Chaeter 1: Introduction

opdrit e ERIB19Mor Edition shiplade & Byn Malak Qbaitk

o Chapter 1: Introduction

= What Operating Systems Do

= Computer-System Organization

= Computer-System Architecture

= Operating-System Operations

= Resource Management

= Security and Protection

= Virtualization

= Distributed Systems

= Free/Libre and Open-Source Operating Systems

e —

GBI 10 Edition 1.2 skPIQase & Bin Matals{obaith

.

= Describe the general organization of a computer system and the role
of interrupts

= Describe the components in a modern, multiprocessor computer
system

= |llustrate the transition from user mode to kernel mode

= Discuss how operating systems are used in various computing
environments

= Provide examples of free and open-source operating systems

e —

v
GBI 10 Edition 1.3 skPIQase & Bin Matals{obaith

o
Y,

4%’ What Does the Term Operating System Mean?

| /
€\

= An operating system is “fill in the blanks”
= What about:

* Car

* Airplane

* Printer

* Washing Machine

* Toaster

* Compiler

* Etc.

s e SN
. s 3%(
U A&",-.‘

TYRENTSHUB.COM. 10m egition shploaded By Malak Qbaid

gv ,A,.«;;m..\

>

What is an Operating System?

= A program that acts as an intermediary between a user of a
computer and the computer hardware

= Operating system goals:

* Execute user programs and make solving user problems
easier

* Make the computer system convenient to use
* Use the computer hardware in an efficient manner

e —

GBI 10 Edition 15 skPIQase & Bin Matals{obaith

=

)
o Computer System Structure

= Computer system can be divided into four components:
* Hardware — provides basic computing resources
» CPU, memory, I/O devices
* QOperating system

» Controls and coordinates use of hardware among various
applications and users

* Application programs — define the ways in which the system
resources are used to solve the computing problems of the users

» Word processors, compilers, web browsers, database systems,
video games

* Users
» People, machines, other computers

A 4 J“Eﬂ(g
GBI 10 Edition 1.6 skPIQase & Bin Matals{obaith

4

.
g %77 Abstract View of Components of Computer

user

!

application programs
(compilers, web browsers, development kits, etc.)

{ ! {

operating system

! { !

computer hardware
(CPU, memory, I/0O devices, etc.)

Jplgr%)t!%é\g§e ng nc:epg1 10t Edition

1.7

A \v‘
shBIQage & B M@@J@@@@U@b

-
D

Lo

v .o What Operating Systems Do

y

= Depends on the point of view
= Users want convenience, ease of use and good performance
* Don’t care about resource utilization

= But shared computer such as mainframe or minicomputer must keep
all users happy

* QOperating system is a resource allocator and control program
making efficient use of HW and managing execution of user
programs

= Users of dedicate systems such as workstations have dedicated
resources but frequently use shared resources from servers

= Mobile devices like smartphones and tables are resource poor,
optimized for usability and battery life

* Mobile user interfaces such as touch screens, voice recognition

= Some computers have little or no user interface, such as embedded
computers in devices and automobiles

1\

* Run primarily without user intervention — /5"}91
Dol YRGB 10 Edition 1.8 sWPIQAGE & Bin M@@é@ Q@Uﬁa

-
D

L!(Yy Wki

r &l Operating System Definition

= No universally accepted definition

= “Everything a vendor ships when you order an operating system” is a
good approximation

* But varies wildly

= “The one program running at all times on the computer” is the kernel,
part of the operating system

= Everything else is either

* A system program (ships with the operating system, but not part of
the kernel) , or

* An application program, all programs not associated with the
operating system

= Today’s OSes for general purpose and mobile computing also include
middleware — a set of software frameworks that provide additional
services to application developers such as databases, multimedia,
graphics

= ‘ ‘.“‘

- /‘%\;\\1
:“/ ' ‘F P

HUBEB_ 10m Edition 1.9 skPIQase & Bin Matals{obaith

Overview of Computer System Structure

e
Jpléjrlz?t!%gNg;éém UG 10 Edition 1.10 skiplaage s Bin MatalsObaith

A”“m‘\ 1 I
~$»7 Computer System Organization

= Computer-system operation

* One or more CPUs, device controllers connect through common
bus providing access to shared memory

* Concurrent execution of CPUs and devices competing for memory

cycles
mouse keyboard printer monitor
disks j i on-line i\
= —
CPU el USB controller grapiics
controller adapter
system bus
memory

B 10m Edition 111 skplaged By M@@ér@@ﬁj&;

=

g o -
~$»7 Computer-System Operation

= |/O devices and the CPU can execute concurrently
= Each device controller is in charge of a particular device type
= Each device controller has a local buffer

