 16 # 2k + 1 for any integer k.

Section 10.7

6. Minimum spanning tree:

Order of adding the edges: {vs,va}, {vo,vs}, {v1,us}, {vs,v6}, {va.vs}, {ve.v7}, {va,v7}

15.
[Step| newpa§&(T E(T) |  F |L{a)[L®) [ Le) | L{d) | L(e) | L(f) | L(g) |
0 {a} [ {a} 0 [oo| oo | oo |00 ]| 0| o
1 {a} 1] {b,e,g} | 0 3* | o | o | 3 | o 4
2 {a,b} {{a,b}} {c,;e,g} | O 31000 38| ]| 4
3 {a'a b, B} {{a'a b}a {aa E}} {C, d, f7g} 0 3 10 14 3 7 4
4 {a‘1 b, e9g} {{a=b}1{ave}a{a:g}} {C,d, f} 0 3 10 14 3 5 4
s | @05 (e (e faah o)

*At this point, vertex e could have been chosen instead of vertex b.

18. a. If there were two distinct paths from one vertex of a trec to another, they {or pieces of
them) could be patched together to obtain a circuit. But a tree cannot have a circuit.
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Section 10.7 165

21. b. Counterexample: Let G be the following simple graph.
Y 2
% V3
Then G has the spanning trees shown below.

Y "2 Y P
M *e——o¢
% V3
These trees have no edge in common.

27. Proof: Suppose not. That is, suppose there exists a connected, weighted graph G with n
vertices and an edge e that (1) has larger weight than any other edge of G, (2) is in a circuit C
of G, and (3) is in a minimum spanning tree T for G. Let the endpoints of e be vertices v and
w, and let H be the graph obtained from T by removing ¢. In other words, V(H) = V(T) and
E(H) = E(T)—{e}. Then H is a circuit-free subgraph of T' that contains all the vertices of G
but only n — 2 edges, too few to be a tree. Now H consists of two components, one, say H,,
containing v and the other, say H,,, containing w. Let ¢’ be a “bridge” from H,, to H,. That
is, as shown in the solution to exercise 39 in Section 10.2, there is a trail in G from v to w that
does not include e, and so we may let ¢’ be the edge in the trail that immediately precedes
the first vertex in the trail that is in H,. Let 7” be the graph obtained from H by adding ¢’.
More precisely, V(T") = V(H) and E(T') = E(H)U{e}. Then T” is connected, contains every
vertex of G (as does T), and has n — 1 edges (the same as T). Hence, by Theorem 10.5.4, T’
is a spanning tree for G. Now

w(T') = w(T) — w(e) + w(e') = w(T) — (w(e) — w(e')) < w(T)

because w(e) > w(e’). Thus 7" is a spanning tree of smaller weight than a minimum spanning
tree for G, which is a contradiction. Hence the supposition is false, and the given statement, is
true.

30. Proof: Suppose that G is a connected, weighted graph with n vertices and that 7" is the output
graph produced when G is input to Algorithm 10.7.4. Clearly T is a subgraph of G and T is
connected because no edge is removed from 7" as T is being constructed if its removal would
disconnect T. Also T is circuit-free because if T had a circuit then the circuit would contain
edges ey, eq, ..., e; of maximal weight. At some point during execution of the algorithm, each
of these edges would be examined (since all edges are examined eventually). Let e; be the first
such edge to be examined. When examined, e; must be removed because deletion of an edge
from a circuit does not disconnect a graph and at the time e; is examined no other edge of the
circuit would have been removed. But this contradicts the supposition that e; was one of the
edges in the output graph T'. Thus T is circuit-free. Furthermore, T' contains every vertex of
G since only edges, not vertices, are removed from G in the construction of T. Hence T is a
spanning tree for G.

Next we show that 7 has minimum weight. Let 7y be any minimum spanning tree for G
such that the number of edges T7 and T have in common is a maximum. If T = T}, we are
done. So suppose T' # T7. Then there is an edge e of T that is not in 7}. [Since trees T and
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166 Chapter 10: Graphs and Trees

T, both have the same vertex set, if they differ at all, they must have different, but same-size,
edge sets.] Now adding e to T produces a graph with a unique circuit (exercise 19). Let €
be an edge of this circuit such that €’ is not in T. [Such an edge must erist because T is a tree
and hence circuit-free.] Let T> be the graph obtained from T} by removing e’ and adding e.
Note that T has n vertices and n — 1 edges and that T} is connected [since, by Lemma 10.5.3,
the subgraph obtained by removing an edge from a circuit in a connected graph is connected).
Consequently, 75 is a spanning tree for G. In addition,

w(Tp) = w(Th) — w(e’) + wle).

Now w(e) < w(e’) because at the stage in Algorithm 10.7.4 when e’ was removed, e could have
been removed, and it would have been removed if w(e) > w(e’). Thus

w(Tz) = w(Ti) —w(e) +wle) < w(Ti).
N—— ——
>0
But T} is minimum spanning tree for G, and thus, since 73 is a spanning tree with weight less
than or equal to the weight of T}, T3 is also a minimum spanning tree for G.

Finally note that by construction, 75 has one more edge in common with 7" than T does,
which contradicts the choice of T) as a minimum spanning tree for G with a maximum number
of edges in common with 7. Thus the supposition that T # T} is false, and hence T itself is a
minimum spanning tree for G.
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Chapter 10 Review 167

Review Guide: Chapter 10

Definitions: How are the following terms defined?

graph, edge-endpoint function (p. 626)
loop in a graph, parallel edges, adjacent edges, isolated vertex, edge incident on an endpoint

(p. 626)

directed graph (p. 629)

simple graph (p. 632)

complete graph on n vertices (p. 633)

complete bipartite graph on (m, n) vertices (p. 633)

subgraph (p. 634)

degree of a vertex in a graph, total degree of a graph (p. 635)

walk, trail, path, closed walk, circuit, simple circuit (p. 644)
connected vertices, connected graph (p. 646)

connected component of a graph (p. 647)

Euler circuit in a graph (p. 648)

Euler trail in a graph (p. 652)

Hamiltonian circuit in a graph (p. 654)

adjacency matrix of a directed (or undirected) graph (p. 662)
symmetric matrix (p. 664)

n x n identity matrix (p. 669)

powers of a matrix (p. 670)

isomorphic graphs (p. 676)

isomorphic invariant for graphs (p. 679)

circuit-free graph (p. 683)

tree, forest, trivial tree (p. 683)

parse tree, syntactic derivation tree (p. 684)

terminal vertex (or leaf), internal vertex (or branch vertex) (p. 688)
rooted tree, level of a vertex in a rooted tree, height of a rooted tree (p. 694)
parents, children, siblings, descendants, and ancestors in a rooted tree (p. 694)
binary tree, full binary tree, subtree (p. 696)

spanning tree (p. 702)

weighted graph, minimum spanning tree (p. 704)

Graphs

How can you use a graph as a model to help solve a problem? (p. 631)

What does the handshake theorem say? In other words, how is the total degree of a graph
related to the number of edges of the graph? (p. 636)

How can you use the handshake theorem to determine whether graphs with specified properties
exist? (pp. 636-638)

If an edge is removed from a circuit in a graph, does the graph remain connected? (p. 647,
690)

A graph has an Euler circuit if, and only if, it satisfies what two conditions? (p. 652)

A graph has a Hamiltonian circuit if, and only if, it satisfies what four conditions? (p. 655)
What is the traveling salesman problem? (p. 656)

How do you find the adjacency matrix of a directed (or undirected) graph? How do you find
the graph that corresponds to a given adjacency matrix? (p. 663)
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168 Chapter 10: Graphs and Trees

e How can you determine the connected components of a graph by examining the adjacency
matrix of the graph? (p. 666)

How do you multiply two matrices? (p. 666)

How do you use matrix multiplication to compute the number of walks from one vertex to
another in a graph? (p. 672)
How do you show that two graphs are isomorphic? (p. 677)

What are some invariants for graph isomorphisms? (p. 679)
How do you establish that two simple graphs are isomorphic? (p. 680)

Trees

o How do you show that a saturated carbon molecule with k carbon atoms has 2k + 2 hydrogen
atoms? (p. 686 and exercise 4 in Section 10.5)

e If a tree has more than one vertex, how many vertices of degree 1 does it have? Why? (p.
687)

e If a tree has n vertices, how many edges does it have? Why? (p. 688)

e [f a connected graph has n vertices, what additional property guarantees that it will be a tree?
Why? (p. 692)

¢ How can you represent an algebraic expression using a binary tree? (p. 696)

e Given a full binary tree, what is the relation among the number of its internal vertices, terminal
vertices, and total number of vertices? (p. 697)

e Given a binary tree, what is the relation between the number of its terminal vertices and its
height? (p. 698)

o What is the relation between the number of edges in two different spanning trees for a graph?

