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MATH 342B ASSIGNMENT &

PROBLEMS, SECTION 12.1

Solve the following differential equations by series and also by an ele-
mentary method and verify that your solutions agree. Check your results
by computer.

8
zy =zy+y.

Separation of variables:
From the given equation we get

1d 1 1 1
(1) oy =oy+y = o =yle+1) = ~ 2 ="" :>/*dy=/m+ de.
ydz z Yy T

So, the left hand side evaluates to

(2) In Y+ Cl
for some constant C; € R and the right hand side is simplified as follows:
1
(3) /:c—l— dmzf(l—i—m"l)dx::c—l—lnmnkcg
"

for some Cy € R. Let C' = C; — C;. Then we have from (1), (2), and (3) that
(4) Iny=z+Inz4C,
SO
(5) y=exp(z+1nz+C)

= exp (z) exp (Inz) exp (C)

::yowem’

where 3o = exp (C). So, y = yoeze®. Wolfram Alpha confirms this.

Series method:
Assume a solution

(6) Y= Z Q™

n=0
for a,, € R. Then
(7) g = Z o™, g'= E ann(n — 1)z 2
n=0 n=0

Plugging (6) and (7) into the differential equation, we get

(8) zy =y +y = xZannac”‘l = (z+ 1) Zan:c”.
n=0 n=>0

1
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So,

oC o0 o0
(9) Z Gnnz” = Z apz" + Z R i
n=0 n=0 n=0
(o] oo
= Z angr(n + 1)z = ap + (Qny1 + an)z™
n=>0 n=0
So, ay = 0 and
1
(10) npi(R+ 1) =a41+ 06, = Qpp1 = — .
So, ag = a1, as = 2a» = a1, a4 = 3a3 = }aq. In general, for n > 1, we have
1
11 = .
( ) a’ﬂ (n . 1)!a’1

Therefore, our solution becomes

(12) y:alz(n_ll)!mn.

This is equivalent to y = ygze® if yp = ay:

& 1 n __ - 1 n—1 - 1 n __ i
(13) Glgmx Aalm;(n——lﬁm —almgam = aqyre .
Thus, the solution to the differential equation is
= 1
(14) y=a Z mx” = ayze”
n=1
for a; € R.
2.
y = 3z%y.

Separation of variables:
From the given equation we get

1
(15) y’:3$2y22>éj—z=3m2—_—>f§dy:3f;n2dg:==>1ny=x3+c

where C € R is a constant. Let yo = exp (C'). Then we get
(16) y =exp (z° + C) = exp (¢*) exp (C) = yoe® .
B0, Y = yoezs. Wolfram Alpha agrees.

Series method:
Assume a solution as in (6), so that (7) follows. Then we plug (6) and (7) into the
differential equation to get

o o0 oC
(17) E a,nz" ! = 3z2 E a,z" = 3 E ]
n=0 n=0 n=0

2
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So, we have

(18) a1 +202+ ) tnia(n+3)a" 2 =3 g,z
n=0 n=0
So, a; = ay = 0, ag is arbitrary, and
3
(19) tnt3(n+3) = 3a, = iz = 3
SO, g = %CLO =lg; Qg = g‘ag = 303 = 30p, Qg = gag = %QG = éﬂo In general
1
(20) a’3n = —Iaol
n!
Thus, our solution is
1 1 =1 .
(21) y:a()(l-i—x +2:c +9:E+ )—ag;ax :

This is exactly the Taylor expansion of ape® . So, if Yo = ag, we have the general solution
of the differential equation:

(22) Y =ao Z = floe

for ag € R.

4,
yu e '“4’9‘4

Linear homogeneous second order DE:
Since the differential equation is linear, assume a solution y = €™, Then 3’ = ne™ and
y" = n2e™. So, we get

(23) y' =4y = n?e™ = —4e™ = n’= 4 = n=+2.
Thus,

(24) y = Aei® 4 Bei

for some A, B € R. So, using Euler’s formula, (24) becomes

(25) y = Alcos (2z) + isin (2z)] + Blcos (—2z) + isin (—2z)]

= Alcos (2z) + isin (2z)] + Blcos (2z) — isin (2z)]
= (A + B) cos (2z) + i(A — B) sin (2z).