= Each device controller type has an operating system device driver
to manage it

= CPU moves data from/to main memory to/from local buffers
= |/Ois from the device to local buffer of controller

= Device controller informs CPU that it has finished its operation by
causing an interrupt

e —

v
GBI 10 Edition 1.12 skPIQase & Bin Matals{obaith

=

~$»/ Common Functions of Interrupts

7

= |nterrupt transfers control to the interrupt service routine
generally, through the interrupt vector, which contains the
addresses of all the service routines

= |nterrupt architecture must save the address of the interrupted
instruction

= Atrap or exception is a software-generated interrupt caused
either by an error or a user request

= An operating system is interrupt driven

e —

GBI 10 Edition 1.13 skPIQase & Bin Matals{obaith

CPU user program e -

I/O interrupt processing

I/0 idle : . - . L N
device

transferring | L .

\

1sanbai Q)
auop Jajsuel}
pajeubis 1dnusjul
pajpuey idnuajul

1sanbai Q]
auop Jajsuel}
pajeubis jdnuayul
pajpuey idniisjul

Jplgr%)t!%é\g;/§e ng nc:epg1 10t Edition 1.14 SMQII%Q@QIBMH M@@ér@@%%

Interrupt Handling

= The operating system preserves the state of the CPU by
storing the registers and the program counter

= Determines which type of interrupt has occurred:

= Separate segments of code determine what action should
be taken for each type of interrupt

GBI 10 Edition 1.15 skPIQase & Bin Matals{obaith

G5 Interrupt-drive 1/0 Cycle

CPU 1/0O controller

> device driver initiates 1/0 \
initiates 1/0

T
|
'
CPU executing checks for
interrupts between instructions

i 3
|
1
¥ y
CPU receiving interrupt, 4 input ready, output
transfers control to - complete, or error
interrupt handler generates interrupt signal
7
5
Y

interrupt handler
processes data,
returns from interrupt

6

Y

CPU resumes
processing of
interrupted task

)
N\ \

- ‘.,\\‘H
<

J&é@r%’}@?@ﬁ ggﬁ'&%@— 10t Edition 1.16 shhpiQage &Ry Makal @ bajcs

)

57 /O Structure

= Two methods for handling I/O

* After I/O starts, control returns to user program only
upon I/O completion

* After I/O starts, control returns to user program without
waiting for 1/O completion

\ L0
A3

TURENTSHUB. SO 100 eation shBlaaged B Malalk Qbaich

)‘)
v

f,

.

o /0O Structure (Cont.)

= After I/O starts, control returns to user program only upon 1/O
completion

* Wait instruction idles the CPU until the next interrupt
* Wait loop (contention for memory access)

* At most one I/O request is outstanding at a time, no
simultaneous I/O processing

= After I/O starts, control returns to user program without waiting for
I/O completion

* System call — request to the OS to allow user to wait for I/O
completion

* Device-status table contains entry for each I/O device
indicating its type, address, and state

* OS indexes into I/O device table to determine device status
and to modify table entry to include interrupt

1\

& .; S
GBI 10 Edition 1.18 skPIQase & Bin Matals{obaith

Y
4

ri
&

£

Storage Structure

S

TYRENTSHUB.COM. 10m egition shploaded By Malak Qbaid

ot Storage Structure

= Main memory — only large storage media that the CPU can
access directly

e Random access
* Typically volatile

* Typically random-access memory in the form of
Dynamic Random-access Memory (DRAM)

= Secondary storage — extension of main memory that provides
large nonvolatile storage capacity

\y Y
A

TURENTSHUB. SO 100 eation shBlaaged B Malalk Qbaich

«§% Storage Structure (Cont.)

= Hard Disk Drives (HDD) - rigid metal or glass platters covered
with magnetic recording material
 Disk surface is logically divided into tracks, which are subdivided
into sectors

* The disk controller determines the logical interaction between
the device and the computer

= Non-volatile memory (NVM) devices— faster than hard disks,
nonvolatile
* Various technologies

* Becoming more popular as capacity and performance increases,
price drops

shplgasiedByn Malak Obaid

'(%Op@— 10t Edition 1.22

ot Storage Hierarchy
= Storage systems organized in hierarchy
* Speed
* Cost
* Volatility

= Caching — copying information into faster storage system; main
memory can be viewed as a cache for secondary storage

= Device Driver for each device controller to manage 1/O
* Provides uniform interface between controller and kernel

e —

GBI 10 Edition 1.23 skPIQase & Bin Matals{obaith

Storage-Device Hierarchy

storage capacity

access time

A .
| registers
S
= —+
© | primary
= cache storage
w A |
volatile v
storage main memory
______________________ AQ;_____________________________- -—— == -
. V‘V
nonvolatile
storage nonvolatile memory ST
A [storage
L 2
hard-disk drives
il y,
o optical disk
) ' _
> 4H _tertlary
L) y storage
magnetic tapes ’
\

Ird RN SR GO 100 Edition

1.