(p. 702)
How does Kruskal’s algorithm work? (p. 704)

How do you know that Kruskal’s algorithm produces a minimum spanning tree? (p. 706)
How does Prim’s algorithm work? (p. 707)

How do you know that Prim’s algorithm produces a minimum spanning tree? (p. 708)
How does Dijkstra’s shortest path algorithm work? (p. 711)

How do you know that Dijkstra’s shortest path algorithm produces a shortest path? (p. 713)
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Chapter 11: Analysis of Algorithm Efficiency

The focus of Chapter 11 is the analysis of algorithm efficiency in Sections 11.3 and 11.5. The
chapter opens with a brief review of the properties of function graphs that are especially important
for understanding O-, -, and ©-notations, which are introduced in Section 11.2. For simplicity, the
examples in Section 11.2 are restricted to polynomial and rational functions. Section 11.3 introduces
the analysis of algorithm efficiency with examples that include sequential search, insertion sort,
selection sort (in the exercises), and polynomial evaluation (in the exercises). Section 11.4 discusses
the properties of logarithms that are particularly important in the analysis of algorithms and other
areas of computer science, and Section 11.5 applies the properties to analyze algorithms whose orders
involve logarithmic functions. Examples in Section 11.5 include binary search and merge sort.

Section 11.1

9.

3
X G(x) graph of G
S )
0 0 ’/
12 2 !
LRV // /70////
l ‘ 0 Ll T T T L) I T >
1172 172 4 3 2 <1 . L2 3 4
13/ 3/4 )
2 0 i

3L

18. b. When 2 < 0, k is increasing.
Proof:

Suppose x; < x5 < 0. Multiplying both sides of this inequality by —1 gives —x; > —z5, and
adding z, 22 to both sides gives £1x2 — 21 > £1x2 — 2. Now, since x; and z, are both negative,
T1T9 is positive, and hence

rilg — I > r1ZTg — 22
1T T1T2 ’
Simplifying the two fractions gives
xg —1 x —1
— > ——
o €Ty

and so k(z,) < k(z) by definition of &.

21. b. Proof by contradiction:

Suppose that ¢ is not increasing. Then there exist real numbers 2, and x; such that 0 < z; <
z2 and g(z,) > g(x2). By definition of g,

T h > o,
Applying part (a) to this inequality gives
man m\n
(z17)" > (22™) " 169
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170 Chapter 11: Analysis of Algorithm Efficiency

By the laws of exponents, z; %™ = 1™ and 2% ™ = x,™, and so
™ > 2™,

But, by part (a), 1™ < 22™, and so we have reached a contradiction. Hence the supposition
is false, and thus g is increasing.

Section 11.2

3. a. Formal version of negation: f(z) is not O(g(z)) if, and only if, V positive real numbers k,
A, and B, 3 a real number x > k such that either |f(z)| < A|g(z)| or |f(z)| > Blg(z)|.

b. Informal version of negation: f(x) is not O(g(x)) if, and only if, no matter what positive
real numbers &k, A, and B might be chosen, it is possible to find a real number x greater than
k with the property that either |f(z)| < A|g(z)| or |f(z)] > B|g(z)].

9. Let A=1/2, B =3, and k = 33. Then by substitution, A|z?| < |3z2 — 80z + 7| < B|2?| for
all z > k, and hence by definition of ©-notation, 3z2 — 80z + 7 is O(x?).

15. a. Proof (by mathematical induction): Let the property P(n) be the sentence

If 2 is any real number with « > 1, then 2™ > 1. — P(n)

Show that P(1) is true: We must show that if z is any real number with z > 1, then
z! > 1. But this is true because ' = z. So P(1) is true.

Show that for all integers k > 1, if P(k) is true then P(k + 1) 1is true: Let k be
any integer with & > 1, and suppose that

P(k)

If z is any real number with 2 > 1, then 2% > 1. . , .
inductive hypothesis

We must show that
If z is any real number with z > 1, then z**! > 1. —Pk+1)

So suppose z is any real number with 2 > 1. By inductive hypothesis, z*¥ > 1, and multiplying
both sides by the positive number z gives z- ¥ > z- 1, or, equivalently, z**! > z. But z > 1,
and so, by transitivity of order, 2**1 > 1 [as was to be shoun/.

b. Proof:

Suppose z is any real number with z > 1 and m and n are integers with m <n. Then n —m
is an integer with n —m > 1, and so, by part (a), z”~™ > 1. Multiplying both sides by =™
gives 2 2™ > g™ 1, and so, by the laws of exponents, 2" > z™ [as was to be shown].

21. a. For any real number z > 1,

Ilvz]l = |vZ] becausesince 2 > 1> 0, then |\/z] >0

< \/.’E because |_7'J < 7 for all real numbers r

|v/Z| because vz > 0.

Therefore, by transitivity of equality and order, || vz]| < |vVZ|.

b. Suppose z is any real number with 2 > 1. By definition of floor,

V3] < vE < [Va] +1.
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Section 11.2 171

Now
Wal+1 < 2|yal
& 1 < |Vz| Dby subtracting | /2] from both sides
<1 < Vz by definition of floor
1 < =z by squaring both sides (okay because x is positive),

and the last inequality is true because we are assuming that x > 1. Thus,
VE<|VE|+1 and |VE]+1<2|va],
and so, by the transitivity of order (Appendix A, T18),
VE <2|Va).
Dividing both sides by 2 gives
%\/:E < vzl

Finally, because all quantities are positive, we conclude that
1 3
L val <|1vall.

c. Let A= % and a = 1. Then by substitution,

A|\/I| < H\/.E“ for all z > a,

and hence by definition of Q-notation, [/z] is Q(+/z).
Let B=1 and b= 1. Then
V]l < BlVal
for all real numbers > b, and so by definition of O-notation, | /x| is O(/x).
d. By part (c) and Theorem 11.2.1(1), we can immediately conclude that |/z| is ©(\/T).

24. a. For all real numbers z > 1,

%:1:5 -50z3 +3z+12] < ;11-.1:5| +150z3| + |3z| + [12| by the triangle inequality

= 12°+502% + 3z + 12 because 3%, 50%, 3z,
and 12 are positive

< 12545025 + 32° + 122° because % < z°, x < x5,
and 1 < 1% forz > 1
< 662° because 2 + 50 + 3 + 12 < 66
662°| because z%is positive.

Therefore, by transitivity of equality and order, |%:1:5 — 5023 + 3z + 12| < 66|z5|.

b. Let B =66 and b = 1. Then by substitution, |2° — 502* + 3z -+ 12| < B|z?| for all z > b.
Hence by definition of O-notation,

1
Zm‘r’ — 502" + 3z + 12 is O(z?).
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172 Chapter 11: Analysis of Algorithm Efficiency

27. Proof:

Suppose ag, a1, az,...,a, are real numbers and a, # 0; and let

d=9 (laol +lai] +|az| + - + Ian-ll)
|an|

Let a be greater than or equal to the maximum of d and 1. Then if z > a

z > 2(lao|+|01|+|02|+"'+|a3|+|an-1|)
1 lan|
= §|0n|33 > Jao| + |lar]| + |az]| + -+ + |an-1]
by multiplying both sides by :21- |an]
1 1 1
= (1=Janlz 2 laol —=5 +lar]- == +laz|- —=5 + -+ + lan-2|- — +lan-1] 1
because by exercise 15, when z > 1 and m > 1,
thenz™ > 1,andso 1 > #
a
= |ap|lz™ - | 2"':1:" > ao| +|ai|z + |ag|z® + -+ - + |an—2| 2% + |an—1|z"!

by multiplying both sides by 1.

Subtracting all terms on the right-hand side from both sides and adding the second term on
the left-hand side to both sides gives

x|

Jan] 2" ~ lan1] 27" = Jan -2l a2 = -+ ~|ag|2? ~ Jas| = ~ Jao] 2 lam. (%)
Now, by the triangle inequality, for all real numbers r and s,
Irl = I(r+ )+ (=s)| <|r+s|+|-s| =|r+s|+]s],
and thus,
Ir| = |s] < [r+s].
It follows by repeated application of this result that, when = > 1,
|an| 2™ = |an-1| 2" = |ap_o| 2" = .- ~ |ag|2? - lai|z — |ao
= |a,z"| - Ian_lm”‘l| - Ian_gx"‘2| — L@xﬂ — la1z| — |ao|
< |anz™ + an-12""" + an_gz™ 2+ - + a2z? + a1z + ag| . (**)

Using the transitive property of order to combine (*) and (**) gives that

fanl ;

< |an@™ + @12 +an_2z™ % + -+ apz? + a1z + ao .

Let A= |_0'2n_| and let a be as defined above. Then

Az™ < |anz™ +an_12" 7+ an_22™ % + - + apz? + 017 + ag| for all real numbers z > a.
It follows by definition of 2-notation that

anZ™ + @p_ 12" Fap_oz" 2 4 -+ apa® 4+ a1z + ag is Q).
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50 +3+12 11 1
30. Leta=2 (+1—/4+-) = 520, and let A = 3'1°% If > 520, then
50+3+12
> 2| —
v ( 174 )
11
= 3 Z'L > 58043412
by multiplying both sides by % . %
1.1 1 1 1
= 1-=)--=2 > 30—+3-—+12-—
( 2/ v = % + 23 + T
because 1—% = %, and, since z > 520 > 1,
thenl>%,l>fgandl>;{;
1. 11
= Za:‘“ -3 Z.L') > 5008 + 3z +12
by multiplying both sides by z*
1. 1 1 .
= Z::;" —50x% -3z —-12 > 3 Z’L)
by subtracting 50z3+ 3z + 12 from and
adding % . %:vs to both sides
1 . 1 1 .
= Zw5 — 5023 +3x+12 > 3 Za:”
because 3z + 12 > -3z - 12 since £ > 0
1 . . 1, .
= Z.‘EO — 5023 + 3z + 12} > 3 |:z:"|

Thus for all real numbers 2 > a,

because both sides are nonnegative.