Let Cp = A+ B and let C; = (A — B)i. Then y = Cycos(2z) 4+ C; sin (2z). Wolfram
Alpha confirms this. -

Series method: :
Assume a solution as in (6), so that (7) follows. Then we plug (6) and (7) into the
differential equation to get

(26) Z apn(n —1)z" 2 = —4 Zanaz”.
n=0 n=>0
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So, we have

[s.0}

(27) Zan+2 (n+2)(n+ 1)z :m42an

n=0

Thus, ag and a; are arbitrary and

4
28 ' 2 1 = —4- n = - = — a4
(28) ant2(n +2)(n + 1) a (nt2 (n+2)(n+1)a
S0, ag 1= "'"li%ag, az = 32a1 G4 = —f-sag = 4;621%, as = —5471(13 = 5_;_63,2c11. Thus, in
general we have
~1)"4n
(29) Qon = ( (23’&)' g, n = 07
and
—1)"4"
30 ntl = —————0a1, >0
( ) Aon+1 (271-1— l)zal m
So, the solution becomes
(31) y = i (_1)” $2'ﬂ. + a i n 2n+l
On:D (2n)! gt 2n+1
o0 n oo 'n,
_ (_1) 2n a1 2n+1
"aog(zn) +2nz 2n+1

= ag cos (2z) + a_21 sin (2z).

If we let aqp = Cp and % = Cj then (31) is identical to the original answer of y =
Cp cos (2z) + Cy sin (2z). Thus, the general solution of the differential equation is

(32) y=Co) ((;3, (22" +C1 Y (2(—;%)-,(2@2”“ = Cpcos (2z) + C, sin (2z).
n=0 ’ n=0 :

(m + 1)y" — 2zy’ + 2y = 0.

Reduction of order:
Given the differential equation (z* + 1)y” — 2zy’ + 2y = 0, assume a solution y; = 2™ for
some m € R. Then y, = ma™ ! and y} = m(m — 1)2™ 2, so we get

(33)  (2®+ D)y} =2z + 29 =0 = m(m—1)(z™ +2™%) - 2ma™ +22™ =0

2

— (mg-3m+2)a:m+(m2—m):cm’2=0 — m?—-3m+2=m?—m=0

= m= 1.
So y; = x is a solution of the differential equation. Suppose ¥ = 11 (z)v(z) = zv(x)

is another solution to the differential equation for some function v : R — R. Then
4

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

Yo = v+ v’ and yi = 2v' 4+ zv”. Plugging these into the differential equation, we get
(34) (2% +1)vh — 2zyh + 2y, = 0
= (z?+1)(2v' + ") - 2:5('0 +zv')+22v =0
= 22°0" + 20" + 0" + 20" — 2zv — 2220 + 220 =0
= 2" + 2% + 20" =0
= (2®+ )" +20' =0
do’ 2

£—~$3+$v

1
:>/—dv’:—2/ ! d:c=—2/ o2 Vs
v 3+ z z2+1

=> Inv'=-2In(z) +In(z*+ 1)+ C [C € R]

241
———>’v'=ec<%) =ec(1+%>
T T

=>vec($—£>.
T
So,

(35) ygzxvﬁeG:E(m——l—) =e%(z® - 1).

z

/

Let B = e® and let A € R be an arbitrary constant. Since y, = B(z? — 1) is a solution
and 3, = z is a solution (hence y; = Bz is a solution), y = y; + y» is the general solution.
So, y = A(z® — 1) + Bz is the solution to the differential equation. Wolfram Alpha
confirms this.

Series method:
Assume a solution as in (6), so that (7) follows. Then we plug (6) and (7) into the
differential equation to get

(36) (z*+1) Zan nin— 1)z —QxZann:r” 1+22anx = 0.

Thus,

(37) iannn—l “+i (n—1) —2n+2)a,z"™ = 0.
n=>0 n=0

So,

(38) i nn—1) — 2n + 2)az™ = — ian+2('n + 2)(n+1)z"

n=0 n=0

and ap and a; are arbitrary constants. Therefore,

(39) (n(n —1) — 2n 4 2)a, = —apia(n+ 2)(n +1),
50

o TY a 2 _
(40) anH:_n(n 1) 2n+2an: né —3n+ 2

(n+2)(n+1) Tmitant2
5
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1-342 4—-6+2

Then a; = —ay, a3 = —mal =0, a4 = —mag = 0. Thus, for n > 2 we
have a, = 0. So, the solution is
2
(41) §j = anT" = ag+ a1z + —apz? = ag(l — :1:2) + a;z.
n=0

If we set A = —agy and B = a; then we get the same solution we found earlier, namely
(42) y = A(z* — 1) + Bz.

PROBLEMS, SECTION 12.2

2.