5 shplaasedByn Malak b

A

faster

A\l
24tk

N%
o 7 How a Modern Computer Works

€

; . instruction execution —
|8 cyie instructions
thread of execution | 3 and
<«—— data movement —>
data
CPU (*N)
‘ A [
6 &
s o &3 DMA
) =
0 — o
= Q -S
g = memory
Y

device
(*M)

A von Neumann architecture

Jplgr%)t!%é\g§e ng nc:epg1 10t Edition 1.25 SMQII%Q@QIBMH M@@ér@@%%

A”“m‘\ .
~$»7 Direct Memory Access Structure

= Used for high-speed I/O devices able to transmit information
at close to memory speeds

= Device controller transfers blocks of data from buffer storage
directly to main memory without CPU intervention

= Only one interrupt is generated per block, rather than the one
interrupt per byte

e —

GBI 10 Edition 1.26 skPIQase & Bin Matals{obaith

=

- ﬁm.‘\

it Operating-System Operations

= Bootstrap program — simple code to initialize the system, load the
kernel

= Kernel loads
= Starts system daemons (services provided outside of the kernel)
= Kernel interrupt driven (hardware and software)
* Hardware interrupt by one of the devices
* Software interrupt (exception or trap):
» Software error (e.g., division by zero)
» Request for operating system service — system call

» Other process problems include infinite loop, processes
modifying each other or the operating system

e —

I ¥
GBI 10 Edition 1.27 skPIQase & Bin Matals{obaith

4
7,

4

‘rva"-'—“ﬁ Multiprogramming (Batch system)

= Single user cannot always keep CPU and I/O devices busy

= Multiprogramming organizes jobs (code and data) so CPU
always has one to execute

= A subset of total jobs in system is kept in memory
= One job selected and run via job scheduling

= When job has to wait (for 1/O for example), OS switches to
another job

Ird RN SR GO 100 Edition 128 SHPIQAGE RN M@@ér@@éﬁﬂa

¥
1,

m‘;“ﬁ Multitasking (Timesharing)

' 4

= Alogical extension of Batch systems— the CPU switches jobs
so frequently that users can interact with each job while it is

running, creating interactive computing

* Response time should be < 1 second

* Each user has at least one program executing in memory
= process

 |If several jobs ready to run at the same time = CPU
scheduling

* If processes don’t fit in memory, swapping moves them
in and out to run

* Virtual memory allows execution of processes not
completely in memory

B 10m Edition 1.29 skplaged By M@@@@@@UZ‘E

=

|

4%’ Memory Layout for Multiprogrammed System

4

Ird RN SR GO 100 Edition

max

operating system

process 1

process 2

process 3

process 4

1.30

SRIQAGE & B M@@J&Q@

¥
i%

- o Dual-mode Operation

= Dual-mode operation allows OS to protect itself and other
system components

e User mode and kernel mode
= Mode bit provided by hardware

* Provides ability to distinguish when system is running user
code or kernel code.

* When a user is running = mode bit is “user”
* When kernel code is executing = mode bit is “kernel”

= How do we guarantee that user does not explicitly set the mode
bit to “kernel™?

* System call changes mode to kernel, return from call resets
it to user

= Some instructions designated as privileged, only executable in
kernel mode

S M)
v
GBI 10 Edition 1.31 skPIQase & Bin Matals{obaith

=

P "
=4»7 Transition from User to Kernel Mode

user process

SRR ale

user mode
user process executing > calls system call return from system call (mode bit = 1)
\ /
\ VA
: 7
i | trap return
il mode bit=0 mode bit = 1
kernel mode
execute system call (mode bit = 0)
U :-‘*i"."- A
B &80 10 Edition 1.32 spIQagie & B Malals QBaich

=

-

- .
e o Timer

= Timer to prevent infinite loop (or process hogging resources)
* Timer is set to interrupt the computer after some time period
* Keep a counter that is decremented by the physical clock
* Operating system set the counter (privileged instruction)
* When counter zero generate an interrupt

* Set up before scheduling process to regain control or terminate
program that exceeds allotted time

S M)
v
GBI 10 Edition 1.33 skPIQase & Bin Matals{obaith

;;: Process Management

= A process is a program in execution. It is a unit of work within the
system. Program is a passive entity; process is an active entity.

