Chapter 7.1, Problem 8E

Problem

Let $J5 = \{0, 1, 2, 3, 4\}$, and define a function $F: J5 \rightarrow J5$ as follows: For each $x \in J5$, $F(x) = (x3 + 2x + 4) \mod 5$. Find the following:

- a. *F*(0)
- b. *F*(1)
- c. F(2)
- d. F(3)
- e. F(4)

Step-by-step solution

Step 1 of 5

- (a) To find F(0)
- Put x = 0 in $F(x) = (x^3 + 2x + 4) \mod 5$

$$F(0) = (0+2.0+4) \mod 5$$

= 4

Step 2 of 5

(b) To find F(1) put x = 0 in $F(x) = (x^3 + 2x + 4) \mod 5$

$$F(1) = (1+2+4) \mod 5$$

= 2

Step 3 of 5

(c)
$$F(2) = (2^3 + 2.2 + 4) \mod 5$$

= $(8+4+4) \mod 5$
= $16 \mod 5$
= 1

Step 4 of 5

(d)
$$F(3) = (3^3 + 2.3 + 4) \mod 5$$

= $(27 + 6 + 4) \mod 5$
= $37 \mod 5$
= 2

(e)
$$F(4) = (4^3 + 2.4 + 4) \mod 5$$

= $(64 + 8 + 4) \mod 5$
= $76 \mod 5$
= 1