Show that P(—1) = (=1)".
The Legendre differential equation is

d*y dy
o, 2 _ — ey
(43) (1-=z )d:.:? 20—+ I(I+1)y=0.
A general solution of (43) is
(l+1 {4+ 1)l —2)(!
(44) y($)=ag{1— (; )a:2+ i 1 )(+3)$4—---
-1 - — g
T
3! 4
Put —z in place of z in the above equation. Then we get
I(l+1 l (1 —2)({
(45)  w(-=) =ao|:1—~——( ; ) g2 4 WA D) = ) +3)$4—---}
[—1)({+2 - D{I+2)( -
_al[x_ ( ;(1 +2) s, (-DU+ Zl 3)(5+4)$5_._,]_

The Legendre polynomials P(z) are just special cases of (44) where [ is a positive integer
and we have the restriction P(1) = 1. For odd ! we choose ay = 0 and for even [ we
choose a; = 0. Thus, for odd [ we have

(46) Pi(m):al [x_%ﬂ.)_f“ﬁ_{_ (l_l)(‘l+2l(!z_3)(l+4’)$5__'_})
S0
(47) P(=2)=a [_x B _(}—1#2_)(_@3 G +2i(!z —3)(t +4)(_m)5 o ]
I—-1D({+2) , (—-D{+2)(-3)(1+4) 5
o D (DO ]
~ —R(z) = (-1'RA().
Similarly, for even [ we have
(45) B(m):ao{l_%wui(l+1)(ziz)(z+3)x4_”_}’
6
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(49) R!(*SC) = ag {1 _ E(l; 1) (ﬁ$)2 il l(l'{" 1)(‘!; 2)(1 +3) (—CC)4 - }
W+1 , W{I+H{I1-2)1+3) ,
=a0{1— 5 T+ i T _}

= P(z) = (-1)'A(x).

Thus, for any [ € N, we have P(—z) = (~1)'P(z). Since we construct P, such that
P(1) = 1, it follows that P(—1) = (—1)', which was to be shown. O
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| Graphs of Legendre Polynomials
[ > plot(LegendreP(0,x) ,x=-1..1);

1.57

—

0.5

4 08 06 04 02 0

| > plot(LegendreP(1l,x) ,x=-1..1);

0.5

P

0.5

1 08 06 04 02 9]

L i -1
- > plot(LegendreP(2,x) ,x=-1..1);
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Artemm Mavrin

MATH 342B ASSIGNMENT £

PROBLEMS, SECTION 12.5

4.
Show from (5.1) that

o 6<I>
Substitute the series (5

(5.8D).

In the textbook, equation (5.1) reads,

1/2

(1) ®(z,h) = (1 —2zh+h%)" "7,

.2) for @, and so prove the recursion relation

|h| < 1,

and @ is the generating function for Legendre polynomials. We take partial derivatives

of @:
1
(2) g—i 5(1 — 2zh + h?) 3/2(42:‘1)
=n(1-2zh+ k)" and
D 1
(3) %E —5 (1= 2zh+h?)" 2(—2z + 2n)
= (z = h)(1 - 2zh+ k%) 2
Multiplying (2) by z — h and (3) by h, we get
(4) (z — h) gi = h(z — h)(1—2zh + hg)_m,
(5) hgiz = h(m—h)(1—2$h+h?‘)_3/2,
so that
o o

as desired. Furthermore, equation (5.2) in the textbook reads

(7) O(z,h) =Y h'P(z)

Substituting (7) into (6), we get

(8) (w—h)-(%zh‘l’z( —hmZh*H
=0
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The left hand side of (8) becomes

) (@ =D)L S RB(@) = (2~ h) | 2 Pyfz) + 5= S KA()
[=0 L =1
0 8 &
ik £;hlﬂ($)

=1 =1
=Y haP(z) - WP_i(z)
=1 =1

(10) Z hH-le Z hH—le

_ Y HHEl@) + KR

1=1

o0
NEEE
= 2R
Next, the right hand side of (8) becomes

(11) h%ihfﬂ(m) = ilh’ﬂ(m)
=0 =0

Since (9) and (11) are equal, we have

(12) ih‘ [P (z) — P_y( mea
I=1
Thus, for each | € N, the summands must be equal. Therefore, we have
(13) W (zP() ~ Ply(z)] = IB(z).
Dividing both sides of (13) by k!, we get
(14) zP/(z) — P_,(z) = B (),

the desired recursion relation.
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5.

Differentiate the recursion relation (5.8a) and use the recursion relation
(5.8b) with [ replaced by [ — 1 to prove the recursion relation (5.8¢).

In the textbook, equation (5.8a) is the recursion relation
(15) P(z) = (2L~ 1)2P1 () — (1 — 1) Pra(a).
Differentiating (15) with respect to z gives
(16) i) = (2 = )Pa(e) + (2 - DePl,(z) - (I - L)P_y()
= 21P_1(z) — Po1(z) + 2z Py (x) — xP_4 (z) — 1P _5(z) + P, (x).

Recursion relation (5.8b) in the textbook is (once again)

(17) zP(z) — P (z) = 1A (z).

If we make the substitution { — [ — 1, (17) becomes

(18) zP_1(z) = BLy(z) = (I = 1) P (2),
so that

(19) zP_y(z) = (I = 1)Pa(z) + P 5(z)

= 1P (3) — Pialz) + PLy(a).