= Process needs resources to accomplish its task
* CPU, memory, I/O, files
* Initialization data
= Process termination requires reclaim of any reusable resources

= Single-threaded process has one program counter specifying location
of next instruction to execute

* Process executes instructions sequentially, one at a time, until
completion

= Multi-threaded process has one program counter per thread

= Typically system has many processes, some user, some operating
system running concurrently on one or more CPUs

* Concurrency by multiplexing the CPUs among the processes /
threads

1\

A
.
GBI 10 Edition 1.34 skPIQase & Bin Matals{obaith

~“$»/ Process Management Activities

The operating system is responsible for the following activities in
connection with process management:

= Creating and deleting both user and system processes
= Suspending and resuming processes

= Providing mechanisms for process synchronization

= Providing mechanisms for process communication

= Providing mechanisms for deadlock handling

7 | f‘\iﬂ 2
GBI 10 Edition 1.35 skPIQase & Bin Matals{obaith

e —

)‘)
v

f,

- o Memory Management

= To execute a program all (or part) of the instructions must be in
memory

= All (or part) of the data that is needed by the program must be in
memory

= Memory management determines what is in memory and when
* Optimizing CPU utilization and computer response to users
= Memory management activities

* Keeping track of which parts of memory are currently being used
and by whom

* Deciding which processes (or parts thereof) and data to move into
and out of memory

* Allocating and deallocating memory space as needed

1\

& .; S
GBI 10 Edition 1.36 skPIQase & Bin Matals{obaith

)
=< -r:‘

PN :
g5 File-system Management

" 4

= OS provides uniform, logical view of information storage
* Abstracts physical properties to logical storage unit - file
* Each medium is controlled by device (i.e., disk drive, tape drive)

» Varying properties include access speed, capacity, data-
transfer rate, access method (sequential or random)

= File-System management
* Files usually organized into directories

* Access control on most systems to determine who can access
what

* OS activities include
» Creating and deleting files and directories
» Primitives to manipulate files and directories
» Mapping files onto secondary storage
» Backup files onto stable (non-volatile) storage media

1\

shiploasiect By, Malals baish

GBI 10t Edition 1.37

.

o Mass-Storage Management

v

= Usually disks used to store data that does not fit in main
memory or data that must be kept for a “long” period of time

= Proper management is of central importance

= Entire speed of computer operation hinges on disk subsystem
and its algorithms

= OS activities
* Mounting and unmounting
* Free-space management
* Storage allocation
* Disk scheduling
* Partitioning
* Protection

e —

v
GBI 10 Edition 1.38 skPIQase & Bin Matals{obaith

)‘)
v

f,

-

w & Caching

= |mportant principle, performed at many levels in a computer
(in hardware, operating system, software)

= |nformation in use copied from slower to faster storage
temporarily

= Faster storage (cache) checked first to determine if
information is there

* Ifitis, information used directly from the cache (fast)
* If not, data copied to cache and used there
= Cache smaller than storage being cached
¢ Cache management important design problem
* Cache size and replacement policy

1\

& .; S
GBI 10 Edition 1.39 skPIQase & Bin Matals{obaith

=

{Q—"ﬁ Characteristics of Various Types of Storage

Level 1 2 3 = 5
Name registers cache main memory solid-state disk [magnetic disk
Typical size <1KB < 16MB < 64GB <1TB <10TB
Implementation custom memory | on-chip or CMOS SRAM flash memory magnetic disk
technology with multiple off-chip

ports CMOS CMOS SRAM
Access time (ns) 0.25-0.5 0.5-25 80-250 25,000-50,000 5,000,000
Bandwidth (MB/sec) |20,000-100,000 |[5,000-10,000 | 1,000-5,000 500 20-150
Managed by compiler hardware operating system | operating system |operating system
Backed by cache main memory | disk disk disk or tape

Movement between levels of storage hierarchy can be explicit or implicit

GBI 10 Edition 1.40 sHPIQAGE &R M@@é@ @Q@

X
\

Computer System Architecture

Jpléjrlz?t!%gNg;éém UG 10 Edition 1.41 skiplaage s Bin MatalsObaith

p—

n,-—f Computer-System Architecture

= Most systems use a single general-purpose processor
* Most systems have special-purpose processors as well
= Multiprocessors systems growing in use and importance

* Also known as parallel systems, tightly-coupled systems
* Advantages include:

