Basic Tokenizing,
Indexing, and
Implementation of
Vector-Space Retrieval

https://students-hub.com

SSSSSSSSSSSSSSSS

Java VSR Implementation

Simple vector-space retrieval (VSR) system
written in Java.

Code Is In package Ir.vsr
All code is Iin /u/mooney/ir-code
VSR code is in /u/mooney/ir-code/ir/vsr

Handles HTML and generic ASCI|I
documents where each document is a file.

For now, ignore anything about “feedback.”

https://students-hub.com

Simple Tokenizing

 Analyze text into a sequence of discrete tokens
(words).

« Sometimes punctuation (e-mail), numbers (1999),
and case (Republican vs. republican) can be a
meaningful part of a token.

« However, usually they are not.

 Simplest approach is to ignore all numbers and
punctuation and use only case-insensitive unbroken
strings of alphabetic characters as tokens.

SSSSSSSSSSSSSSSS

https://students-hub.com

Tokenizing HTML

 Should text in HTML commands not
typically seen by the user be included as
tokens?
— Words appearing in URLSs.
— Words appearing in “meta text” of images.

» Simplest approach used in VSR is to
exclude all HTML tag information from
tokenization.

— Parses HTML using utilities in Java Swing
package, and collects all raw text.

SSSSSSSSSSSSSSSS

https://students-hub.com

Documents in VSR

Document

TextStringDocument FileDocument

(used for typed queries)

TextFileDocument HTMLFileDocument
(used for ASCII files) (used for HTML files)

SSSSSSSSSSSSSSSS

https://students-hub.com

Stopwords

* It is typical to exc/ude high-frequency
words (e.g. function words: “a”, “the”, “in”,
CCtOQQ; prOnOunS: CCIDQ’ “he,’, “She,,, CCit??).

» Stopwords are language dependent. VSR
uses a standard set of about 500 for English.

* For efficiency, store strings for stopwords in
a hashtable to recognize them in constant
time.

SSSSSSSSSSSSSSSS

https://students-hub.com

Stemming

e Reduce tokens to “root” form of words to
recognize morphological variation.

— “computer”, “computational”, “computation”
all reduced to same token “compute”

 Correct morphological analysis is language
specific and can be complex.

« Stemming “blindly” strips off known
affixes (prefixes and suffixes) in an iterative
fashion.

SSSSSSSSSSSSSSSS

https://students-hub.com

Porter Stemmer

» Simple procedure for removing known
affixes in English without using a dictionary.

 Can produce unusual stems that are not
English words:

— “computer”, “computational’, “computation” all
reduced to same token “comput”

« May conflate (reduce to the same token)
words that are actually distinct.

* Not recognize all morphological derivations.

SSSSSSSSSSSSSSSS

https://students-hub.com

Porter Stemmer Errors

* Errors of “comission’:
— organization, organ — organ
— police, policy — polic
—arm, army — arm

* Errors of “omission’:
— cylinder, cylindrical
— create, creation
— Europe, European

SSSSSSSSSSSSSSSS

https://students-hub.com

Sparse Vectors

 Vocabulary and therefore dimensionality of
vectors can be very large, ~10%.

» However, most documents and queries do
not contain most words, so vectors are
sparse (1.e. most entries are 0).

» Need efficient methods for storing and
computing with sparse vectors.

SSSSSSSSSSSSSSSS

10

https://students-hub.com

Sparse Vectors as Lists

« Store vectors as linked lists of non-zero-
weight tokens paired with a weight.

— Space proportional to number of unique tokens
(1) In document.

— Requires linear search of the list to find (or
change) the weight of a specific token.

— Requires quadratic time in worst case to
compute vector for a document:

ii _ n(n2+1) _0(n?)

11

SSSSSSSSSSSSSSSS

https://students-hub.com

Sparse Vectors as Trees

e |Index tokens in a document In a balanced
binary tree or trie with weights stored with
tokens at the leaves.

memory
< >
film variable Balanced Binary Tree
< > < >

bit film memory variable
2 1 1 2

12

SSSSSSSSSSSSSSSS

https://students-hub.com

SSSSSSSSSSSSSSSS

Sparse Vectors as Trees (cont.)