Using (19) in (16) gives

(20) IP/(z) = 21P_1(z) — Pa(z) + 202 Py (z) — 21Py (z) + 21 _,(x)

—P-1(z) + Pioa(z) — PLy(2) — 1P _,(x) + FL5(2)

=(2A-1+22 -2 -1+ 1)Py(z)+ (2 -1 -1+ 1)P ,(z)
= (20* = 1) B—1(z) + 1P_y(x).

Dividing by [ on both sides of (20) gives

(21) Pl(z) = (2 — )P (2) + PLy(2)

From (19) and (21) we get

(22)  P(z) = 2P_i(z) = (2l = 1)Poa(z) + P_y(z) = LP-1(z) + Pioa(z) — Fiy()

= (21— 1=+ 1)Aa(z) + (1 - 1)F_;(z)

= EP;_l(:c)
Thus, we get the desired recursion relation:
(23) P/(z) — zP_y(z) = IP1(z).
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12.

Express the polynomial 7z* — 3z + 1 as as a linear combination of
Legendre polynomials. Hint: Start with the highest power of z and
work down in finding the correct combination.

The first five Legendre polynomials are

(24) Bylz) =1,

(25) P(z) =z,

(26) Py(z) = %(33: —1),

(27) Pi(z) = %(5:5 —3z), and
(28) Py(z) = -515—(3533 —302° + 3).

Consider the field R[z] of polynomials in z with real coefficients and the ideal (z°) C R[z].
Then the quotient field R[z]/(z°) consists of all cosets p(z) + (z°) with p(z) € R[z]. This
can be thought of as a vector space over R/(z®) since R/(z%) is a subfield of R[z]/(z")
(and since any field is a vector space over one of its subfields). Specifically, if we abandon
the formalism of cosets, R[z]/(z") becomes a vector space (call it V) over R whose vectors
are polynomials in = with degree n < 4. The usual standard basis of V" is

(29) 8= {1,:8,562,:]33,334},

So that any polynomial p(z) = ag + ayz + @az? + a3z + auz® € V can be written as a
coordinate vector relative to B:

(30) b(z)lg =[x o1 0 o3 a4]T

Following from (24), (25), (26), (27), and (28), the coordinate vector representations of
the Legendre polynomials of degree 4 or less are:

(31) [Po(@)p=[1 0 0 0 0",

(32) [P@]z=[0 100 0",

(33) [Py(z)]y=[-1/2 0 3/2 0 0]

(34) [Py(z)];=1[0 —3/2 0 5/2 0]", and
(35) [Py(z)]z=[3/8 0 —15/4 0 35/8]

Let p(z) = 7z* — 3z + 1, the polynomial we are trying to express as a linear combination
of Legendre polynomials. The coordinate vector of p(z) is

(36) pz)p =01 -8 0 0 7"

Our problem now becomes finding coefficients ag, a1, as, as, as € R such that

(37) p(z) = apPo(z) + a1 Py (z) + aa Pa(z) + asPs(x) + asPy(z).
4
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Thus, we get the following matrix equation that is equivalent to (37):

(38)

o O O

0

0 —1/2
1 0
0 3/2
0 0
0 0

0  3/8]

32 0
0 —15/4
5/2 0
0 35/8

Qg
(25}
5
a3
a4

1
-3
0
0
7

L -

For the 5 x 5 sparse upper triangular matrix in (38), it is easy to find its inverse using
elementary row reduction:

1 0 —-1/2 0 3/8 1.0 000
01 0 -3/2 001000
(39) 00 32 0 -154 00100
0 0 0 5/2 000O0T1O0
00 0 0 35/8 00001
1 0 —1/2 0 3/810 0 0 0
01 0 —=3/2 001 0 0 0
~lo o | 0 —=5/2 0023 0 0
00 0 1 000 025 0
00 0 0 1 00 0 0 8/35
(1 0 -1/2 0010 0 0 —3/3
01 00001 0 3/5 0
~10 0 10000 23 0 47
0 0 01000 0 2/5 0
00 00100 0 0 835
1000010 1/3 0 7/35
0100001 035 0
— 10 010000 2/3 0 4/7
0001000 025 0
0000100 0 0 835
Thus, the solution to the system in (38) is
ag 0 1/3 0 7/35 1 12/5
a 1 035 of|-3 i3
(40) a|l=10 023 0o 47| o]=]| 4
as 0 025 0|0 0
ay 0 0 0 8/35 T 8/5_
Therefore, the Legendre polynomial expansion of p(z) = 72* — 3z + 1 is
12 8
(41) Tzt -3+ 1= EPO(Q:) — 3P (z) + 4Ps(z) + 5P4(3:).
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