Q-notation, we conclude that Z:c5 — 502" + 3z + 12 is Q(25).

33.

=

(z®). Thus, by Theorem 11.2.1(1), Zx” — 5023 + 32 + 12 is O(z5).

36. Note that

z(z—1)

2

and so, by the theorem on polynomial orders,

39. Note that

n(n +1)

4
3 +

2(n—-1)+

+ 3x

:Lz—-a:+6x
2 2
1, 5
= Bt - l
21, + 2:L' by algebra,
zr(x—1
%Hxise(xz)
= 2n 2+712+n+2(n2 n)
- 2 2
= E3—712+ln—2 by algeb:
= 3 3 y algebra,

and so, by the theorem on polynomial orders,

2(n — 1)+

n{n+1)

+4 (n(n2— 1)) is ©(n?).

173

1 .
Z:L“’ —5023 +3z+12| > A |15| .Hence, by definition of

1 5 . | . .
By exercise 24, 4—m5 — 502 + 3z + 12 is O(2®) and, by exercise 31, Z:c” — 5023 + 3r 4+ 12 is
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174 Chapter 11: Analysis of Algorithm Efficiency

45. Note that

n n T
S k+3) = Y k+3X3 by Theorem 35.1.1
k=1 k=1 k=1
(n+1
= -n(nT)- +(@B3+3+-:--4+3) by Theorem 5.2.2
1 1 n terms
= §n"' + E'n. + 3n by definition of multiplication
= -n?+ Zn by algebra
- 2 2 4 & g ]

and so, by the theorem on polynomial orders,

n

D (k+3) is O(n?).

k=1

48. a. Proof: Suppose ag, a1, as,...,a, are real numbers and a,, # 0. Then

i ™ + Gpo12® L+ agi? a4+ ag
im
T—00 apxTh
. an-1| 1 a) 1 a) 1 ap| 1
z—00 a, |z . Uy | z?~ Uy, | T ap| ™
) n-1]| ;. 1 az | .. 1 ay| .. 1 ag | .. 1
= lim 1+|= lim (= ]+ -+|—| lim 5 | +|— lim T )+ — lim { —
00 a, |z—c\2 Ap | T—x \ 2™ Ay, [|#—oc \ 27~ Ay | z—0o0 \ 2"
=1

1 . .
because lim (—k) = 0 for all integers k > 1.
{L—r00 X

b. Proof:

Suppose ag, ai, az....,a, are real numbers and a,, # 0. By part (a) and the definition of
limit, we can make the following statement: For all positive real numbers ¢, there exists a real
number M (which we may take to be positive) such that

AT + apo 2™ 4 o aga® + oy + ag

<14 ¢ for all real numbers x > A.
a,x"

1—-e<

Let £ = 1/2. Then there exists a real number My such that

AnZ” + ap_ 12" 4+ 4 agx? + a1z + ag
apx™

<1+ 1 for all real numbers x > Ay.

1-=
< 2

2

Equivalently, for all real numbers « > My,
1 n n n—1 2 3 n
3 lan] 27 < |ana™ + an_12” 7t + -+ a2z + arz + ag| < 3 lan||2"| .
Let A = % lan], B = % |an|, and k = Mp. Then
Alz"| < Ian:v” +an12" Vot agz Faw + a0| < Blz™| for all real numbers z > k,
and so, by definition of ©-notation,

2™ + Q12" 4 oo agz® + a1z + ag s O(n™).
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Section 11.2 175

37. b. Proof (by mathematical induction): Let the property P(n) be the inequality

S <VI4 VI VBt VA e P(n)

Show that P(1) is true: We must show that 3 -13/2 < V1. But the left-hand side of the
inequality is 1/2 and the right-hand side is 1, and 1/2 < 1. So P(1) is true.

Show that for all integers k > 1, if P(k) is true then P(k + 1) is true: Let k be
any integer with k£ > 1, and suppose that

K SVT+VE4 VBt VR e L)

inductive hypothesis

We must show that
S+ D2 < VIHVEE VB4 4 VEFL e P(k+1)
By adding vk + 1 to both sides of the inductive hypothesis, we have
S VEFTS VI4+VE+ V344 VE+ VETL
Thus, by the transitivity of order, it suffices to show that

(k+1)%2 < 513” +vVk+1

N | =

Now when & > 1,
B>k —1=(k-1)(k+1).
Divide both sides by k(% — 1) to obtain
kRt 1.
-k

k+1 . .
But % > 1, and any number greater than or equal to 1 is greater than or equal to its own

square root. Thus

ko Jk+1 R+l vE+]
k-1— k ~— VA

AVE> k=-D)Vk+1=(k+1-2VvVk+1=(k+1)*2-2Vk+

Multiplying the extreme-left and extreme-right sides of the inequality by 1/2 gives

Hence

—

1»”2 > —(k+1)¥2 - VEk+1, or, equivalently, %(k +1)32 < %k3/2 +vVEk+1.

N

[This is what was to be shown/.

60. Proof: Suppose f(x) and g(z) are o(h(zx) and a and b are any real numbers. Then by properties
of limits,

xll’.‘;ﬂ%# = ‘lrlglgo "{f 3 +brlﬂgo%

So af(x) + bg(z) is o(h(x)).

= a-0+b-0 = 0.
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176 Chapter 11: Analysis of Algorithm Efficiency

Section 11.3

3. a. When the input size is increased from m to 2m, the number of operations increases from
em? to ¢(2m)? = 8cm?.
8cm?

b. By part (a), the number of operations increases by a factor of o i 8.

c. When the input size is increased by a factor of 10 (from m to 10m), the number of operations
3 3
C(IOTZ, ) _ 1000c3m — 1000,
com cm

increases by a factor of

12. a. For each iteration of the inner loop there is one comparison. The number of iterations of
the inner loop can be deduced from the following table, which shows the values of k and ¢ for
which the inner loop is executed.

k|1 2 e =2 n—1
i {23 (n|3]|4]--|n]| - |n—-1]|n|n
n—1 n—2 2 1
Therefore, by Theorem 5.2.2, the number of iterations of the inner loop is
-1
(M=1)+(m—2)4--+2+1= %

It follows that the total number of elementary operations that must be performed when the
algorithm is executed is

-1
1 (n—(n‘Q——)) = §Tl2 hd 57&.
By the theorem on polynomial orders, $n2 - %n is ©(n?), and so the algorithm segment has

order n2.

15. a. There are three multiplications for each iteration of the inner loop, and there is one ad-
ditional addition for each iteration of the outer loop. The number of iterations of the inner
loop can be deduced from the following table, which shows the values of i and j for which the
inner loop is executed.

1 2 e =2 n—1
jl2{3(--|n|3|4|--|n| - |n=-1[n|n
. — PN -— . N ) e
n-—1 n—2 2 1
Hence, by Theorem 5.2.2, the total number of iterations of the inner loop is
n(n —1)

n-D+n-2)+---+2+1= 5
Because three multiplications are performed for each iteration of the inner loop, the number
of operations that are performed when the inner loop is executed is
nn—-1 3 3 3
3‘% = §(n2—n) = '2-712 bt '2-71.

Now an additional operation is performed each time the outer loop is executed, and because
the outer loop is executed n times, this gives an additional n operations. Therefore, the total
number of operations is

«

3, 3 3, 1
(in —§H)+n— 5" —gn

b. By the theorem on polynomial orders, 3 — 1nis O(n? , and so the algorithimn segment
2 2 g g
has order n?.
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Section 11.3 177

18. a. There is one multiplication for each iteration of the inner loop. If n is odd, the number of

iterations of the inner loop can be deduced from the following table,which shows the values of
t and j for which the inner loop is executed.

% 1 2 e ln—2 n—1 )
(R N = n—1 n+1l
l 2 J 1 1 2 > G
7 1H2---|n 1|2 |:---|n v ee ";1 '%l_‘..l ceelm nT-l "'T_1+1 e ln .'I_.ri .";’_l+l e ln
R N , N ~ o |~ —~ N -~ i
n " n-tgtpi=252 n—tFll=n4d n-tlpr=nl

Thus the number of iterations of the inner loop is

3 n+3 1
n+n+(n—l)+(n——l)+-~+n+ + 2 nt

2 2 + 2
n+1
=2(n+(n—l)+~-+n+3)+n+
2 2
n (n+1)/2 "’+1
=2 Zk—- Z k| + 5 because#-l:%l—
k=1 k=1
n+1 1 .+ 1
=n(n+l)—n+ n +1 +n+ by Theorem 5.2.2
2 2 2
_dn(n+1) (n+1)°
- 4 4
4’ +dn-—n?-2n-1
- 4
_3nf4+2n-1
B 4
=" 5"~ 1

By similar reasoning, if n is even, then the number of iterations of the inner loop is

4 2 2
n+n+(n—1)+(n—1)+~~~+n; +n-2i—

=2(n+(n—l)+---+g)

n nj2
=2. Zk—Zk because”—'2*2-1=
k= k=1
+

LS

1

1) by Theorem 5.2.2

4 4 4
_4An’+4n—-n*-2n
- 4
3%+ 2n
T4
= Z—nz + %n.