Space overhead for tree structure: ~2/7 nodes.

O(log n) time to find or update weight of a
specific token.

O(nlog n) time to construct vector.

Need software package to support such data
structures.

13

https://students-hub.com

Sparse Vectors as HashTables

» Store tokens in hashtable, with token string
as key and weight as value.
— Storage overhead for hashtable ~1.5».
— Table must fit in main memory.

— Constant time to find or update weight of a
specific token (ignoring collisions).

— O(n) time to construct vector (ignoring
collisions).

14

https://students-hub.com

Sparse Vectors In VSR

 Uses the hashtable approach called a
HashMapVector.

» The hashMapVector() method of a
Document computes and returns a
HashMapVector for the document.

 hashMapVector() only works once after
Initial Document creation (i.e. Document
object does not store It internally for later
reuse).

SSSSSSSSSSSSSSSS

15

https://students-hub.com

Implementation Based on Inverted Files

* In practice, document vectors are not stored
directly; an inverted organization provides
much better efficiency.

* The keyword-to-document index can be
Implemented as a hash table, a sorted array,
or a tree-based data structure (trie, B-tree).

» Critical i1ssue Is logarithmic or constant-time
access to token information.

SSSSSSSSSSSSSSSS

16

https://students-hub.com

Inverted Index

STUDENTS-HUB.com

v

\ 4

Index terms df

computer 3

database 2
00

science 4

system 1

Index file

v

D, tf.
D,. 4
D,.
D, 4
D5, 2

Postings lists

17

https://students-hub.com

VSR Inverted Index

TokenlInfo

String HashMap | double | ArrayList

token tokenHash idf occList
TokenOccurence TokenOccurence

DocumentReference int DocumentReference int

docRef count docRef count
File| double File| double
file | length file | length

STUDENTS-HUB.com

18

https://students-hub.com

Creating an Inverted Index

Create an empty HashMap, H;
For each document, D, (i.e. file in an input directory):
Create a HashMapVector,V, for D;
For each (non-zero) token, T, in V:
If T 1s not already In H, create an empty
TokenlInfo for T and insert it into H;
Create a TokenOccurence for T in D and
add it to the occList in the TokenlInfo for T;
Compute IDF for all tokens in H;
Compute vector lengths for all documents in H;

19

SSSSSSSSSSSSSSSS

https://students-hub.com

Computing IDF

et N be the total number of Documents;
For each token, T, in H:
Determine the total number of documents, M,
In which T occurs (the length of T’s occList);
Set the IDF for T to log(N/M);

Note this requires a second pass through all the
tokens after all documents have been indexed.

20

https://students-hub.com

Document Vector Length

» Remember that the length of a document
vector Is the square-root of sum of the
squares of the weights of its tokens.

- Remember the weight of a token is:
TF * IDF

 Therefore, must wait until IDF’s are known
(and therefore until all documents are
Indexed) before document lengths can be
determined.

SSSSSSSSSSSSSSSS

21

https://students-hub.com

Computing Document Lengths

Assume the length of all document vectors (stored in
the DocumentReference) are initialized to 0.0;

For each token T In H:
Let, I, be the IDF weight of T,
For each TokenOccurence of T in document D
Let, C, be the count of T In D;
Increment the length of D by (I*C)?;
For each document D In H:
Set the length of D to be the square-root of the
current stored length;

SSSSSSSSSSSSSSSS

22

https://students-hub.com

Minimizing lterations Through Tokens

» To avoid iterating though all tokens twice

SSSSSSSSSSSSSSSS

(after all documents are already indexed),
computing IDF’s and vector lengths are
combined in one iteration in VSR.

23

https://students-hub.com

SSSSSSSSSSSSSSSS

Time Complexity of Indexing

Complexity of creating vector and indexing
a document of ntokens is O(n).