1. Increased throughput
2. Economy of scale

3. Increased reliability — graceful degradation or fault tolerance
* Two types:

1. Asymmetric Multiprocessing — each processor is assigned
a specie task.

2. Symmetric Multiprocessing — each processor performs all
tasks

ALY

GBI 10 Edition 1.42 skPIQase & Bin Matals{obaith

\\

e —

P
‘«f»ﬂ Symmetric Multiprocessing Architecture

processor, processor;,
CPU, CPU;
registers registers
cache cache
main memory

TURENTSHUB. SO 100 eation sMploaded By Malak Qbaic

o
Y,

> Lt Dual-Core Design

\
s N

= Multi-chip and multicore
= Systems containing all chips
* Chassis containing multiple separate systems

processor,
CPU coreg CPU core;4
registers registers
’ L1 cache L1 cache
‘ L2 cache
main memory

J&é&%&@?@ﬁ l(!?rf&a?)@— 10t Edition 1.44 sMpJQﬁg{gql;ﬁ% M@@J@@@@U%&

L N

‘ ”f‘(mj*é]
=$»” Non-Uniform Memory Access System

memoryo memory1
cpu, e | cpy,
~~~:::~,:::::"'
CPU, -:"---------:- CPU;,
memory2 memory3
J RN S U GBI 10m Edition 1.45 siploadet Byn Malal @bsit




=

p—
“$»’ Free and Open-Source Operating Systems

= Operating systems made available in source-code format rather than
just binary closed-source and proprietary

= Counter to the copy protection and Digital Rights Management
(DRM) movement

= Started by Free Software Foundation (FSF), which has “copyleft”
GNU Public License (GPL)

* Free software and open-source software are two different ideas
championed by different groups of people

» https://lwww.gnu.org/philosophy/open-source-misses-the-
point.en.html

= Examples include GNU/Linux and BSD UNIX (including core of Mac
OS X), and many more

= Can use VMM like VMware Player (Free on Windows), Virtualbox
(open source and free on many platforms - http://www.virtualbox.com)

* Use to run guest operating systems for exploration

e —

v
GBI 10 Edition 1.46 skPIQase & Bin Matals{obaith




Chapter 2: Operating-System
Services

opdrit e ERIB19Mor Edition shiplade & Byn Malak Qbaitk



P Outline

= Operating System Services

= User and Operating System-Interface

= System Calls

= System Services

= Linkers and Loaders

=  Why Applications are Operating System Specific
= Design and Implementation

= Operating System Structure

= Building and Booting an Operating System

= Operating System Debugging

7 | f‘\iﬂ 2
GBI 10 Edition 1.48 skPIQase & Bin Matals{obaith

e —




=
,_ﬁﬂ’?»"“‘-’-l

r. ) Objectives

= |dentify services provided by an operating system

= [llustrate how system calls are used to provide operating
system services

= Compare and contrast monolithic, layered, microkernel,
modular, and hybrid strategies for designing operating
systems

= [llustrate the process for booting an operating system
= Apply tools for monitoring operating system performance

= Design and implement kernel modules for interacting with a
Linux kernel

A 4 J“Eﬂ( g
GBI 10 Edition 1.49 skPIQase & Bin Matals{obaith




=

“$»7 A View of Operating System Services

user and other system programs
GUI touch screen | command line
user interfaces
system calls
program I/0 file " resource .
; / communication ; accounting
execution operations systems allocation
protection
error
: and
detection ;
: security
services
operating system
hardware
/N :-‘*i"."- A
Jplgr%)t!%gl Qéaﬁ l(!?rf(%?)@— 10t Edition 1.50 sHRIQAGE & By M@@ér@ Bk




A‘ )
w

G Operating System Services

= Operating systems provide an environment for execution of programs
and services to programs and users

= One set of operating-system services provides functions that are
helpful to the user:

* User interface - AlImost all operating systems have a user
interface (Ul).

» Varies between Command-Line (CLI), Graphics User
Interface (GUI), touch-screen, Batch

* Program execution - The system must be able to load a program
into memory and to run that program, end execution, either
normally or abnormally (indicating error)

* 1/0 operations - A running program may require I/O, which may
iInvolve a file or an I/O device

* File-system manipulation - The file system is of particular
interest. Programs need to read and write files and directories,
create and delete them, search them, list file Information, ey
permission management. — /‘&p&f

GBI 10 Edition 151 sHPIQAGE &R M@@é@ Q@UE&




-
i N

&T(":; r

Operating System Services (Cont.)

= One set of operating-system services provides functions that are
helpful to the user (Cont.):

¢ Communications — Processes may exchange information, on the
same computer or between computers over a network

» Communications may be via shared memory or through
message passing (packets moved by the OS)

* Error detection — OS needs to be constantly aware of possible
errors

» May occur in the CPU and memory hardware, in I/O devices, in
user program

» For each type of error, OS should take the appropriate action
to ensure correct and consistent computing

» Debugging facilities can greatly enhance the user’ s and
programmer’ s abilities to efficiently use the system

1\

A
.
GBI 10 Edition 1.52 skPIQase & Bin Matals{obaith




=

2 Operating System Services (Cont.)