Because one operation is performed for each iteration of the inner loop, the answer is that

3 4 3y 3 5 11
1 (4n +n 4)—471 +3n 1
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178 Chapter 11: Analysis of Algorithm Efficiency

elementary operations are performed when n is odd and
3 2 _3 2
1 (Zn +n—1)—zn +67L

elementary operations are performed when n is even.

b. By the theorem on polynomial orders,gln2 +3n — 1741 is ©(n?) and %nz + 6n is also ©(n?)

and so this algorithm segment has order n?.

21.
all] af2] af3] al4 a[5]
initial order | 7 3 6 9 5
result of step k =2 | 3 7 6 9 5
result of step k =3 | 3 6 7 9 5
result of step k =4 | 3 6 7 9 5
result of step k =5 | 3 5 6 7 9
27. a.
E, =0
E, = Ey+2+1 = 3
Ey = E;+3+1 = 344
Ey, = E3+4+4+1 = 3+4+5
Es = E;+54+41 = 34+4+4+5+6
Guess: E, = 34445+ +(n+1)=[14+2+3+4+5+---+(n+1)]-(1+2)
(n+1)(n+2) n?+3n+2-6 n?+3n—-4
= _—_— 3 = =
2 2 2
b. Proof (by mathematical induction): Let E, E5, E3,... . be a sequence that satisfies the

recurrence relation Ey = Er_; + k + 1 for all integers k > 2, with initial condition E; = 0,
and let the property P(n) be the equation

_n*+3n—-4

E
" 2

— P(n)

Show that P(1) is true: The left-hand side of P(1) is E,, which equals 0 by definition of
E\,E,, F;, ..., and the right-hand side of P(1) is

12+3-1-4  1+43-4

2 2 0

also. So P(1) is true.
Show that for all integers k > 1, if P(k) is true then P(k + 1) is true: Let & be any
integer with & > 1, and suppose that

2 . —
5, o FHdk-4 _ Pk

2 inductive hypothesis

We must show that
(k+1)2+3k+1)-4

Exp1 = — Pk+1)

Aok 4
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But the left-hand side of P(k + 1) equals

Eeyn = Eg+(k+1)+1 by definition of Ey, E5, Ey, ...

k% + 3k — 4
MAoh—i +(k+1)+1 by inductive hypothesis

K2 +3k—-44+2k+4

k2 + 5k

2

And the right-hand side of P(k + 1) equals

(k+12+3k+1)—4 Kk +2k+1+3k+3-4  k245k
2 - 2 - 2

also, and so P(k + 1) is true [as was to be shoun/.

33. As i goes from k + 1 to 5 through 5 — (k + 1) + 1 = 5 — k values (where &k goes from 1 to 4),
the number of comparisons is

G-1)+GB-2)+(5-3)+(5-4)=4+3+2+1=10.

1
39. By the result of exercise 38, s, = 577,2 + gn, which is ©(n?) by the theorem on polynomial
orders.

42. There are two operations (one addition and one multiplication) per iteration of the loop, and
there are n iterations of the loop. Therefore, t,, = 2n.

Section 11.4

X '—(( 4. 2.: 3

I<xg?2 / 2 I Com—

2ergcd 2

d<x<8 3 1 —_—

12<x g0 0

< x <18 7 ot ) ) . | L | ! | | | L i L

18< x<ift 2 L ot ' oo
-1 o | 2 3 4 5 6 71 8 9 10 11 12 13 14 15 16
-2

12, When % <z <1, then —1 <logya < 0.

When § <z < 3, then -2 < logyz < -1.

When % <z< ;li, then —3 < log, z < —2.

And so forth.
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Chapter 11: Analysis of Algorithm Efficiency

1”2<x<l

S~
=

A 4

-1 <logx<0

-2<logx<-1

-3 < Iogzx <-2 {

-3

I
=~
s
-~
A
~
N}

24. Proof (by strong mathematical induction): Let ¢;,c2,¢3,... . be a sequence that satisfies the

recurrence relation

¢k = 2¢|xs2) + k for all integers k > 2, with initial condition ¢; = 0,

and let the property P(n) be the inequality

¢n < nlogy n. — P(n)

Show that P(1) is true: For n = 1 the inequality states that ¢; < 1-logy1 =1-0=0,
which is true because ¢; = 0. So P(1) is true.

Show that if k> 1 and P(i) is true for all integers i from 1 through k, then
P(k + 1) is true: Let k be any integer with & > 1, and suppose that

We must show that

inductive

¢; < ilog,i for all integers i with 1 < i <k. )
: 62 ° - = hypothesis

ckt1 < (k+ 1) logy(k + 1).

First note that because k is greater than 1 and by definition of floor,

< k.+1_
2

k41
< |21 =
<55

Also, because k is an integer with £ > 1, we have

1$k=>k+1$k+lﬁ=>k+1§2k=>%Sk.

Thus, by the transitive property of order,

k+1
2o <k
e
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Section 11.4 181

Then

Chy1 = 2Cl(k+1)/2j +(k+1)
by definition of ¢1,¢9,¢3,...

11 .+ 1
< |5 0w |55+ e
by inductive hypothesis because I_I‘—‘ZLIJ <k
k+1
< (k+Dloga(5=) + (k+ 1)

since 1 < [%J < %, we have by property (11.4.1)
that log, |_"J2'—1J < logy (-’”—%l)

= (k+1)[logy(k+1) —logy 2]+ (k+ 1)
by Theorem 7.2.1(b)

= (k4 1)[logelk +1) - 1)+ (k+1)

because log, 2 =1

(k4 1) logy(k + 1)
by algebra,

Therefore, by transitivity of equality and order, cgq.1 < (k+1) logy(k+1) [as was to be shown/.

33. For all integers n > 0,
9n & 2n+1 < 9.9"

Thus, let A=1, B=2, and k = 0. Then
A.27 <9l < B.9" for all integers n > k,
and so, by definition of @-notation, 2"*! is @(2").

36. By factoring out a 4 and using the formula for the sum of a geometric sequence (Theorem
5.2.3), we have that for all integers n > 1,

4+42 4+ 4834 4 4n d1+4+42 ... +4n71)

4(n—-1)+1 -1
= 4| ——
( 4-1 )

I

4 n

= g -1)
4 4

= _.411__
3 3
4

< —.4n

- 3

Moreover, because
44+ 42+ 4. +4™ 1 >0, then 4" <4 +42+43+ ... + 471 4 47,
Solet A=1, B=4/3, and k = 1. Then, because all quantities are positive,
A <|4+42+483 4+ +4"| < B-|4"| for all integers n > k,

and thus, by definition of ©-notation, 4 + 42 + 43 + ... + 4™ is ©(4").

a2 14528 4 11,1 %0 %0, 1,1, 1, 1197
) 2 2 23 6° 23 4 24 12’ 2 345 60
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182 Chapter 11: Analysis of Algorithm Efficiency

45. a. Proof: If n is any positive integer, then log, n is defined and by definition of floor,

logon| < logyn < |logyn|+ 1.
If, in addition, n is greater than 2, then since the logarithmic function with base 2 is increasing
logon > log,2 = 1.

Thus, by definition of floor,
1 < {logyn|.

Adding |log, n| to both sides of this inequality gives
llogon] +1 < 2|logyn].
Hence, by the transitive property of order (T18 in Appendix A),
log,n < 2|logyn],
and dividing both sides by 2 gives

gon < o
Let A=1/2, B=1, and k = 2. Then
Alogon < |logon| < Blogy,n for all integers n > k,
and, because log, n is positive for n > 2, we may write
Allogyn| < ||logen])| < Bllogyn| for all integers n > k.
Therefore, by definition of ©-notation, |log, n| is ©(log, n).
b. Proof: If n is any positive real number, then log, n is defined and by definition of floor,
llogy n] < logy n.
If, in addition, n is greater than 2, then, as in part (a),
logon < |logon|+1 and |logyn| +1 < 2log,n.
Hence, because log, n is positive for n > 2, we may write
[logy | < [|logy ] + 1] < 2|logy n| .
let A=1, B=2 and k = 2. Then
Allogyn| < |llogyn] +1| < Bllogyn| for all integers n > k.
Therefore, by definition of ©-notation, |log, n| + 1 is ©(log, n).
48. Proof:

Suppose n is a variable that takes positive integer values. Then whenever n > 2,

" =2-2.2.2.2...2<2-2.3-4-5--.n < 2nl.

n factors n factors

Let B =2 and b = 2. Since 2" and n! are positive for all n,
2™ < Bln!| for all integers n > b.

Hence by definition of O-notation 2" is O(n!).
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51. a. Let n be any positive integer. Then for any real number x [because u < 2% for all real

numbers u},

-’r £ x x
= <2% = z<n2" = "< (n27)" =n"- 27
n

So z™ < n™2%,
b. Let = be any positive real number and let n be any positive integer. Then
2" =|2" and n"2° =2%|n"|,
and thus the result of part (a) may be written as
| < 2% |n"|.
Let B = 2% and b = 0. Then |z?| < B|n"| for all integers n > b, and so by definition of

O-notation z” is O(n").

Section 11.5

6. ¢ Tindez | 0
bot 1111
top 104|110
mid 51211

b. Tindez 8

bot 116
top 10
mid 5|8

12.[n[424 [ 141 [47 [15]5]1]0]

15. If n > 3, then

b, = 1+ |logzn| by the result of exercise 14
= b, < 1l4loggn because |logzn| < logzn by definition of floor
= b, < loggn+loggn becauseif n > 3 thenloggn >1
= b, < 2loggn by algebra.