So indexing /msuch documents is O(/m n).
Computing token IDFs for a vocabularly V

Is O(] V).
Computing vector lengths is also O(/m n).
Since | < m n, complete process I1s O(/m

1), which is also the complexity of just
reading In the corpus.

24

https://students-hub.com

Retrieval with an Inverted Index

» Tokens that are not in both the query and the
document do not effect cosine similarity.

— Product of token weights is zero and does not
contribute to the dot product.

 Usually the query is fairly short, and
therefore its vector Is extremely sparse.

« Use inverted index to find the limited set of
documents that contain at least one of the
query words.

SSSSSSSSSSSSSSSS

25

https://students-hub.com

Inverted Query Retrieval Efficiency

« Assume that, on average, a query word
appears in B documents:

Q = q; q q,
I, AN

 Then retrieval time is O(|@ B), which is
typically, much better than naive retrieval
that examines all AVdocuments, O(| U N),
because |Q << |V and B<< .

SSSSSSSSSSSSSSSS

26

https://students-hub.com

Processing the Query

* Incrementally compute cosine similarity of
each indexed document as query words are
processed one by one.

 To accumulate a total score for each retrieved
document, store retrieved documents in a
hashtable, where DocumentReference is the

key and the partial accumulated score is the
value.

SSSSSSSSSSSSSSSS

27

https://students-hub.com

Inverted-Index Retrieval Algorithm

Create a HashMapVector, Q, for the query.
Create empty HashMap, R, to store retrieved documents with scores.
For each token, T, in Q:
Let | be the IDF of T, and K be the count of T in Q;
Setthe weightof TINQ: W=K*;
et L be the list of TokenOccurences of T from H;
For each TokenOccurence, O, In L:
Let D be the document of O, and C be the count of O (tf of T in D);
If D is not already in R (D was not previously retrieved)
Then add D to R and initialize score to 0.0;
Increment D’s score by W * | * C; (product of T-weight in Q and D)

28

SSSSSSSSSSSSSSSS

https://students-hub.com

Retrieval Algorithm (cont)

Compute the length, L, of the vector Q (square-root of the sum of
the squares of its weights).

For each retrieved document D in R:
et S be the current accumulated score of D;
(S is the dot-product of D and Q)
Let Y be the length of D as stored in its DocumentReference;
Normalize D’s final score to S/(L * Y);

Sort retrieved documents in R by final score and return results in
an array.

29

SSSSSSSSSSSSSSSS

https://students-hub.com

Efficiency Note

» To save computation and an extra iteration
through the tokens in the query, in VSR, the
computation of the length of the query
vector is integrated with the processing of
query tokens during retrieval.

SSSSSSSSSSSSSSSS

30

https://students-hub.com

User Interface

Until user terminates with an empty query:

Prompt user to type a query, Q.

Compute the ranked array of retrievals R for Q;

Print the name of top N documents in R;

Until user terminates with an empty command.:

Prompt user for a command for this query result:

1) Show next N retrievals;
2) Show the Mth retrieved document;

(document shown in Firefox window)

31

SSSSSSSSSSSSSSSS

https://students-hub.com

Running VSR

* Invoke the system using the main method of
Invertedindex.

— Java ir.vsr.InvertedIndex <corpus-directory>
— Make sure your CLASSPATH has /u/mooney/ir-code

« Will index all files in a directory and then process
queries interactively.

 Optional flags include:
— “-html”: Strips HTML tags from files
— “-stem”: Stems tokens with Porter stemmer

SSSSSSSSSSSSSSSS

32

https://students-hub.com

SSSSSSSSSSSSSSSS

Sample Document Corpus

900 science pages from the web.

300 random samples each from the Yahoo
Indices for biology, physics, and chemistry.

In /u/mooney/ir-code/corpora/yahoo-science/
Probably best to use “-html” flag.
Sample trace with this corpus at:

— http://lwww.cs.utexas.edu/users/mooney/ir-course/projl/sample-trace

33

https://students-hub.com