(‘T"":; r

= Another set of OS functions exists for ensuring the efficient operation
of the system itself via resource sharing

* Resource allocation - When multiple users or multiple jobs
running concurrently, resources must be allocated to each of them

» Many types of resources - CPU cycles, main memory, file
storage, 1/0O devices.

* Logging - To keep track of which users use how much and what
kinds of computer resources

* Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use
of that information, concurrent processes should not interfere with

each other

» Protection involves ensuring that all access to system
resources is controlled

» Security of the system from outsiders requires user
authentication, extends to defending external I/O devices from

invalid access attempts m

shiploadlec B, Matals Obaic

GBI 10t Edition 1.53




=

. : :
M-f Command Line interpreter vs. GUI

= CLI allows direct command entry

= Sometimes implemented in kernel, sometimes by
systems program

= Sometimes multiple flavors implemented — shells
= Primarily fetches a command from user and executes it

= Sometimes commands built-in, sometimes just names
of programs

* If the latter, adding new features doesn'’t require
shell modification

7 | f‘\iﬂ 2
GBI 10 Edition 1.54 skPIQase & Bin Matals{obaith

e —




-
D

p— :
“v" User Operating System Interface - GUI

= User-friendly desktop metaphor interface
* Usually mouse, keyboard, and monitor
* lcons represent files, programs, actions, etc

* Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open
directory (known as a folder)

* |nvented at Xerox PARC
= Many systems now include both CLI and GUI interfaces
*  Microsoft Windows is GUI with CLI “command” shell

* Apple Mac OS X is “Aqua” GUI interface with UNIX kernel
underneath and shells available

* Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,
GNOME)

shiploaded Bun Malak Obaich

GBI 10t Edition 1.55




Ro)

{

<4%7 Bourne Shell Command Interpreter

, 1. root@r6181-d5-us01:~ (ssh)
X root@r6181-d5-u.. @ ¥1 X ssh M2 222 X root@r6181-d5-us01... 383

v

'Cep[p— 10t Edition . SMQJ%Q@,%@){F] M@@ér@@%@ !




= System Services

= System programs provide a convenient environment for program
development and execution. They can be divided into:

* File manipulation

* Status information sometimes stored in a file
* Programming language support

* Program loading and execution

¢  Communications

* Background services

* Application programs

= Most users’ view of the operating system is defined by system
programs, not the actual system calls.

= But what are system calls ?

A 4 J“Eﬂ( g
GBI 10 Edition 157 skPIQase & Bin Matals{obaith




=
,_ﬁﬂ’?»"“‘-’-l

= Programming interface to the services provided by the OS
= Typically written in a high-level language (C or C++)

= Mostly accessed by programs via a high-level Application
Programming Interface (API) rather than direct system call use

=  Three most common APIs are Win32 API for Windows, POSIX API for
POSIX-based systems (including virtually all versions of UNIX, Linux,
and Mac OS X), and Java API for the Java virtual machine (JVM)

Note that the system-call names used throughout this text are
generic

A 4 J“Eﬂ( g
GBI 10 Edition 1.58 skPIQase & Bin Matals{obaith




ot Example of System Calls

= System call sequence to copy the contents of one file to another file

source file »| destination file

4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally )

A

TURENTSHUB. SO 100 eation shBlaaged B Malalk Qbaich




“$%7  Example of Standard AP

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read () function that is avail-
able in UNIX and Linux systems. The API for this function is obtained from
the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize t read (int fd, void *buf, size t count)
return function parameters
value name

A program that uses the read () function mustinclude the unistd.h header
file, as this file defines the ssize_t and size_t data types (among other
things). The parameters passed to read () are as follows:

¢ int fd—the file descriptor to be read
® void *buf—a buffer into which the data will be read
® size_t count—the maximum number of bytes to be read into the

buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

A3

TURENTSHUB. SO 100 eation shBlaaged B Malalk Qbaich




-
D

(o

<377 System Call Implementation

= Typically, a number is associated with each system call

* System-call interface maintains a table indexed according to
these numbers

= The system call interface invokes the intended system call in OS
kernel and returns status of the system call and any return values

= The caller need know nothing about how the system call is
implemented

* Just needs to obey API and understand what OS will do as a
result call

* Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built into
libraries included with compiler)

1\

& .; S
GBI 10 Edition 1.61 skPIQase & Bin Matals{obaith




~$»7 API| — System Call — OS Relationship

user application

open()
user
mode