Furthermore, because loggn > 0 for n > 2, we may write
[logs n| < [|logsn] + 1| < 2|loggn|.
Let A=1, B=2, and k = 2. Then all quantities are positive, and so
Alloggn| < [[logzn] + 1] < Blloggn| for all integers n > k.

Hence by definition of ©-notation, b, = 1 + |logzn] is ©(logzn), and thus the algorithm
segment has order logg n.

18. Suppose an array of length & is input to the while loop and the loop is iterated one time.

The elements of the array can be matched with the integers from 1 to k with m = [%1 ,
as shown below:
left subarray right subarray
fa[bot] afbot +1] ... a[mid —1] X a[mid) ra[mid +1] ... aftop—1] aftop] )
{ ! ) ! !
1 2 m—1 m m+1 k-1 k
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184 Chapter 11: Analysis of Algorithm Efficiency

k+1 k1 k
Case 1 (k is even): In this case m = [%] = [5 + -;I =3 +1, and so the number of
s k
elements in the left subarray equals m — 1 = (% +1)-1= g = lEJ . The number of elements

in the right subarray equals k- (m+1)—1=k—-m=4%k— (g +1)= g -1< {S-J Hence

k
both subarrays (and thus the new input array) have length at most {EJ .

Case 2 (k is odd): In this case m = [% = Eil, and so the number of elements in the
k+1 k-1 k

left subarray equals m — 1 = % -1= —5 = bJ The number of elements in the right

subarray equals k —m =k — I—c;—l = % = {gJ also. Hence both subarrays (and thus the

k
new input array) have length {§J .

The arguments in cases 1 and 2 show that the length of the new input array to the next
iteration of the while loop has length at most |k/2] .

21.

24. a. Refer to Figure 11.5.3. Observe that when k is odd, the subarray a[mid+1], a[mid+2], .. . a[top|

has length
kE+1 k-1 k
S ST

And when k is even, the subarray a[mid + 1], a[mid + 2], ... a[top] has length

k k k
k—(§+1)+1—~§-\.§‘|.

So in either case the subarray has length [k/2].
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Review Guide: Chapter 11

Definitions: How are the following terms defined?
real-valued function of a real variable (p. 717)
graph of a real-valued function of a real variable (p. 717)
power function with exponent a (p. 718)

multiple of a real-valued function of a real variable (p. 721)
increasing function (p. 722)
decreasing function (p. 722)

f(z) is Q(g(z), where f and g are real-valued functions of a real variable defined on the same
set of nonnegative real numbers (p. 727)

L ]
.
.
e floor function {p. 719)
L ]
.
.
[ ]

e f(z) is O(g(z), where f and g are real-valued functions of a real variable defined on the same
set of nonnegative real numbers (p. 727)

e f(z) is ©(g(x), where f and g are real-valued functions of a real variable defined on the same
set of nonnegative real numbers (p. 727)

algorithm A is O(g(n) (or A has order g(n)) (p. 741)
algorithm A is Q(g(n) (or A has a best case order g(n)) (p. 741)
algorithm A is O(g(n) (or A has a worst case order g(n)) (p. 741)

polynomial time algorithms, NP class, NP-complete problems, the P vs. NP problem, tractable
and intractable problems (pp. 775-776)

Polynomial and Rational Functions and Their Orders

e What is the graph of the floor function? (pp. 719-720)

e What is the difference between the graph of a function defined on an interval of real numbers
and the graph of a function defined on a set of integers? (p. 720)

How do you graph a multiple of a real-valued function of a real variable? (p. 721)
How do you prove that a function is increasing (decreasing)? (p. 723)
What are some properties of O-, 2-, and ©-notation? Can you prove them? (p. 728)

If x > 1, what is the relationship between 2" and z*, where r and s are rational numbers and

r<s? (p. 729)

e Given a polynomial, how do you use the definition of ©-notation to show that the polynomial
has order z", where n is the degree of the polynomial? (pp. 730-732)

e What is the theorem on polynomial orders? (p. 733)

e What is an order for the sum of the first » integers? (p. 735)

What is an order for a function that is a ratio of rational power functions? (p. 736)

Efficiency of Algorithms

¢ How do vou compute the order of an algorithm segment that contains a loop? a nested loop?

(pp. 742-744)

How do you find the number of times a loop will iterate when an algorithm segment is executed?

(p. %3)

How do you use the theorem on polynomial orders to help find the order of an algorithm

segment? (p. 744)

What is the sequential search algorithm? How do you compute its worst case order? its average

case order? (pp. 739-740)

o What is the insertion sort algorithm? How do you compute its best and worst case orders?
(pp. 740, 744-746)
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186 Chapter 11: Analysis of Algorithm Efficiency

Logarithmic and Exponential Orders

e What do the graphs of logarithmic and exponential functions look like? (pp. 751-752)

¢ What can you say about the base 2 logarithm of a number that is between two consecutive
powers of 27 (p. 753)

How do you compute the number of bits needed to represent a positive integer in binary
notation? (p. 755)

How are logarithms used to solve recurrence relations? (pp. 755-757)

If b > 1, what can you say about the relation among logy, z, =", and zlog, z? (p. 758)
If 6> 1 and ¢ > 1, how are orders of log, z and log, x related? (p. 760)

e What is an order for a harmonic sum? (pp. 760-762)

e What is a divide-and-conquer algorithm? (p. 765)

e What is the binary search algorithm? (pp. 765-767)

e What is the worst case order for the binary search algorithm, and how do you find it? (pp.
768-772)

o What is the merge sort algorithm? (pp. 772-775)
e What is the worst case order for the merge sort algorithm, and how do you find it? (p. 775)
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Chapter 12: Regular Expressions and Finite-State Automata

This chapter opens with some historical background about the connections between computers and
formal languages. Section 12.1 focuses on regular expressions and emphasizes their utility for pattern
matching, whether for compilers or for general text processing.

Section 12.2 introduces the concept of finite-state automaton. In one sense, it is a natural
sequel to the discussions of digital logic circuits in Section 2.4 and Boolean functions in Section
7.1, with the next-state function of an automaton governing the operation of sequential circuit
in much the same way that a Boolean function governs the operation of a combinatorial circuit.
The section also provides practice in finding a finite-state automaton that corresponds to a regular
expression and shows how to write a program to implement a finite-state automaton. Both abilities
are useful for computer programming. The section ends with a statement and partial proof of
Kleene's theorem, which describes the exact nature of the relationship between finite-state automata
and regular languages.

The equivalence and simplification of finite-state automata, discussed in Section 12.3, provides
an additional application for the concept of cquivalence relation, introduced in Section 8.3. Note
the parallel between the simplification of digital logic circuits discussed in Section 2.4 and the
simplification of finite-state automata developed in this section. Both kinds of simplification have
obvious practical use.

Section 12.1

3. b. L= {11%,11/,12%,12/,21%,21/,22%,22/}
1lx =11 =1,11/=1/1 =1, 12« = 1x2 =2, 12/ = 1/2 = 0.5, 21 = 2x1 = 2,
21/ =2/1=2,22x=2%2=4,22/=2/2=1

6. LiL, is the set of strings of 0's and 1's that both start and end with a 0.
L1 U Ly is the set of strings of 0’s and 1's that start with a 0 or end with a 0 (or both).

(L1 U Ly)* is the set of strings of 0's and 1’s that start with a 0 or end with a 0 (or both) or
that contain 00.

9. (((z ] (N N(y=) | (((y=)")2)))
12. zy(z*y)* | (yx | y)y*
15. L((a | b)c) = L(a | b)L(e) = (L{a) U L(b)) L(c) = ({a} U {b}){c} = {a,b}){c} = {ac, bc}
18. z,yaxy, zT, TYTTY, TYTTYYITY, . . .

21. The language consists of the set of all strings of «’s and y’s that start with 2y or yy followed
by any string of z’s and y’s.

24. The string 120 does not belong to the language defined by (01*2)* because it does not start
with 0. However, 01202 does belong to the language because 012 and 02 are both defined by
01*2 and the language is closed under concatenation.

27. z | y* | y™(zyy™)(e | @)

30. Note that for any regular expression z, {2*)* defines the set of all strings obtained by concate-
nating a finite number of a finite number of concatenations of copies of 2. But any such string
can equally well be obtained simply by concatenating a finite number of copies of =, and thus
(z*)* = z*. Hence the given langnages are the same: L((rs)*) = L(((rs)*)*).

33. [a — 2]{3}{a — 2|"ly 187
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188 Chapter 12: Regular Expressions and Finite-State Automata

Section 12.2

3. a Uy, Uy, Us,Us b.a,b c Uy d. Us

e.
input
a b
— | U | Ua Uy
Uy | Uz Us
state Up | Uy Us
©@|Us |Us Us

6. a. sg, 51, 82,83 b. 0,1 ¢ sg d. sg

e.
input

0 1

- ©|s|[s 5
81 |8 8

state 1 1 2

S2 | 82 83

S3 [ 83 8o

9. a. sp, 81,582,853 0.0,1 ¢c.s0 d s

0

0
&

21. a.

b. (a|b)*(aal|bd)

© 2012 Cengage Learning. All Rights Rescrved. May not be d, copied or duplicated, or posted to a publicly accessible websile, in whole or in part.