system call interface
kernel
mode A
B—— open()
* Implementation
i » of open()
. system call
return

\
A\\

e\

A

TURENTSHUB SO 100 caition shiplgaded By Matals Qbaich




-\‘-&5

( g

<37 System Call Parameter Passing

= Often, more information is required than simply identity of desired
system call

* Exact type and amount of information vary according to OS and
call

= Three general methods used to pass parameters to the OS
* Simplest. pass the parameters in registers
» In some cases, may be more parameters than registers

* Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register

» This approach taken by Linux and Solaris

* Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

* Block and stack methods do not limit the number or length of
parameters being passed

1\

= |
15 4 » ”\';

GBI 10 Edition 1.63 skPIQase & Bin Matals{obaith




o
Y,

~“$»/ Parameter Passing via Table

b X
register
X: parameters
for call
™ use parameters code for
load address X AL systemn
system call 13 > aall 13

user program

operating system

\y Y
A

TURENTSHUB. SO 100 eation shBlaaged B Malalk Qbaich




-
D

(o

S Types of System Calls

=  Process control

* Ccreate process, terminate process, end, abort, load, execute,...
= File management

* create file, delete file, open, close file, read, write, reposition,...
= Device management

* request device, release device, read, write, get device attributes, set
device attributes, logically attach or detach devices, ...

= |nformation maintenance
* get time or date, set time or date, get system data, set system data, ...
=  Communications

* create, delete communication connection, send, receive messages if
message passing model to host name or process name, Shared-
memory model create and gain access to memory regions, ...

=  Protection

* Control access to resources, Get and set permissions, Allow and deny _.=,
user access A
g ‘,\,

S
=
L 4

&I 10 Edition 1.65 SRIQAGE & B M@@é@ @Q@




Examples of Windows and Unix System Calls

Jplgr%)t!%gNg/gém lC!o ]

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

The following illustrates various equivalent system calls for Windows and

UNIX operating systems.

Windows
Process CreateProcess()
control ExitProcess()

File
management

Device
management

Information
maintenance

Communications

Protection

Ey—lthdMOn

WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConsole ()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile ()

SetFileSecurity()

InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

1.66

Unix

fork()
exit()
wait ()

open()
read()
write()
close()

ioctl()
read ()
write()

getpid()
alarm()
sleep()

pipe()
shm_open ()
mmap ()

chmod ()
umask ()
chown ()

sMploaded By Malak Qbai




=

-

~%»/  Standard C Library Example

= C program invoking printf() library call, which calls write() system call

THE STANDARD C LIBRARY

The standard C library provides a portion of the system-call interface for
many versions of UNIX and Linux. As an example, let’s assume a C pro-
gram invokes the printf () statement. The C library intercepts this call and
invokes the necessary system call (or calls) in the operating system—in this
instance, the write () system call. The C library takes the value returned by
write () and passes it back to the user program:

#include <stdio.h>
int main()
{

—printf ("Greetings"); |5

return 0;
}
user
Y
mode
standard C library
kernel

write()
system call

)
N\ \

- ‘.,\\‘H
<

mode
Qrite()
J&é@r%’}@?@ﬁ ggﬁ'&%@— 10t Edition 1.67 shhpiQage &Ry Makal @ bajcs

)




=

“€%’ The Role of the Linker and Loader

source main.c
program

compiler gcc -C malin.cC

l generates

object main.o
other
object
files %

4
L4
4

»

linker gcc -0 main main.o -1m

l generates

executable main

loader 3 / maln

dynamically
linked
libraries /"«

~
A program
in memory

TURENTS:HUB.SOM. 100 carton s shiplaasied By Malals Qbaih

=



-\‘-&5

—
*«‘3,\;—( Why Applications are Operating System Specific

= Apps compiled on one system usually not executable on other
operating systems

= Each operating system provides its own unique system calls
* Own file formats, etc.
=  Apps can be multi-operating system

* Written in interpreted language like Python, Ruby, and interpreter
available on multiple operating systems

* App written in language that includes a VM containing the running
app (like Java)

* Use standard language (like C), compile separately on each
operating system to run on each

= Application Binary Interface (ABI) is architecture equivalent of API,
defines how different components of binary code can interface for a
given operating system on a given architecture, CPU, etc.

1\

= |
[ 4 g ”\';

GBI 10 Edition 1.69 skPIQase & Bin Matals{obaith




&/:,,w/ Operating System Structure

= General-purpose OS is very large program
= Various ways to structure ones

* Simple structure — MS-DOS

* More complex — UNIX

* Layered — an abstraction

* Microkernel — Mach

JL

AT

P e

& 3
> ~ X
<

\\ 9
W

2

ol

TURENTSHUB. SO 100 eation shploasied By Malal Obaj