STUDENTS-HUB.com Uploaded By: anonymous



Section 12.2 189

b. 101(0|1)*
27. a.
. 0
1
b. 00*10* (or using the * notation: 0+10*) ,
30.
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190 Chapter 12: Regular Expressions and Finite-State Automata

48. Let d represent the character class [0 — 9].

51. Proof (by contradiction):

Suppose there were a finite-state antomaton A that accepts L. Consider all strings of the form
a' for some integer ¢ > 0.

Since the set of all such strings is infinite and the number of states of A is finite, by the
pigeonhole principle at least two of these strings, say a” and a? with p < ¢, must send A to the
same state, say s, when input to A starting in its initial state. (The strings of the given form
are the pigeons, the states are the pigeonholes, and each string is associated with the state to
which A goes when the string is input to A starting in its initial state.)

Because A accepts L, A accepts a?b? but A does not accept aPbd.
Now since a9} is accepted by A, A goes to an accepting state if, starting from the initial state,
first a? is input to it (sending it to state s) and then b? is input to it. But A also goes to

state s after a® is input to it. Hence, inputting 7 to A after inputting a? also sends 4 to an
accepting state. In other words, A accepts aPb?.

Thus aPb? is accepted by A and yet it is not accepted by A, which is a contradiction. Hence
the supposition is false: there is no finite-state automaton that accepts L.
54. a. Proof:

Suppose A is a finite-state automaton with input alphabet ), and suppose L(A) is the language
accepted by A.

Define a new automaton A’ as follows: Both the states and the input symbols of A’ are the
same as the states and input symbols of A. The only difference between A and A’ is that each
accepting state of A is a non-accepting state of A’, and each non-accepting state of A is an
accepting state of A’.

It follows that each string in 3" that is accepted by A is not accepted by A’, and each string
in 3°7 that is not accepted by A is accepted by A’. Thus L(A’) = (L(A))c.

b. Proof:

Let A, and Aj; be finite-state automata, and let L(A;) and L{A;z) be the languages accepted
by A, and As, respectively.

By part (a), there exist automata A} and A} such that L(A}]) = (L(A4;:))° and L(A}) =
(L(A2))°.
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Section 12.3 191

Hence, by Kleene’s theorem (part 1), there are regular expressions r; and 7y that define
(L(A1))¢ and (L(Az2))¢, respectively. So we may write (L(A1))¢ = L(r1) and (L(A2))° = L(r2).

Now by definition of regular expression, r | r2 is a regular expression, and, by definition of
the language defined by a regular expression, L(ry | 7o) = L(r1) U L(rg).

Thus, by substitution and De Morgan’s law, L(r; | r2) = (L(A1))¢ U (L(A2))¢ = (L(41) N
L({A2))¢, and so, by Kleene’s theorem (part(2)), there is a finite-state automaton, say A, that
accepts (L(A1) N L(A2))°.

It follows from part (a) that there is a finite-state automaton, A’, that accepts ((L(A4:) N
L(A3))€)¢. But, by the double complement law for sets, ((L(A1)NL(A2))¢)¢ = L(A1)NL(A2).

So there is a finite-state automaton, A’, that accepts L{A;) N L(Az), and hence, by Kleene’s
theorem and the definition of regular language, L(A;) N L{A2) is a regular language.

Section 12.3

3. a. 0-equivalence classes: {s1,s3}, {s0,s2}
l-equivalence classes: {s1,s3}, {s0,s2}

b. transition diagram for A:

6. a. O-equivalence classes: {sg, S1, 93, 54,35}, {82,56}
1-equivalence classes: {sg, 34,55}, {51,833}, {s2}, {s6}
2-equivalence classes: {sg,s4}, {35}, {51} {33}, {52}, {s6}
3-equivalence classes: {so}, {sa}; {55}, {81}, {33}, {s2}, {s6}
b. The transition diagram for A is the same as the one given for A except that the states are
denoted [sg], [s1], [s2]; [s3]; [s4], [s5], [s6]-
15. Proof:

Suppose k is an integer such that £ > 1 and C}, is a k-equivalence class. We must show that
there is a k — 1 equivalence class, Cx_,, such that C C Cg_1.

By property (12.3.3), the (k — 1)-equivalence classes partition the set of all states of A in to a
union of mutually disjoint subsets.

Let s be any state in Cr. Then s is in some (k — 1)-equivalence class; call it C_;.

Let ¢ be any other state in C. [We will show that t € Ci—1 also.] Then t R; s, and so for
all input strings of length k, N*(¢,w) is an accepting state <& N*(s, w) is an accepting state.
Since & — 1 < k, it follows that for all input strings of length k — 1, N*(¢,w) is an accepting
state < N*(s,w) is an accepting state.

Consequently, ¢ Ri_, s, and so £ and s are in the same (k — 1)-equivalence class.

But s € Ci_;. Hence t € Ci_ also. We, therefore, conclude that Cy C Cj_;.

18. Proof:
Suppose 4 is an automaton and C is a *-equivalence class of states of A.

By Theorem 12.3.2, there is an integer K > 0 such that C is a K-equivalence class of A.
Suppose C contains both an accepting state s and a nonaccepting state ¢ of A.

q teod 11: 1
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192 Chapter 12: Regular Expressions and Finite-State Automata

Since both s and ¢ are in the same K-equivalence class, s is K-equivalent to ¢ (by exercises 36
and 37 of Section 8.3), and so by exercise 17, s is 0-equivalent to 2.

But this is impossible because there are only two 0-equivalence classes, the set of all accepting
states and the set of all nonaccepting states, and these two sets are disjoint.

Hence the supposition that C contains both an accepting and a nonaccepting state is false: C
consists entirely of accepting states or entirely of nonaccepting states.
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Review Guide: Chapter 12

Definitions: How are the following terms defined?

o alphabet, string over an alphabet, formal language over an alphabet (p. 781)
e I" T* (the Kleene closure of ), and 7 (the positive closure of £), where ¥ is an alphabet

(p. 781)
concatenation of z and y, where x and y are strings (p. 783)

concatenation of L and L/, where L and L’ are languages (p. 783)
union of L and L', where L and L' are languages (p. 783)
Kleene closure of L , where L is a language (p. 783)

regular expression over an alphabet (p. 783)

language defined by a regular expression (p. 784)

character class (p. 787)

finite-state automaton, next-state function (p. 793)
language accepted by a finite-state automaton (p. 795)
eventual-state function for a finite-state automaton (p. 797)
regular language (p. 804)

x-equivalence of states in a finite-state automaton (p. 809)
k-equivalence of states in a finite-state automaton (p. 810)
quotient automaton (p. 814)

equivalent automata (p. 816)

Regular Expressions

What is the order of precedence for the operations in a regular expression? (p. 784)

e How do you find the language defined by a regular expression? (p. 785)

e Given a language, how do you find a regular expression that defines the language? (p. 786)
e What are some practical uses of regular expressions? (pp. 787-789)

Finite-State Automata
e How do you construct an annotated next-state table for a finite-state automaton given the
transition diagram for the automaton? (p. 794)
e How do you construct a transition diagram for a finite-state automaton given its next-state
table? (pp. 794-795)
e How do you find the state to which a finite-state automaton goes if the characters of a string
are input to it? {p. 796)
e How do you find the language accepted by a finite-state automaton? (p. 796)
e Given a simple formal language, how do you construct a finite-state automaton to accept the
language? (p. 798)
e How can you use software to simulate the action of a finite-state automaton? (pp. 799-801)
e What do the two parts of Kleene's theorem say about the relation between the language
accepted by a finite-state automaton and the language defined by a regular expression? (pp.
799. 803)
How can the pigeonhole principle be used to show that a language is not regular? (p. 804)
How do you find the k-equivalence classes for a finite-state automaton? (p. 811)
How do you find the *-equivalence classes for a finite-state automaton? (p. 812)
How do you construct the quotient automaton for a finite-state automaton? (pp. 814-815)

What is the relation between the language accepted by a finite-state automaton and the lan-
guage accepted by the corresponding quotient automaton? (p. 814)
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194 Conventions for Mathematical Writing

Conventions for Mathematical Writing

1. When introducing a new variable into a discussion, the convention is to place the new variable
to the left of the equal sign and the expression that defines it to the right. This convention
is identical to the one used in computer programming. For example, in a computer program,
if a and b have previously been defined, and you want to assign the value of a + b to a new
variable s, you would write something like

s:=a+b.

Similarly, in a mathematical proof, if @ and b have previously been introduced into a discussion,
and you want to let s be their sum,

instead of writing “Let a + b = s,” you should write, “Let s = a + b.”

2. It is considered good mathematical writing to avoid starting a sentence with a variable. That
is one reason that mathematical writing frequently uses words and phrases such as Then,
Thus, So, Therefore, It follows that, Hence, etc. For example, in a proof that any sum of even
integers is even, instead of writing,

By definition of even, m = 2a and n = 2b for some integers a and b.

m+n=2a+2b...

write
By definition of even, m = 2a and n = 2b for some integers a and b.
Then
m+n=2a+2b...

The fact that m +n = 2a + 2b is a consequence of the facts that m = 2a and n = 2b. Including
the word “Then” in your proof alerts your reader to this reasoning.

3. Standard mathematical writing avoids repeating the left-hand side in a sequence of equations
in which the left-hand side remains constant. For example, if n = 5¢ + 4, instead of writing

n? = (5q+4)?

n? = 25¢° +40q+ 16

n? = 25¢° +40q+15+1
n? = 5(5¢°+8¢+3)+1

all the n? except the first are omitted and each subsequent equal sign is read as “which equals,”

as shown below: )

(5 +4)?
25¢% + 40¢ + 16
25q% +40g + 15+ 1

5(5¢° + 8¢ +3) + 1

I

n

4. Respecting the equal sign is one of the most important mathematical conventions. An equal
sign should only be used between quantities that are equal, not as a substitute for words like
“is,” “means that,” “if and only if,” <, or “is equivalent to.” For example, if a = 4 and b = 12,

students occasionally write:

alb=4]12since 12=4-3.
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Conventions for Mathematical Writing 195

But if this were read out loud, it would be, “a divides b equals 4 divides 12 since 12 equals 4
times 3,” which makes no sense. A correct version would be

a|b < 4|12, which is true because 12 =4 -3

or
a | b because 4 | 12 since 12 =4-3.

5. It is unnecessary, and even risky, to place full statements of definitions and theorems inside
the bodies of proofs. The reason is that the variables used to express them can become
confused with variables that are part of the proof. So instead of including the statement of
the definition of divisibility, for example, just write, “by definition of divisibility.” Similarly,
instead of including the statement of, say, Theorem 8.4.3, just write, “by Theorem 8.4.3." For
instance, to prove that a sum of any even integer plus any odd integer is odd, someone might
write the following:

Suppose m is any even integer and n is any odd integer.

For an integer to be even means that it equals 2k for some integer k, and
for an integer to be odd, means that it equals 2k + 1 for some integer k.
Thus m+n=2k+ (2k+1) =4k +1...

The problem is that although the letter k appears in the statements of the definitions in the
text, it refers to a different quantity in each one. However, when the statements are combined
together in the proof, the letter k can have only one interpretation. The result is that the
argument in the “proof”’ only applies to an even integer and the next successive odd integer,
not to any even integer and any odd integer.
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Tips for Success with Proofs and Disproofs

Make sure your proofs are genuinely convincing. Express yourself carefully and completely — but
concisely! Write in complete sentences, but don’t use an unnecessary number of words.

Disproof by Counterexample

o To disprove a universal statement, give a counterexample.

e Write the word “Counterexample” at the beginning of a counterexample.

o Write counterexamples in complete sentences.

e Give values of the variables that you believe show the property is false.

e Include the computations that prove beyond any doubt that these values really do make the
property false.

All Proofs

o Write the word “Proof’ at the beginning of a proof.
e Write proofs in complete sentences.
e Start each sentence with a capital letter and finish with a period.

Direct Proof

¢ Begin each direct proof with the word “Suppose.”
o In the “Suppose” sentence:
— Introduce a variable or variables (indicating the general set they belong to - e.g., integers,
real numbers etc.), and
— Include the hypothesis that the variables satisfy.
Identify the conclusion that you will need to show in order to complete the proof.
o Reason carefully from the “suppose” to the “conclusion to be shown.”
Include the little words (like “Then,” “Thus,” “So,” “It follows that”) that make your reasoning
clear.
e Give a reason to support each assertion you make in your proof.

[ ]

Proof by Contradiction

e Begin each proof by contradiction by writing “Suppose not. That is, suppose...,” and continue
this sentence by carefully writing the negation of the statement to be proved.

e After you have written the “suppose,” you need to show that this supposition leads logically
to a contradiction.

e Once you have derived a contradiction, you can conclude that the think you supposed is false.
Since you supposed that the given statement was false, you now know that the given statement
is true.

Proof by Contraposition

e Look to see if the statement to be proved is a universal conditional statement.
e If so, you can prove it by writing a direct proof of its contrapositive.
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Find-the-Mistake Problems

All of the following problems contain a mistake. Identify and correct each one.
1. Section 2.2: The negation of “1 <a < 5" is “1 > a > 5."
2. Section 2.2: “P only if Q" means “if Q then P.”
3. Section 3.2

(a) The negation of “For all real numbers z, if z > 2 then 22 > 4” is “For all real numbers
z, if £ > 2 then 22 < 4.”

(b) The negation of “For all real numbers z, if £ > 2 then 22 > 4” is “There exist real
numbers z such that if z > 2 then 22 < 4.”

(c) The negation of “For all real numbers z, if > 2 then 22 > 4” is “There exists a real
number z such that z > 2 and z? < 4.”

4. Section 3.2: The contrapositive of “For all real numbers z, if > 2 then z? > 4” is “For all
real numbers z, if * < 2 then 2% < 4."

5. Section 3.3: Statement: 3 a real number z such that V real numbers y, z + ¥ = 0. Proposed
negation: V real numbers z, if y is a real number then z +y # 0.

6. Section 4.1: A person is asked to prove that the square of any odd integer is odd. Toward
the end of a proof the person writes: “Therefore n? = 2k + 1, which is the definition of odd.”
7. Section 4.1: Prove: The square of any even integer is even.

Beginning of proof: Suppose that r is any integer. Then if m is any even integer, m = 2r....

8. Section 4.1: Prove directly from the definition of even: For all even integers n, (—1)" = 1.
Beginning of proof: Suppose n is any even integer. Then n = 2r for some integer r. By
substitution, (—1)* = (—1)?" = 1 because 2r is even....

9. Section 4.1: Prove directly from the definition of even: For all even integers n, (-1)"* = 1.
Beginning of proof: Suppose n is any even integer. Then n = 2r for some integer r. By
substitution, (—1)2" = ((=1))"....

10. Section 4.3: Prove: For all integers a and b, if a and b are divisible by 3 then a+b is divisible
by 3.
Beginning of proof: Suppose that for all integers a and b, if a and b are divisible by 3 then
a + b is divisible by 3. By definition of divisibility, ....

11. Section 4.3: Prove: For all integers a, if 3 divides a, then 3 divides a?.
Beginning of proof: Suppose a is any integer such that 3 divides . Then a = 3k for any
integer k....

12. Section 4.3: Prove: For all integers a, if a = 3b+ 1 for some integer b, then a® — 1 is divisible
by 3.
Beginning of proof: Let a be any integer such that a = 3b + 1 for some integer b. We will
prove that a? — 1 is divisible by 3. This means that a®> — 1 = 3¢ for some integer q. Then

(3b+ 1)2 — 1 = 3q, and, since ¢ is an integer, by definition of divisibility, a? — 1 is divisible by
3.
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13. Section 4.4: Prove: For all integers a, a? — 2 is not divisible by 3.
Beginning of proof: Suppose a is any integer. By the quotient-remainder theorem with divisor
d = 3, there exist unique integers ¢ and r such that a = 3¢ + r, where 0 <7 < 3....

14. Section 4.6: Prove by contradiction: The product of any irrational number and any rational
number is irrational.
Beginning of proof: Suppose not. That is, suppose the product of any irrational number and
any rational number is rational....

15. Section 4.6: The negation of “n is not divisible by any prime number greater than 1 and less
than or equal to /n” is “n is divisible by any prime number greater than 1 and less than or

equal to \/n.”
. . nin+1) .
16. Section 5.2: The equation 1+2+3+:--+n = — is true for n = 1 because 1+ 2 +
34+ 4+1= 1(1;1) is true.
. . n(n+1) .
17. Section 5.2: The equation 1 +24+3+---+n = — is true for n = 1 because
1(1+1) 2
l=—r— "2 =]=— 1=1.
) 2~

18. Section 5.2: Prove by mathematical induction: For all integers n > 1,

1+2+3+-~+n=”(L2+1_).

Beginning of proof: Let the property P(n) be

14243+ +n="

(n_;-l_) for all integers n > 1....

19. Section 6.1: Given sets A and B, to show that A is a subset of B, we must show that there
is an element x such that z is in A and z is in B.

20. Section 6.1: Given sets A and B, to show that A is a subset of B, we must show that for all
z,zisin A and z is in B.

21. Section 7.2: To prove that F: A — B is one-to-one, assume that if F(z,) = F(z3) then
I = Tag.

22. Section 7.2: To prove that F: A — B is one-to-one, we must show that for all z; and z, in
A, F(.’B]) = F(:Zg) and Ty = Ta.

23. Section 8.2: Define a relation R on the set of all integers by a Rb if, and only if, ab > 0. To
show that R is symmetric, assume that for all integers a and b, @ Rb. We will show that b Ra.
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Answers for the Find-the-Mistake Problems

All of the following problems contain a mistake. Identify and correct each one.

1. Section 2.2: The negation of “1 < a < 5" is ¥1 > > 5.

Answer: A statement of the form “1 < a < 57 is an and statement. Thus, by De Morgan’s
law, its negation is an or statement. The correct negation is 1 > a or a > 5.

2. Section 2.2: “P only if Q" mecans “if ¢ then P.”

Answer: “P only if Q" means that the only way P can occur is for Q to occur. This means
that if Q does not occur, then P cannot occur, or, equivalently, “if P occurs then @ must have
occurred,” i.c., “if P then @Q.”

3. Section 3.2

(a) The negation of “For all rcal numbers =, if x > 2 then z? > 4” is “For all real numbers
z, if £ > 2 then 2% < 4.