{;-“ ‘Monolithic Structure — Original UNIX

= UNIX - limited by hardware functionality, the original UNIX operating
system had limited structuring.

= The UNIX OS consists of two separable parts
* Systems programs
* The kernel

» Consists of everything below the system-call interface and
above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

e —

I %
GBI 10 Edition 1.74 skPIQase & Bin Matals{obaith




M,';-“‘ﬁ \Traditional UNIX System Structure

Beyond simple but not fully layered

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

= signals terminal file system CPU scheduling

GE’ ) handling swapping block I/O  page replacement

Q character I/0O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Ve !
&M 10t Egition 1.75 skPIQase & Bin Matals{obaith

.CO




7 Linux System Structure

Monolithic plus modular design

applications

glibc standard c library

system-call interface

file CPU
systems scheduler
networks memory
(TCP/IP) manager
block character

devices devices
device drivers

hardware

TURENTSHUB SO 100 caition shiplgaded By Matals Qbaich




it Layered Approach

layer N
user interface

= The operating system is
divided into a number of layers
(levels), each built on top of
lower layers. The bottom layer
(layer 0), is the hardware; the
highest (layer N) is the user
interface.

layer 0
hardware

= With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level
layers

7 | f‘\iﬂ 2
GBI 10 Edition 1.77 skPIQase & Bin Matals{obaith

e —




57 Microkernels

= Moves as much from the kernel into user space
= Mach is an example of microkernel
* Mac OS X kernel (Darwin) partly based on Mach

= Communication takes place between user modules using
message passing

= Benefits:
* Easier to extend a microkernel
* Easier to port the operating system to new architectures
* More reliable (less code is running in kernel mode)
* More secure
= Detriments:

* Performance overhead of user space to kernel space
communication

AN
v
GBI 10 Edition 1.78 skPIQase & Bin Matals{obaith

e —




application
program

device MsEE
driver mode

messages

interprocess
communication

memory
managment

microkernel

CPU
scheduling

kernel
mode

hardware

Jplgr%)t!%é\g;/§e ng nc:epg1 10t Edition

1.79

Sploage &Ry M@@gr@@m‘



o Modules

= Many modern operating systems implement loadable kernel
modules (LKMs)

* Uses object-oriented approach

* Each core component is separate

* Each talks to the others over known interfaces

* Each is loadable as needed within the kernel
= Qverall, similar to layers but with more flexible

* Linux, Solaris, etc.

e —

GBI 10 Edition 1.80 skPIQase & Bin Matals{obaith




)‘ )
v

f,

—

" Hybrid Systems

= Most modern operating systems are not one pure model

* Hybrid combines multiple approaches to address performance,
security, usability needs

* Linux and Solaris kernels in kernel address space, so monaolithic,
plus modular for dynamic loading of functionality

*  Windows mostly monolithic, plus microkernel for different
subsystem personalities

= Apple Mac OS X hybrid, layered, Aqua Ul plus Cocoa programming
environment

* Below is kernel consisting of Mach microkernel and BSD Unix
parts, plus 1/O kit and dynamically loadable modules (called
kernel extensions)

1\

shiploRsiec B Malals baich

GBI 10t Edition 1.81




=

{;—"ﬁ Building and Booting an Operating System

= QOperating systems generally designed to run on a class of systems with
variety of peripherals

= Commonly, operating system already installed on purchased computer
* But can build and install some other operating systems
* If generating an operating system from scratch

v

Write the operating system source code

v

Configure the operating system for the system on which it will run

v

Compile the operating system

v

Install the operating system
» Boot the computer and its new operating system

Example: Building and Booting Linux
. Download Linux source code (http://www.kernel.org)
=  Configure kernel via “‘make menuconfig”
. Compile the kernel using “make”
*  Produces vmlinuz, the kernel image
¢ Compile kernel modules via “make modules”

* Install kernel modules into vmlinuz via “‘make
modules install”

* Install new kernel on the system via “make install”

TURENTSHUBSOMD_ 100 caition shiplgaded By Matals Qbaich




)‘ A
v

f,

57 System Boot

= When power initialized on system, execution starts at a fixed memory
location

= Operating system must be made available to hardware so hardware
can start it

* Small piece of code — bootstrap loader, BIOS, stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it

* Sometimes two-step process where boot block at fixed location
loaded by ROM code, which loads bootstrap loader from disk

* Modern systems replace BIOS with Unified Extensible
Firmware Interface (UEFI)

= Common bootstrap loader, GRUB, allows selection of kernel from
multiple disks, versions, kernel options

= Kernel loads and system is then running

= Boot loaders frequently allow various boot states, such as single user
mode

1\

& .; S
GBI 10 Edition 1.83 skPIQase & Bin Matals{obaith