(b) The negation of “For all real numbers z, if z > 2 then 2? > 47 is “There exist real
numbers z such that if z > 2 then 2 < 4.”

(c) The negation of “For all real numbers x, if x > 2 then 22 > 4" is “There exists a real
number z such that z > 2 and 2% < 4.”

Answer to a, b, and ¢: The negation of a “For all” statement is a “There exists” statement,

the negation of “if p then ¢” is “p and not ¢,” and the negation of “r? > 47 is “x? < 4.

The correct negation in all three cases is “There exists a real number z such that 2 > 2 and
2 s

z° < 4.

4. Section 3.2: The contrapositive of “For all real numbers z, if x > 2 then 2% > 4" is “For all
real numbers «, if £ < 2 then 22 < 4.”

Answer: The contrapositive of “if p then ¢” is “if not ¢ then not p.” In this case p is z > 2
and ¢ is 2 > 4. Thus the correct answer is “For all real numbers z, if 2?2 < 4 then 2 < 2.7

5. Section 3.3: Statement: 3 a real number x such that V real nmnbers y, 2 +y = 0. Proposed
negation: V real numbers z, if y is a real number then z +y # 0.

Answer: The proposed negation began correctly with “V real numbers x,” but the continuation
should be the existential statement * 3 a real number y such that  +y # 0.”

6. Section 4.1: A person is asked to prove that the square of any odd integer is odd. Toward
the end of a proof the person writes: “Thercfore n? = 2k + 1, which is the definition of odd.”

Answer: For an integer to be odd means that it equals 2 times some integer plus 1.So it is
not correct to say that “2k + 1 is the definition of odd.” The person should have written:
“Therefore n2 = 2k + 1, where k is an integer, and so n? is odd by definition of odd.”

7. Section 4.1: Prove: The square of any even integer is even.
Beginning of proof: Suppose that r is any integer. Then if m is any even integer, m = 2r....

Answer: To prove that the square of any even integer is even, you must start by supposing
you have a fparticular but arbitrarily chosen] even integer. By using the definition of even, you
can deduce what the even integer must look like, namely that it must equal 2 - (some integer).
A correct proofl would start with an even integer m and deduce the existence of an integer r
such that m = 2r. This “proof” has it backwards.
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200 Answers for the Find-the-Mistake Problems

8. Section 4.1: Prove directly from the definition of even: For all even integers n, (—1)" = 1.

Beginning of proof: Suppose n is any even integer. Then n = 2r for some integer r. By
substitution, (—1)" = (=1)?" = 1 because 2r is even....

Answer: By claiming that (—1)%" = 1, this “proof’ assumes what is to be proved, namely that
{—1) raised to an even power equals 1.

9. Section 4.1: Prove directly from the definition of even: For all even integers n, (—1)* = 1.

Beginning of proof: Suppose n is any even integer. Then n = 2r for some integer r. By
substitution, (—1)2" = ((=1)?)"...

Answer: The fact that (—1)2" = ((—1)?)" follows from a property of exponents; it is not true
“by substitution.” When you write “by substitution,” you have to include the original variable
in the equation that you write. Thus the following would be correct:

Prove directly from the definition of even: For all even integers n, (—1)* = 1.

Beginning of proof: Suppose n is any even integer. Then n = 2r for some integer 7, and so

(- = (=* by substitution
= ((-1)®)" by a property of exponents...

10. Section 4.3: Prove: For all integers a and b, if a and b are divisible by 3 then a +b is divisible
by 3.

Beginning of proof: Suppose that for all integers a and b, if @ and b are divisible by 3 then
a + b is divisible by 3. By definition of divisibility, ....

Answer: This proof begins by assuming exactly what is to be proved. If one assumes what is
to be proved, there is nothing left to do!

11. Section 4.3: Prove: For all integers a, if 3 divides a, then 3 divides a2.

Beginning of proof: Suppose a is any integer such that 3 divides a. Then a = 3k for any
integer k....

Answer: It is incorrect to say that “a = 3k for any integer k” because k cannot be just “any”
integer; in fact, the only integer that & can be is k = a/3. The correct thing to say is, “Then
a = 3k for some integer k.”

12. Section 4.3: Prove: For all integers a, if a = 3b+ 1 for some integer b, then a? — 1 is divisible
by 3

Beginning of proof: Let a be any integer such that @ = 3b + 1 for some integer b. We will
prove that a? — 1 is divisible by 3. This means that a? — 1 = 3g for some integer ¢q. Then
(3b+ 1)2 — 1 = 3¢, and, since q is an integer, by definition of divisibility, a® — 1 is divisible by
3....

Answer: This “proof’ assumes something equivalent to what is to be proved. After stating
“We will prove that a® — 1 is dlvmble by 3” it is correct to state that .“This means that
a? — 1 = 3q for some integer q.” However, the following sentence assumes that the integer q
has been shown to exist, which is not the case.

13. Section 4.4: Prove: For all integers a, a® — 2 is not divisible by 3.

Beginning of proof: Suppose ais any integer. By the quotient-remainder theorem with divisor
d = 3, there exist unique integers ¢ and » such that a = 3q + r, where 0 < r < 3.

Answer: The inequality is incorrect; it should be 0 < r < 3.

14. Section 4.6: Prove by contradiction: The product of any irrational number and any rational
number is irrational.
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Beginning of proof: Suppose not. That is, suppose the product of any irrational number and
any rational number is rational.

Answer: A proof by contradiction start with the negations of the statement to be proved. In
this case, the statement to be proved is universal, and so its negation is existential. However,
this proposed proof begins with a universal statement. A correct way to begin the proof is the
following:

Beginning of proof: Suppose not. That is, suppose there exists an irrational number and a
rational number whose product is rational.

15. Section 4.6: The negation of “n is not divisible by any prime number greater than 1 and less
than or equal to \/n” is “n is divisible by any prime number greater than 1 and less than or
equal to /n.”

Answer: Consider negating the statement “He does not have any money.” The negation is
not “He does have any money,” it is “He does have some money.” Similarly, the negation of
“n is not divisible by any prime number greater than 1 and less than or equal to \/n” is not
“n is divisible by any prime number greater than 1 and less than or equal to /n.” It is “n
is divisible by some prime number greater than 1 and less than or equal to /n,” or “There
exists a prime number greater than 1 and less than or equal to /n that divides n.”

_nn+1).

16. Section 5.2: The equation 1 +2+4+3+ - -+n = —s is true for n = 1 because 1 + 2 +
1{(1+1
3+---+1= -—(%) is true.
Answer: When n = 1, the expression 1+2+3+---+n = 1; it does not equal 14+2+3+---+1.
1
17. Section 5.2: The equation 1 +2+4+3+--+n = -ri(j%)- is true for n = 1 because
1{(1+1) 2
= =1l==-=1=1
L 2 T2

Answer: A false statement can imply a true conclusion. So deducing a true conclusion from a
statement is not a valid way to prove that the statement is true.

18. Section 5.2: Prove by mathematical induction: For all integers n > 1,

n(n + 1)’

14243+ n=——7

Beginning of proof: Let the property P(n) be

_n(n+1)

14243+---+n= for all integers n > 1....

Answer: The job of a proof by mathematical induction is to prove that a given property is
true for all integers greater than or equal to a given integer. In this example, the property
P(n) is simply the equation

7 1
142434 +n= (nTJF)
and the proof by mathematical induction establishes that P(n) is true for all integers n > 1.
The mistake is including the words “for all integers n > 1" as part of P(n) because these words
make P(n) identical with what is to be proved.
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19. Section 6.1: Given sets A and B, to show that A is a subset of B, we must show that there
is an element = such that x isin A and z is in B.

Answer: This answer implies that for A to be a subset of B, it is enough for there to be a
single element that is in both sets. But this is false. For instance, if A = {1,2} and B = {2,3},
then 2 is in both A and B, but A is not a subset of B because 1isin A and 1 is not in B. In
fact, for A to be a subset of B means that for all z, ¢f z is in A then z must be in B.

20. Section 6.1: Given sets A and B, to show that A is a subset of B, we must show that for all
z,zisin A and z is in B.
Answer: There are two problems with this answer. One is that it implies that A and B are
identical sets, whereas for A to be a subset of B it is possible for B to contain elements that are
not in A. In addition, because no domain is specified for z, it appears to say that everything
in the universe is in both A and B, which is not the case for most sets A and B.

21. Section 7.2: To prove that F: A — B is one-to-one, assume that if F(z,) = F(z3) then
T = T9.
Answer: Assuming that “if F(z,) = F(x2) then z1 = z3” is essentially the same as assuming
that F' is one-to-one. In other words, it essentially assumes what needs to be proved.

22. Section 7.2: To prove that F: A — B is one-to-one, we must show that for all 2; and x5 in
A, F(z,) = F(z2) and x, = z,.

Answer: This statement implies that for all z; and x5 in A, z; = z5. In other words, it implies
that there is only one element in A, which is very seldom the case.

23. Section 8.2: Define a relation R on the set of all integers by a Rb if, and only if, ab > 0. To
show that R is symmetric, assume that for all integers a and b, a Rb. We will show that b Ra.

Answer: The problem with these statements is that saying “assume that for all integers a and
b, a Rb” is equivalent to saying that every integer is related to every other integer by R. This
is not the case. For instance, —1 is not related to 1 because (—=1)- 1= —1and —1 ¥ 0.
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